
A Tool for Semi-Automated Semantic Schema
Mapping: Design and Implementation

Dimitris Manakanatas, Dimitris Plexousakis

Institute of Computer Science, FO.R.T.H.
P.O. Box 1385, GR 71110, Heraklion, Greece

{manakan, dp}@ics.forth.gr

Abstract. Recently, schema mapping has found considerable interest in both
research and practice. Determining matching components of database or XML
schemas is needed in many applications, e.g. for e-business and data integra-
tion. In this paper a complete generic solution of the schema mapping problem
is presented. A hybrid semantic schema mapping algorithm which semi-
automatically finds mappings between two data representation schemas is in-
troduced. The algorithm finds mappings based on the hierarchical organization
of the elements of a term dictionary (WordNet) and on the reuse of already
identified matchings. There is also a graphical user interface that allows the
user to parameterize the algorithm in an easy and fast way. Special attention
was paid to the collaboration of the algorithm with a matching management
tool. This collaboration, as proved by the evaluation of the algorithm, resulted
in the creation of a generic system for detecting and managing mappings be-
tween schemas of various types and sizes.

1 Introduction

In most schema integration systems schema matching is a fundamental problem in
many applications, such as integration of web-oriented data, e-commerce, schema
evolution and migration, application evolution, data warehousing, database design,
web site creation and management, and component-based development. A matching
process uses two schemas as input and produces a schema mapping between pairs of
elements of the input schemas which are semantically related [2], [3], [4], [6], [9],
[10], [11].

Most of schema matching is typically performed manually, possibly supported by
a graphical user interface. Obviously, manually specifying schema matches is a time-
consuming, error-prone, and therefore expensive process. Moreover, there is a linear
relation between the level of effort and the number of matches to be performed, a
growing problem due to the rapidly increasing number of web data sources and e-
businesses to integrate. A faster and less labor-intensive integration approach is
needed. This requires automated support for schema matching and this is the aim of
this work. Furthermore, most approaches in the domain, due to their complexity and
lack of an intuitive interface, appeal to experts making, thus, schema matching an ex-
pensive process. Taking also into consideration the call for more and more accurate

290 Data Integration and the Semantic Web

matching production, we consider the task of supporting the matching process of sub-
stantial importance.

The semantic algorithm which is introduced in this paper and the semi-automated
matching tool which was implemented based on this algorithm created a generic
schema matching tool for many kinds of schemas (relational, XML, OWL). This tool
can be easily operated even by a non-expert user because of its practical and intuitive
interface. Moreover, the new and improved techniques for matching reuse offered by
the algorithm minimize the total time spent on manual matching increasing, at the
same time, the amount and quality of the output results.

Another important component of this work is the WordNet Lexical Database [15]
that helps finding matchings which could not be identified by previous approaches.
The proposed tool can find matchings with different cardinalities (1:1, 1:n and n:1).
Genericity and expandability are the major advantages of this work.

The paper is organized as follows. Section 2 presents previous work and the basic
characteristics of known matchers, including also a taxonomy of them. Section 3 in-
troduces our semantic algorithm and describes its operation. The evaluation results
based on quality measures and comparison with other approaches are given in Section
4. Section 5 presents the main components of the system, such as the interface, the in-
teraction between the algorithm and COMA++ [2] and the WordNet Lexical Data-
base. Section 5 also includes an analysis of use in the area of Purchases-Orders. Fu-
ture work is discussed in Section 6 and conclusions are drawn in Section 7.

2 Related Work

In this section we present a classification of the major approaches to schema matching
[5] and describe the most popular ones. Fig. 1 shows part of this classification scheme
together with some representative approaches.

2.1 Classification of Schema Matching Approaches

An implementation of a schema matching process may use multiple match algorithms
or matchers. This allows the selection of the matchers depending on the application
domain and schema types. Given that the use of multiple matchers may be required
there are two sub problems. First, there is the design of individual matchers, each of
which computes a mapping based on a single matching criterion. Second, there is the
combination of individual matchers, either by using multiple matching criteria (e.g.,
name and type equality) within a hybrid matcher or by combining multiple match re-
sults produced by different match algorithms. For individual matchers, the following
largely-orthogonal criteria are considered for classification:

• Instance vs. schema: Matching approaches can consider instance data (i.e.,
data content) or only schema-level information.

DISWEB'06 291

• Element vs. structure matching: Match can be performed for individual
schema elements, such as attributes, or for combinations of elements, such as
complex schema structures.

• Language vs. constraint: A matcher can use a linguistic approach (e.g., based
on names and textual descriptions of schema elements) or a constraint-based
approach (e.g., based on keys and relationships).

• Matching cardinality: Each element of the resulting mapping may match one
or more elements of one schema to one or more elements of the other, yielding
four cases: 1:1, 1:n, n:1, n:m. In addition, there may be different match cardi-
nalities at the instance level.

• Auxiliary information: Most matchers not only rely on the input schemas S1
and S2 but also on auxiliary information, such as dictionaries, global schemas,
previous matching decisions, and user input.

Note that this classification does not distinguish between different types of sche-
mas (relational, XML, ontologies, etc.) and their internal representation, because the
algorithms depend mostly on the kind of information they exploit, not on its
representation.

Schema Matching Approaches

Individual matcher approaches Combining matchers

Schema-only based
Instance/contents-based

Hybrid matchers Combining inde-
pendent matchers

Element-level Structure-level Element-level

Linguistic
Constraint-
based

Constraint-
based Linguistic

• Name similarity
• Description

similarity
• Global name-

spaces

• Type simi-
larity

• Key prop-
erties

• Graph
matching

• ΙR techniques
(word frequen-
cies, key terms)

• Value pattern
and ranges

Manually: iterative
user feedback

Automatically:
- Matcher seletion
- Result combina-

tion

Further criteria:
- Match cardinality
- Auxiliary information used.

Sample approaches

Constraint-
based

Fig. 1. Classification of schema matching approaches

2.2 Prevalent Approaches from the Literature

In this section we present the most important generic implementations in the domain
whose characteristics are displayed in Table 1. It is observed that the determination of
a similarity value in the interval [0,1] for every possible matching between two sche-
mas is common in all applications.

292 Data Integration and the Semantic Web

 Clio [8] Cupid [10] SF [11] Protoplasm [3] COMA++ [2,4]
Schema types XML,

Relational
XML,

Relational
Relational,
RDF, XML

Relational,
XML, ODMG

Relational,
RDF, OWL,
XSD, XDR

Metadata
representation

Schema trees Schema trees Propagation
graph

Directed graph
(SMM graph)

Directed
acyclic graph

Match
granularity

Element/
Structure level:

Entities/
relationships/

attributes

Structure level:
Entities/

relationships/
attributes

Element/
structure level:

Entities/
relationships/

attributes

Element/
structure level:

Entities/
relationships/

attributes

Element/
structure level:

 Entities/
relationships/

attributes
Match

cardinality
1:1 and n:1 and

n:m
1:1 and n:1 1:1 1:1 and n:1 1:1 and n:1

Comments No ontology
manipulation

A very good
structure
algorithm

Hybrid
structure
algorithm

No ontology
manipulation

The most com-
plete tool

Table 1. Main Characteristics of proposed schema matching approaches

Clio consists of a set of Schema Readers, which read a schema and translate it to an
internal representation, a Correspondence Engine (CE), which is used to identify
matching parts of the schemas or databases, and a Mapping Generator, which gener-
ates view definitions to map data in the source schema into data in the target schema.
The correspondence engine uses n:m element level matchings that have been gained
by knowledge or that have been given by the user via a graphical interface.

On the contrary, Cupid is a hybrid schema matcher, combining a name matcher
and a structure-based matcher. This tool finds the element matchings of a schema, us-
ing the similarity of their names and types at the leaf level.

SF uses no external dictionary, but offers several filters for the best matchings se-
lection from the result of the structure-based matcher. After the end of the structural
matching, the user can choose which matchings he wants to keep by using certain fil-
ters provided by the system.

Protoplasm offers a new architecture or schema matching, which includes two new
internal representations, which are called Schema Matching Model Graph (SMM
Graph), an interface which handles the mapping algorithms and, finally, a smart tech-
nique of combinational execution of them. It enables the addition of a new algorithm
when the user wants to and it is able to handle relational databases, XML schemas
and ODMG.

Finally, COMA++ offers a large library of different matchers and supports several
ways of combining the results from different matchers. These matchers support find-
ing structure-based matchings as well as element-level matchings.

3 A Hybrid Semantic Schema Mapping Algorithm

Our efforts are focused on the design and implementation of a Hybrid Semantic
Schema Mapping Algorithm. The algorithm is presented in this section from three
points of view: its input, operation and output. Broadly speaking, the structure of the
algorithm can be seen in Fig. 2, but it will be also analytically described in the sequel.

DISWEB'06 293

Input: 2 Schemas, S1, S2, (XDR, XSD, OWL, RDF, Relational Databases)
 in Directed Acyclic Graph format
 Output: Mapping Matrix with matchings between two schemas
 Operation:
(1): While (∃ next S1.node)
(2): {
(3): get next S1.node
(4): If (Each similarity value Χ of current S1.node with an
(5): S2.node ∉ [minimum threshold, maximum threshold]) then
(6): {
(7): While (∃ next S2.node)
(8): {
(9): get next S2.node
(10): tokenize S1.node based on delimiters ‘ ’, ‘.’, ‘_’, ‘-’
(11): tokenize S2.node based on delimiters ‘ ’, ‘.’, ‘_’, ‘-’
(12): While (∃ S1.tokens)
(13): {
(14): get next S1.node and set it to i
(15): While (∃ S2.tokens)
(16): {
(17): get next S2.token and set it to j
(18): Max Sim (i, j) = 0
(19): If (i == j) then
(20): Max Sim (i, j) = 1
(21): else
(22): For each (Lexicon based matching i with j)
(23): If (Lexicon based Similarity (i, j) > Max Sim (i, j)) then
(24): Max Sim (i, j) = Lexicon based Similarity (i, j)
(25):
(26): If (Max Sim (i, j) > Threshold) then
(27): store Μax Sim (i, j) in Similarity_value_Matrix
(28): }
(29): }
(30): Calculate the sum of maximum similarity values for each row
(31): of the Similarity_value_Matrix and set it as Sum1
(32): Calculate the sum of maximum similarity values for each column
(33): of the Similarity_value_Matrix and set it as Sum2
(34): ΜaxSim (S1.node, S2.node) = (Sum1 + Sum2) /
(35): (amount (S1.tokens) + amount (S2.tokens))
(36): Store [S1.node, S2.node, ΜaxSim (S1.node, S2.node)]
(37): in Mapping Matrix
(38): }
(39): }
(40): }
(41): Return Mapping Matrix

Fig. 2. Hybrid Semantic Mapping Algorithm

294 Data Integration and the Semantic Web

3.1 Input

The algorithm’s inputs are two schemas that can be relational databases, XML sche-
mas (XDR, XSD), ontologies (OWL, RDF), or, finally, a combination of these kinds.
A schema consists of a set of elements, such as relational tables and columns or XML
elements and attributes. We represent schemas by rooted directed acyclic graphs [4].
Schema elements are represented by graph nodes connected by directed links of dif-
ferent types, e.g. for containment and referential relationships. Schemas are imported
from external sources, e.g. relational databases or XML files, into the internal format
on which match algorithm operates. The algorithm will provide the proper results
only if the input schemas are in a directed acyclic graph format. Thus, before its exe-
cution, the schemas must be correctly encoded.

3.2 Operation

The algorithm after getting its input scans one-by-one the nodes of the first schema’s
graph (source) and compares them with all the nodes of the second schema’s graph
(target). For each node of the source graph, the existence of a matching with a node of
the target graph is examined. If such a matching exists and satisfies the similarity
thresholds declared by the user then this node is overlooked and the algorithm contin-
ues with the next node of the source graph.

If there is no matching at all, or there is a matching but it does not satisfy the given
thresholds, then each node of both graphs are tokenized based on the delimiters ‘ ’, ‘.’,
‘_’, ‘-’. For each token of the source node, the existence of a matching with a token of
the target node is examined using a suitable dictionary. The maximum similarity
value for each token combination is kept as long as it is greater than the threshold (de-
fault value equals 0.5). In this way, a matrix with similarity values between tokens of
the source node and tokens of the target node is generated; with dimensions N×M
where N, M are the amounts of source and target node’s tokens respectively. For each
such matrix, the sums of the maximum similarity values of each row (Sum1) and of
each column (Sum2) are calculated. Sum1 is the sum of the maximum similarities of
the source node towards target node while Sum2 is the reciprocal. Maximum similar-
ity value of the source node and the target node is determined as the mean value of
these two sums (lines 34-35 Fig. 2):

ΜΝ
2Sum1Sum

)element_etargt,element_source(MaxSim
+
+

=
These values are calculated for all the nodes of the source graph and then the map-

ping matrix for the two schemas is returned. Thereafter, regarding the strategy se-
lected, the appropriate matchings are kept in the database.
If, for example, we want to match node “last_name” of schema S1 with node
“first_name” of schema S2, the tokenization, described in lines 10 and 11 of Fig. 2,
results in “last” and “name” for the S1 node and “first” and “name” for the S2 node.
We set token “last” to i and token “first” to j. While “last” ≠ “first”, the maximum
similarity based on the dictionary is 0.96. It is greater than the threshold, hence it is
stored in the similarity value matrix (lines 26-27 of Fig. 2). Then “name” is set to j

DISWEB'06 295

and, as above, maximum similarity based on the dictionary is 0.6597222 and it is
stored in the similarity value matrix. Now “name” is set to i and “first” to j. For them
maximum similarity is 0.77700615 and it is stored in the similarity value matrix. Fi-
nally, “name” is set to j and because “name” = “name” maximum similarity is 1.
From all the above, the similarity value matrix using the dictionary appears to be:

⎥
⎦

⎤
⎢
⎣

⎡
177700615.0

659722.096.0

Therefore, Sum1 = 0.96 + 1 = 1.96 and Sum2 = 0.96 + 1 = 1.96. Hence, maximum
similarity for these two nodes is (1.96 + 1.96)/4 = 0.98 and it is stored in the mapping
matrix.

3.3 Output

The algorithm’s output is a matrix containing the matchings between the two input
schemas. This matrix contains tuples each of which consists of a source node, a target
node and the similarity value. In the previous example, the algorithm returns the tuple
(last_name, first_name, 0.98). The matrix is then processed and, depending on the se-
lected filter (strategies), the proper matchings are kept and stored in the database. Se-
lection filters are analyzed in-depth in Section 5.

4 Evaluation on real world schemas

4.1 Matching Quality Measures

To provide a basis for evaluating the quality of an algorithm, the match task has to be
performed manually first. The obtained real match result can be used as the “gold
standard” to assess the quality of the result semi-automatically determined by the al-
gorithm. Comparing the semi-automatically derived matches with the real matches re-
sults in the sets shown in Fig. 3 [16]. False negatives, A, are matches needed but not
semi-automatically identified, while false positives are matches falsely detected by
the semi-automatic match operation. True negatives, D, are false matches, which have
also been correctly discarded by the automatic match operation. Intuitively, both false
negatives and false positives reduce the match quality.

296 Data Integration and the Semantic Web

A: False Negatives B: True Positives
C: False Positives D: True Negatives

A B C
D

Real matches Derived matches

Fig. 3. Comparing real matches and semi-automatically derived matches

Based on the cardinalities of these sets, the following quality measures [4], [5],
[16], which we use in our evaluation can be computed:

1.

2.

3.

4.

CB
B

ecisionPr
+

=

() () callReecisionPr
callRe*ecisionPr

*2
CBBA

B*2
FMeasure

+
=

+++
=

)
ecisionPr

1
1(*callRe

BA
CB

BA
CA

1Overall -=
+
-

=
+
+

-=

BA
B

call
+

=Re

One can notice that FMeasure represents the harmonic mean of Precision and Re-

call. The measure Overall [4], [11] was developed specifically in the schema match-
ing context. The main underlying idea of Overall is to quantify the post-match effort
needed for adding missed matches and removing false ones.

4.2 Execution Time measure

This algorithm was not intended to be applied to systems in which execution time is
the most important factor, but to find more and better quality matchings. So, quite in-
teresting is both how the execution time fluctuates in relation to the quality of the re-
sults and the decrease of this time when previous mapping results are reused.

The measurements showed that the manual matching time can decrease while the
quality of results rises. When results from previous execution of the algorithm or
other algorithms offered by COMA++ are used, the time can be further reduced.

4.3 Comparison Results

For a correct and reliable evaluation of the algorithm, the schemas must be chosen so
as to satisfy every possible case. For this reason the selected schemas vary in size

DISWEB'06 297

(from 10 up to 824 elements) and kind. The set of schemas and their characteristics
are illustrated in Table 2 [1], [7].

So far, system evaluation was not conducted for different kinds of schemas, i.e.
comparison between a relational schema and ontology [16], or was performed only
for specific combinations, i.e., comparison between XML and ontology [1]. Regard-
ing the evaluation in this paper, we compared both homogeneous (i.e., relational vs.
relational) and heterogeneous (i.e., relational vs. ontology) schemas and we report the
results. These results are also compared with those arising from the known ap-
proaches.

Schema Nodes Attributes-
Links

Schema Nodes Attributes-
Links

Relational
PO2

4 20 Relational
PO1

8 37

Ontology
Order1.owl

33 36 Ontology
Order2.owl

32 29

XML
CIDX

7 27 XML
 Excel

12 36

Relational
bibliography

2 8 Ontology
Bibliographic

75 749

Relational
PO2

4 20 XML
Noris_xdr

11 54

XML
mondial_xsd

27 93 Ontology
Mondial_owl

214 93

Table 2. Characteristics of the evaluated schemas

In Fig. 4, the mean values of four quality measures that were used are shown.
Three out of four measures (Precision, Recall, FMeasure) exceed 0.85 (best value is
1) while Overall, which is the most pessimistic measure, is round about 0.75. These
results are obviously what we were hoping for. It is difficult to obtain such values
when we compare heterogeneous schemas.

Fig. 4. Mean Values of Quality Measures

As emerged from the evaluation, the algorithm is as good as other approaches a
in some cases is even better. The algorithm was compared with other 6 know

nd
n ap-

298 Data Integration and the Semantic Web

proaches [1], [2], [4], [5], [10], [11], [16] and only COMA++ and an approach of
XML and ontology matching were able to provide better results in some points. The
results are shown in Table 3 and illustrated in Fig. 5. It is obvious that Overall has a
great significance because for all approaches, except our algorithm and COMA++, it
has small values. Although the XML-OWL approach has the best Recall, it is not a
generic solution as our algorithm.

 Algorithm Coma/

Coma++
Cupid SF SemInt [9] LSD [6] XML-OWL

[1]
Schema
Types

XML, Relational,
OWL, a combina-
tion of the above

XML XML XML,
Relational

Relational XML XML,
OWL

Matching 1:1, 1:n, n:1, n:m, 1:1, n:m 1:1, n:1 1:1, m:n m:n, n:m 1:1, n:1 1:1, n:1
Cardinality m:n
Mean Presicion 0.86 0.93 0.83 0.84 0.78 0.8 0.6
Mean Recall 0.88 0.89 0.48 0.5 0.86 0.8 0.9
F-Measure 0.86 0.90 0.42 0.65 0.81 0.8 0.72
Mean Overall 0.74 0.82 ~0.2 ~0.5 0.48 0.6 0.3

Table 3. Results of the comparison between oaches’

5 Tool Presentation

The implemented tool consists of three major segments. The first one is the user inter-
face, the second one is the mapping management tool and the collaboration between
the algorithm and the tool, and, last but not least, a platform where the WordNet’s pa-
rameters are set.

appr evaluation

Fig. 5. Graph of comparison results

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Algorithm Coma Cupid SF Int D LSem LS XML-OW

Precision
Recall
Fmeasure
Overall

DISWEB'06 299

5.1 Interface

User interface can be further divided into four partitions.The first partition enables the
user to choose two schemas which would be the input for the algorithm. In this p
there are two drop-down lists, one for the selection of source schema and one for t
selection of target schema. Both lists include all schemas that are stored in our da
base as well as in the database the mapping management tool, COMA++, uses.

After the input schemas’ selection, the user has to define which elements of t
source schema will be compared with the elements of the target schema. This defi
tion is achieved by selection of two thresholds in the second compartment of the int
face. Lower similarity threshold cannot be less than zero while upper similarit
threshold cannot be greater than 1. If the user does not fill the threshold fields the d
fault values are 0 and 1 respectively. In such a case all elements for which a matching

art
he
ta-

he
ni-
er-

y
e-

and 1 has been found, either by the algorithm or by
COMA++, are ignored.

After that it is time for the user to choose which matchings derived from the algo-
p in the databases (the algorithm’s and the mapping man-

part of the interface, the user can select one out of four

tchings for an element whose similarity value have a certain distance
from the maximum similarity for that element, and finally “All Matchings”, which re-

ings produced.
lections have been made, the algorithm may be executed at partition 4

with similarity value between 0

rithm he/she wants to kee
agement tool’s). In the third
strategies from a drop-down list. The strategies are the “Maximum Similarity Match-
ing”, which gives for each element the matching with the greatest similarity value, the
“Matching Above Similarity Threshold”, which gives all the matchings with similar-
ity value that exceeds a given threshold, “Distance from Maximum Similarity”, which
returns all the ma

turns all match
When all se

of the interface. In this partition, the user may also choose to deploy the graphic map-
ping management tool.

5.2 Interaction between Algorithm and Coma++

To provide the user with a complete estimation of the algorithm’s results a tool for
mapping management, COMA++, was chosen. This tool permits the execution of the
majority of the known algorithms developed in the schema mapping domain. Fur-
thermore, it enables the management (creation, deletion, modification, integration,
aggregation etc.) of the mappings which resulted from the presented algorithm as well
as those implemented in the tool.

Another point worth noting is the collaboration between our algorithm and the
mapping tool we use. The algorithm cooperates with COMA++ and uses many of the
data in the last’s base, such as previous matching results, throughout its execution.
Precisely, both system databases must be updated for the correct and efficient execu-
tion of the algorithm. Every time the interface is used, an algorithm for the synchroni-
zation of the two system databases runs in the background. This algorithm checks
which schemas are absent from its database but appear in the tool’s database. These
schemas are inserted in the algorithm’s database because only the schemas which are
in both databases appear in the interface.

300 Data Integration and the Semantic Web

5.3 WordNet Lexical Database

In

], [15], which is widely used in the information retrieval do-
main.

WordNet consists of files with terms and it is programmed in such a way that it can
arch routines and a suitable user

interface, which displays information from the dictionary’s database. Term files or-

s “synset” and the other ones. A word can exist in
mo

he use of these hierarchies is
the major point in the similarity values’ calculation of the element names of the two
schemas. Fig. 6 depicts an example of a hierarchical structure of WordNet’s nouns.

 sim=1 – 0,25 => sim= 0,75

 this section, we will elaborate on the use of a lexicon for the comparison of the
schemas and the definition of their mappings. Our system uses the English dictionary
WordNet [12], [13], [14

convert these files into a database. It also includes se

ganize nouns, adjectives, verbs, adverbs and pronouns in groups of synonyms. Ap-
propriate code converts these files to a database, which keeps coded relationships be-
tween the groups of synonyms.

Information in WordNet is organized in logical groups called “synsets”. Every
“synset” consists of a list of synonymous words or collocations and pointers which
describe the relations between thi

re than one “synset”, and in more than one part of speech depending on its sense.
The words in a “synset” are grouped such that they are interchangeable in some con-
text.

Pointers represent two kinds of relations: lexical and semantic. Lexical relations
hold between semantically related word forms. Semantic relations hold between word
meanings. These relations consists of (but they are not limited to) hypernyms (..is
kind of), hyponyms (is kind of..), antonymy, entailment, meronyms (parts of ...), hol-
onyms (..is part of). Nouns and verbs are organized into hierarchies based on the hy-
pernymy and hyponymy relation between “synsets”. T

{plant, flora} {living thing, organism}
{animal, fauna}
{person, human being}

{thing, entity}

Fig. 6. Example of a hierarchical structure of WordNet’s nouns and verbs

The similarity value of two elements is calculated based on the depth that the ele-
ments appear in the different Lexicon’s hierarchies and is defined by the type of Fig.
7. If, for example, we want to find the similarity value of the elements “animal” and
“person”, based on the hierarchy shown in Fig. 6, it will be:
(depth=1, depth1=2, depth2=2) distance= ((2-1) / 2 + (2-1) / 2) / 2 => distance= 0,25

{natural object}
{artifact}
{subtance}
{food}

{non-living thing, object}

DISWEB'06 301

// Selection based on the number of the ISA links up to the detection point.
// depth is the common parental depth, depth1 is the depth of the first lemma
// and depth2 is the depth of the second lemma from the top of the hierarchy

Fig. 7. Calculation of the similarity value with the use of WordNet

5.4 Scenario

Assume that a user is interested in finding the matchings between two rela nal data-
bases (PO1, PO2) that come from the purchase domain. The user has execute

 the proper form in
the COMA++ database (Fig. 8).

distance = ((depth1-depth) / depth1 + (depth2-depth) /depth2) /2
sim = 1 – distance ²

tio
 to

COMA++, via the described interface, to store the two databases in

Fig. 8. Storing the databases PO1 and PO2 in COMA++ database

has to run again the interface, in order to ensure that the schemas are
automatically saved in the algorithm’s database via the synchronization routine, as al-
Then, the user

ready described. Afterwards, COMA++ is called by the interface and since an algo-
rithm has been executed, the results are saved for reuse by our algorithm (Fig. 9).

302 Data Integration and the Semantic Web

Fig. 9. Results of the comparison between PO1 and PO2 using COMA++

lue below 0.92, by proper Finally, we select to ignore the matchings with similarity va
parameterization of the interface and then the algorithm is executed. After the end of
the execution, COMA++ is called for the results’ visualization (Fig. 10).

Fig. 10. Algorithm’s results

These results can be aggregated with those produced by COMA++ and get the final
mapping shown in Fig. 11.

DISWEB'06 303

Fig. 11. Final results

6 Discussion and Directions for Future Work

6.1 Semantic Mapping Algorithm

While the algorithm offers better quality in the results, in most cases, than other ap-
proaches, it may be modified or extended in order to get an even better performance.
Techniques for structural mapping detection could be taken into consideration for the
eradication of undesirable results that may occur. Moreover, the algorithm is not able
to take into account the disjointness information which could eventuate in more reli-
able results if exploited in terms of the Lexicon.

If used at the instance level, the presented work could give important results in the
case of homonyms’ ambiguity. In order to overcome the problems appearing when
terms with same spelling but different meaning are to be matched, we could consider
the data described by the schema and decide whether a mapping is valid or not.

The tool could also show improvement if properly updated so as to handle the new
version of WordNet, 2.1. The algorithm may suffer from slow response time but of-
fers a lot at the semantic level. Matchings that could not be identified so far, like
(mother, father, 1.0), (animal, lion, 0.87), (child, family, 0.93), can be now designated
with characteristic similarity values. It could provide even better results if there was
the right “synset” hierarchy for every application domain in the Lexicon.

304 Data Integration and the Semantic Web

6.2 Schema Management

Schema management is an important part in the implemented system. The schemas
graph in both system data-
chema’s kind, are used for

the resulted matchings’ storage in the system databases. These algorithms play a fun-
of matchings and, therefore, in their correct dis-

play and reuse.

e same schema as source and target,
cre

ality in the
results and matchings that cannot be identified by other approaches. This goal, as

s achieved to a large extent. To summarize, an algorithm
 been created which can be used in different application

Th

ssmann S., Rahm E., Schema and Ontology Matching
with COMA++, Proc. ACM SIGMOD international conference on Management of
data, 906-908, 2005

are modified and stored in the form of a directed acyclic
bases. After that, different algorithms, depending on the s

damental role in the correct storage

For ontologies and relational schemas the algorithm for modification and store of
the schemas as well as the algorithm for creation and storage of the paths of the graph
created no problems. On the contrary, when trying to create and store the element
paths from the root node of the graph to an XML schema, the implemented algorithms
were not able to find the paths for all nodes. That is why, in this case, the paths are
created by COMA++, which, when matching th

ates automatically the element paths for the schema graph.
In the future, a reliable and efficient algorithm for paths creation can be imple-

mented. It would be very gratifying if this algorithm supports also other XML schema
languages, except XSD and XDR.

7 Conclusions

In this paper a generic solution for schema mapping was presented. This work tried to
cover as many of the gaps in the domain as possible by providing better qu

shown by the evaluation, wa
and, by extension, a tool have
domains, such as data warehouses, bioinformatics and query processing systems, pro-
viding the user with reliable results.

Acknowledgments

e authors would like to thank Hong-Hai Do and Erhard Rahm for the provision of
COMA++. This work has been supported in part by the project PROGNOCHIP,
funded by the General Secretariat of Research and Technology, Greece.

References

1. An Y., Borgida A. and Mylopoulos J., Constructing Complex Semantic Mapping Be-
tween XML Data and Ontologies, ISWC, 6-10, 2005

2. Aumueller D., Do H. H., Ma

DISWEB'06 305

3. Bernstein P
Matching, S

.A., Melnik S., Petropoulos M., Quix C., Industrial- Strength Schema
IGMOD Record, 33(4), 38-43, 2004

xperimentaldesign.html
8. IBM Corp., Clio Web Page, http://www.almaden.ibm.com/cs/clio/demo.html
9. Li, W, Clifton C., Semantic Integration in Heterogeneous Databases Using Neural

94
 E., Generic Schema Matching with Cupid, Proc.

12. Miller G. A., Beckwith R., Fellbaum C., Gross D., Miller K., Introduction to Word-
Net: An On-Line Lexical Database, International Journal of Lexicography, 3(4), 235–

90, ftp://ftp.cogsci.princeton.edu/pub/wordnet/5papers.ps
 Nouns in Wordnet: A Lexical Inheritance System, International Journal

15.

4. Do H. H., Rahm E., COMA – A System for Flexible Combination of Schema Match-
ing Approach, Proc. VLDB, 610-621, 2002

5. Do H. H., Rahm E., Melnik S., Comparison of Schema Matching Evaluations. Proc.
GI – Workshop “Web and Databases”, Erfurt, Oct.2002

6. Doan A.H., Domingos P., Levy A., Learning Source Descriptions for Data Integra-
tion. Proc. WebDB, 81-92, 2000

7. Giunchiglia F., Shvaiko P., Yatskevich M. An Archive of matching examples
C2CProject Matching Examples,

 http://www.dit.unitn.it/~p2p/E

Networks. Proc. VLDB, 1-12, 19
10. Madhavan J., Bernstein P.A., Rahm

In VLDB '01: Proceedings of the 27th International Conference on Very Large
Data Bases, pages 49--58, San Francisco, CA, USA, 2001

11. Melnik S., Garcia-Molina H., Rahm E. Similarity Flooding: A Versatile Graph
Matching Algorithm, ICDE, 117-128, 2002

244, 19
13. Miller G.A.,

of Lexicography, 3(4), 245–264, 1990,
 ftp://ftp.cogsci.princeton.edu/pub/wordnet/5papers.ps
14. Miller G.A., WordNet: A lexical database for English. Communications of the ACM,

38 (11), 39-41, 1995
WordNet a Lexical Database for the English Language, http://wordnet.princeton.edu/
Yatskevich M., Prelim16. inary Evaluation of Schema Matching Systems, Technical Re-
port DIT-03-028, May 2003.

306 Data Integration and the Semantic Web

