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Abstract This paper introduces a Fuzzy Logic framework for scene learning, re-
cognition and similarity detection, where scenes are taught via human examples.
The framework allows a robot to: (i) deal with the intrinsic vagueness associ-
ated with determining spatial relations among objects; (ii) infer similarities and
dissimilarities in a set of scenes, and represent them in a hierarchical structure
represented in a Fuzzy ontology. In this paper, we briefly formalize our approach
and we provide a few use cases by way of illustration. Nevertheless, we discuss
how the framework can be used in real-world scenarios.
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1 Introduction

In order to achieve a natural interaction between humans and robots, it is crucial robots
be able not only to learn by human examples, but also to organize learned knowledge
for a long-term interaction, as well as for communicating it to humans. On the one
hand, such learning techniques as Learning by Example [4][5] are efficient ways to
teach robots well-defined skills, but the resulting representation typically does not take
interaction aspects into account. On the other hand, as any form of inductive reasoning,
learning can deal with generalisation and the conceptualisation of knowledge only to
a limited extent [3], and therefore methods to support robot-to-human communication
and vagueness in scene descriptions must be considered.

In this paper, we present a perception framework3 structurally requiring human ex-
amples and representing the environment using a formalism based on Fuzzy Logic.
The approach allows a robot to acquire scenes of the robot’s workspace via human
examples, represent spatial relations among objects therein using fuzzy concepts, and
hierarchically classify scenes on the basis of their similarities. We focus on scenes re-
lated to a tabletop scenario, which are sequentially shown by a human teacher. Our ap-
proach populates a fuzzy ontology, which can be used to encode vague representations
of spatial relations and reason upon them to perform classification, ground human-robot
communication and, in perspective, perform task planning.

3 A first implementation is available at: https://github.com/EmaroLab/fuzzy_sit.
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In the following Sections, we briefly introduce our framework and we show a few
simple examples to describe the system’s behaviour and discuss its main features.

2 Method

Our framework is based on a fuzzy OWL ontology [8], managed by the fuzzyDL
reasoner [1], which (i) represents scenes in terms of fuzzy objects and fuzzy spatial
relations among them, and (ii) determines the similarity between any pair of scenes
using their fuzzy descriptions.

We assume as an input (i) the classification of perceived objects according to a
number of predefined fuzzy sets (e.g., Book or Cup), i.e., the object type, and (ii) the
knowledge of the spatial relations objects are involved in (e.g., right or left), both
with the associated degree of membership, as shown in Table 1. Two mapping proced-
ures are used to manipulate the ontology at runtime: M1 maps percepts to a fuzzy scene
individual S in the ontology, whereas M2 creates a new fuzzy scene class Scene from
a single individual S would the latter not be classified by any class in the ontology.

In order to understand how M1 works, let us assume that the robot perceives a scene
where two books, namely B and D, are detected, with D at the right hand side of B (first
scenario in Section 1). A fuzzy set Book is defined to assess the degree of membership
of the two books B and D, for instance Book(B,1) and Book(D,.8). A fuzzy spatial
relation right is used to represent the degree of membership of the assertion D at the
right hand side of B, for instance right(B,D,.9). Then, for all objects which are in
a right relationship with other objects, we sum up the degrees of membership of the
corresponding fuzzy relation, in this case .9, to determine a reified description relating
object types and relations [6], e.g., hasBookRight(.8), which we use to define S. In
general terms:

S, ⊔

j∈Λ̄ ,k∈λ̄

has∆ jk.e jk, (1)

where:
e jk = ∑Λ j⊗∃λk.Λ j ≡ ∑

Y∈Λ̄

max
I∈Λ j

{
min

{
Λ̄(I),Y.λk(I)

}}
. (2)

In (1) and (2), Λ̄ = {Λ1, . . . ,Λ j, . . . ,ΛN} is the set of object types represented as fuzzy
sets (e.g., Book and Cup), λ̄ = {λ1, . . . ,λk, . . . ,λM} is the set of spatial relations rep-
resented as fuzzy relations (e.g., right), and ∆ jk is the reification of Λ j on λk, e.g.,
BookRight.

We assess the similarity between two scenes by comparing the number e jk of re-
lations involving a certain object type (e.g., Book and right) in scene descriptions in
the form of (1). If we considered a non fuzzy formulation, this would mean defining
a set of minimal cardinality restrictions over the definition of S (e.g., the scene has at
least one book on the right hand side). However, this is not the case with a fuzzy for-
mulation [2]. In our case, we adopt the Sigma Counter approach [7], and we compare
the sum of all degrees of membership for a given fuzzy spatial relation with respect a
given object type with a left-shoulder membership function, which restricts the counter
value through classification, i.e., the apex of the shoulder for which its value becomes
1 occurs at e jk.
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M2 determines Sigma Counter restrictions for all the reified spatial relations in the
set ∆̄ . When all restrictions are computed, a fuzzy scene class Scene is created as a
fuzzy set whose purpose is to classify S. Considering the example introduced above,
a description is created such that hasBookRight.atLeast(.8), and it is assigned to
Scene. In formulas:

Scene≡
⊗

j∈Λ̄ ,k∈λ̄

∃has∆ jk.atLeast(Le f tShoulder(e jk)). (3)

Three remarks can be made: (i) a class is inductively derived from a single example,
when the fuzzy ontology does not contain any fuzzy set whose description is suitable
to classify a scene individual; (ii) human supervision may be needed to corroborate
or modify the class description; (iii) the scene formulation in (3) allows for reasoning
about similarities among scenes; the fuzzyDL reasoner proves able to build a hierarchy
of scene individuals using the fuzzy matching of all the minimal cardinality restric-
tions, which acts as a sort of fuzzy implication between scenes; an example is shown in
Figure 1, and discussed below.

3 Preliminary Results and Discussion

Experiments have been performed in an incremental manner. At bootstrap, the ontology
does not contain assertions. Then, all scenes are shown sequentially to the robot, which
applies the mappings M1 and M2 described above. We assume a fuzzy scene individual
as being recognised when the associated degree of membership is higher than .97. When
all scenes are classified, a hierarchy is induced, which is shown in Figure 1. If we
focus on the two last columns of Table 1, it is possible to see how both learning and
recognition performance scale with the complexity of descriptions, as well as with the
number of assertions in the ontology. All experiments have been performed using a
graphical user interface (available open source3), which simulates the perception of
objects and spatial relations. Results have been collected using an Intel Core i5-460M
(2.53 Ghz) processor with 4 GB of DDR3 memory.

Table 1 shows a few examples of scenes presented to the robot, where only two
object types and one spatial relation is considered. The first column of the table depicts
object arrangements, whereas the second and the third column represent the fuzzy pre-
dicates specifying the degrees of memberships for object types and spatial relations.
The fourth column shows the description of the resulting fuzzy scene individual, ob-
tained applying (1) and (2), whereas in the fifth column the corresponding description
of a fuzzy scene class is shown. The last two columns provide an indicative estimate of
learning and recognition times, computed respectively when a fuzzy scene class is first
created and when another individual is subsequently classified as being an instance of
that class.
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Table 1. Three experiments sequentially performed within a simplified scenario.

Inputs Maps Performance
Scenario Object Type Spatial Relation Scene individual Scene class Learning [ms] Recognition [ms]

B D

Book(B,1)
Book(D,.8)

right(B,D,.9) S ,
hasBookRight(.8)

Scene1 ≡
hasBookRight.atLeast(.8)

1128 873

B DC

Book(B,.7)
Book(D,1)
Cup(C,.6)

right(B,C,.5)
right(C,D,.9)
right(B,D,.3)

S ,
hasBookRight(.9+.3)
u hasCupRight(.5)

Scene2 ≡
hasBookRight.atLeast(1.2)
⊗ hasCupRight.atLeast(.5)

2381 2115

BD C

Book(B,.8)
Book(D,1)
Cup(C,.7)

right(B,D,1)
right(B,C,.2)
right(D,C,.5)

S ,
hasBookRight(.8)

u hasCupRight(.2 + .5)

Scene3 ≡
hasBookRight.atLeast(.8)
⊗ hasCupRight.atLeast(.7)

3686 3389
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In the recognition phase, a new fuzzy scene individual S can be classified as being
an instance of one of three fuzzy scene classes (i.e., Scene1, Scene2 and Scene3),
whereas in the learning phase the hierarchy must be updated to create a new fuzzy scene
class, which increases the overall computational time. It is noteworthy that learning and
classification performance depend also on the number of objects in the scene and the
related spatial relations.

1.0 1.0
0.32

0.24

Scene1

Scene3Scene2

Figure 1. The scene hierarchy ob-
tained as a result of the learning pro-
cess: circles are fuzzy scene classes,
while arrows are fuzzy implications
with the related degree of membership.

It is possible to observe that if Scene2 or
Scene3 are classified, also the objects arrange-
ment in Scene1 holds with a full degree, given the
qualitative nature of spatial relations. Furthermore,
Scene2 and Scene3 share some similarity, even if
not as clearly as in the previous case, which is rep-
resented by the reasoner with a low fuzzy implica-
tion value between them. Such a behavior is due to
the Sigma Count approach, specifically to how the
left-shoulder function changes between 0 and e jk.

Table 1 shows also how the fuzzyDL reasoner
can deal with vague spatial relations. It is noteworthy that, just for the sake of argument,
degrees of membership in spatial relations are negatively correlated with the actual
distance between objects. Finally, the framework can also deal with inaccurate scene
recognitions. It could be the case that an object B is classified as a Book(B, .8) and also
as a Cup(B, .2), which is slightly located on the left hand side of D, i.e., right(D,B,.3).
In this case, applying (1) gives: eBook,right 6 max{min{.2, .3} ,min{.8, .3}}.

4 Conclusions and Future Work

We introduce a framework based on Fuzzy Logic to learn, recognise and hierarchically
classify tabletop scenes presented to the robot by a human teacher. The framework can
serve as a basis to ground human-robot communication processes: on the one hand, it
can deal with the intrinsic vagueness associated with human perception of spatial rela-
tionships; on the other hand, its performance is sufficiently good for a natural interaction
in human-robot interaction scenarios.

The framework is under test to benchmark its scalability and representation capabil-
ities. Currently, research activities focus on: (i) determining possible singularities in the
scene representation to avoid degenerate cases; (ii) integration between natural spatial
representations and speech-based interaction; (iii) evaluation of action planning meth-
ods to perform object manipulation with the aim of recreating a previously perceived
scene.
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