Question Dependent Recurrent Entity Network
for Question Answering

Andrea Madotto', Giuseppe Attardit

Dipartimento di Informatica, University of Pisa
Largo B. Pontecorvo, 3
andreamad8@gmail.com, attardi@di.unipi.it

Abstract. Question Answering is a task which requires building models
capable of providing answers to questions expressed in human language.
Full question answering involves some form of reasoning ability. We in-
troduce a neural network architecture for this task, which is a form of
Memory Network, that recognizes entities and their relations to answers
through a focus attention mechanism. Our model is named Question De-
pendent Recurrent Entity Network and extends Recurrent Entity Network
by exploiting aspects of the question during the memorization process.
We validate the model on both synthetic and real datasets: the bAbI
question answering dataset and the CNN & Daily News reading com-
prehension dataset. In our experiments, the models achieved a State-of-
The-Art in the former and competitive results in the latter.

Keywords: Question Answering, Deep Learning, Memory Networks,
Recurrent Neural Network

1 Introduction

Question Answering is a task that requires capabilities beyond simple NLP since
it involves both linguistic techniques and inference abilities. Both the document
sources and the questions are expressed in natural language, which is ambiguous
and complex to understand. To perform such a task, a model needs in fact
to understand the underlying meaning of text. Achieving this ability is quite
challenging for a machine since it requires a reasoning phase (chaining facts,
basic deductions, etc.) over knowledge extracted from the plain input data. In
this article, we focus on two Question Answering tasks: a Reasoning Question
Answering (RQA) and a Reading Comprehension (RC). These tasks are tested
by submitting questions to be answered directly after reading a piece of text
(e.g. a document or a paragraph).

Recent progress in the field has been possible thanks to machine learning al-
gorithms which automatically learn from large collections of data. Deep Learning
[15] algorithms achieve the current State-of-The-Art in our tasks of interest. A
particularly promising approach is based on Memory Augmented Neural Net-
works. These networks are also known as Memory Networks [24] or Neural Tur-
ing Machines [6]. In the literature the RQA and RC tasks are typically solved

69



by different models. However, the two tasks share a similar scope and structure.
We propose to tackle both with a model called Question Dependent Recurrent
Entity Network, which improves over the model called Recurrent Entity Network
18]

Our major contributions are: 1) exploiting knowledge of the question for
storing relevant facts in memory, 2) adding a tighter regularisation scheme, and
3) changing the activation functions. We test and compare our model on two
datasets, bADbI [23] and [9], which are standard benchmark for both tasks. The
rest of the paper is organised as follows: section Related outlines the models
used in QA tasks, while section Model the proposed QDREN model. Section
Ezperiments and Results show training details and performance achieved by our
model. The section Analysis reports a visualisation with the aim to explain the
obtained results. Finally, section Conclusions summarise the work done.

2 Related Work

2.1 Reasoning Question Answering

A set of synthetic tasks, called bAbI [23], has been proposed for testing the
ability of a machine in chaining facts, performing simple inductions or deduc-
tions. The dataset is available in two sizes, 1K and 10K training samples, and in
two settings, i.e. with and without supporting facts. The latter allows knowing
which facts in the input are needed for answering the question (i.e. a stronger
supervision). Obviously, the 1K sample setting with no supporting facts is quite
hard to handle, and it is still an open research problem. Memory Network [24]
was one of the first models to provide the ability to explicitly store facts in
memory, achieving good results on the bAbI dataset. An evolution of this model
is the End to End Memory Network [20], which allows for end-to-end training.
This model represents the State-of-The-Art in the bAbI task with 1K train-
ing samples. Several other models have been tested in the bAbI tasks achieving
competitive results, such as Neural Turing Machine |6], Differentiable Neural
Computer [7] and Dynamic Memory Network |14} 25]. Several other baselines
have also been proposed [23], such as: an n-gram [19] models, an LSTM reader
and an SVM model. However, some of them still required strong supervision by
means of the supporting facts.

2.2 Reading Comprehension

Reading Comprehension is defined as the ability to read some text, process it,
and understand its meaning. A impending issue for tackling this task was to
find suitably large datasets with human annotated samples. This shortcoming
has been addressed by collecting documents which contain easy recognizable
short summary, e.g. news articles, which contain a number of bullet points,
summarizing aspects of the information contained in the article. Each of these
short summaries is turned into a fill-in question template, by selecting an entity
and replacing it with an anonymized placeholder.

70



Three datasets follows this style of annotation: Childrens Text Books [10],
CNN & Daily Mail news articles 9], and Who did What [16]. It is also worth
to mention Squad [18], a human annotated dataset from Stanford NLP group.
Memory Networks, described in the previous sub-section, has been tested [10]
on both the CNN and CBT datasets, achieving good results. The Attentive
and Impatient Reader |9] was the first model proposed for the CNN and Daily
Mail dataset, and it is therefore often used as a baseline. While this model
achieved good initial results, shortly later a small variation to such model, called
Standford Attentive Reader [3], increased its accuracy by 10%. Another group
of models are based on an Artificial Neural Network architecture called Pointer
Network |22]. Attentive Sum Reader |11] and Attention over Attention [5] use
a similar idea for solving different reading comprehension tasks. EpiReader [21]
and Dynamic Entity Representation |13], partially follow the Pointer Network
framework but they also achieve impressive results in the RC tasks. Also for this
task several baselines, both learning and non-learning, have been proposed. The
most commonly used are: Frame-Semantics, Word distance, and LSTM Reader
|9] and its variation (windowing etc.).

3 Proposed Model

Our model is based on the Recurrent Entity Network (REN) [8] model. The
latter is the only model able to pass all the 20 bAbI tasks using the 10K sample
size and without any supporting facts. However, this model fails many tasks with
the 1K setting, and it has not been tried on more challenging RC datasets, like
the CNN news articles. Thus, we propose a variant to the original model called
Question Dependent Recurrent Entity Network (QDREN)B This model tries to
overcome the limitations of the previous approach. The model consists in three
main components: Input Encoder, Dynamic Memory, and Output Module.

The training data consists of tuples {(x;, y;)}™;, with n equal to the sample
size, where: x; is composed by a tuple (T, q), where T is a set of sentences
{s1,...,8t}, each of which has m words, and ¢ a single sentence with k& words
representing the question. Instead, y; is a single word that represents the answer.
The Input Encoder transforms the set of words of a sentence s; and the question
q into a single vector representation by using a multiplicative mask. Let’s define
E e RIVIXd the embedding matrix, that is used to convert words to vectors,
i.e. E(w) = e € R% Hence, {ey,...,en} are the word embedding of each word
in the sentence s; and {ey,...,e;} the embedding of the question’s words. The
multiplicative masks for the sentences are defined as f(*) = { fl(s)7 ceey f,(,f)} and

f@ = {fl(q), e 7(,?)} for the question, where each f; € R%. The encoded vector
of a sentence is defined as:

m k
si=> e @ f g=> e oY
r=1 r=1

! An implementation is available at https://github.com/andreamad8/QDREN

71


https://github.com/andreamad8/QDREN

Where was the apple before the kitchen?

Question Encoder

| peaieishy e s S P B

o |

ii C T T
ol

il

Weighted

T T TT T

= ]

Dynamic§ kP - - -
Memory! 2 H H
i i £ | rlu =P R

b
i : Predicted

3 3 answer
g

L1 1 L1 _J

Attention

U R 2
< @ o &
S NS S >
@ & & S
&L & S
« ¥ 5 5

Fig. 1: Conceptual schema of the QDREN model, with three memory blocks. In
input a sample taken from bAbI task dataset.

Dynamic Memory stores information of entities present in 7T'. This module is very
similar to a Gated Recurrent Unit (GRU) [4] with a hidden state divided into
blocks. Moreover, each block ideally represents an entity (i.e. person, location
etc.), and it stores relevant facts about it. Each block ¢ is made of a hidden
state h; € R? and a key k; € R%, where d is the embedding size. The Dynamic
Memory module is made of a set of blocks, which can be represent with a set of
hidden states {hq,...,h,} and their correspondent set of keys {k1,...,k.}. The
equation used to update a generic block ¢ are the following:

g =o(sThi™Y + sSR! + 57 q) (Gating Function)
A =p(URY + VESY £ Ws,) (Candidate Memory)
h’7(jt) :hz(-t_l) + gl(t) ® fzgt) (New Memory)
hz(t) :hz(-t)/th(-t)H (Reset Memory)

where o represents the sigmoid function, ¢ a generic activation function which

can be chosen among a set (e.g. sigmoid, ReLU, etc.). ggt)

is the gating func-
tion which determines how much the ith memory should be updated, and Bgt)
is the new candidate value of the memory to be combined with the existing one
hl(t_l). The matrix U € R*4 V € R¥X4 W € R4*4 are shared among different
blocks, and are trained together with the key vectors. The addition of the s!q
term in the gating function is our main contribution. We add such term with the
assumption that the question can be useful to focus the attention of the model

while analyzing the input sentences.

72



The Output Module creates a probability distribution over the memories’ hid-
den states using the question ¢. Thus, the hidden states are summed up, using
the probability as weight, to obtain a single state representing all the input.
Finally, the network output is obtained by combining the final state with the
question. Let us define R € RIVI*4 H ¢ R¥*4 4 e RVl 2 is the number of
blocks, and ¢ can be chosen among different activation functions. Then, we have:

pi =Softmax(q” h;)

z
u :ijhj
j=1

y =Roé(q + Hu)
The model is trained using a cross entropy loss H(g,y) plus L2 regularisation
term, where y is the one hot encoding of the correct answer. The sigmoid function
and the L2 term are two novelty added to the original REN. Overall, the trainable
parameters are:
O=[E, f® f9 UV, Wk,... k.,R, H

where f(®) refers to the sentence multiplicative masks, f(4 to the question mul-
tiplicative masks, and each k; to the key of a generic block ¢. The number of
parameters is dominated by F and R, since they depend on the vocabulary size.
However, R is normally is much smaller than FE like in the CNN dataset, in
which the prediction is made on a restricted number of entitie&ﬂ All the param-
eters are learned using the Backpropagation Through Time (BPTT) algorithm.
A schematic representation of the model is shown in Figure

4 Experiments and Results

Our model has been implemented using TensorFlow v1.1 [1] and the experi-
ments have been run on a Linux server with 4 Nvidia P100 GPUs. As men-
tioned earlier, we tested our model in two datasets: the bAbl 1k sample and the
CNN news articles. The first dataset have 20 separate tasks, each of which has
900/100/1000 training, validation, and test samples. Instead, the second one has
380298/3924/3198 training, validation and test samples. We kept the original
splitting to compare our results with the existing ones.

bAbI: in these tasks, we fixed the batch size to 32, we did not use any pre-trained
word embedding, and we used Adam [12] optimizer. We have also clipped the
gradient to a maximum of 40 (to avoid gradient explosion), and we set the
word embedding size to 100, as it has also been suggested in the original paper.
We have also implemented an early stopping method, which stop the training
ones the validation accuracy does not improve after 50 epochs. Several values
for the hyper-parameter have been tried and, for each task, we selected the

2 Therefore R € Rlentities|xd

73



setting that achieved the highest accuracy in validation. Once we selected the
best model, we estimate its generalization error using the provided Test set.
Table [I] shows an example of the dataset and the used hyper-parameters. We

Table 1: On the left an example of the bAbI task, and on the right the selected
model hyper-parameters.

Story Question Parameter Values
John picked up the apple|Where was the apple Learning Rate () 0.01,0.001,0.0001
John went to the office |before the kitchen? Number of Blocks  20,30,40,50
John went to the kitchen Answor L2 reg. (A) 0,0.001,0.0001
John dropped the apple (= Dropout (Dr) 0.3,0.5,0.7

compared our results with four models: n-gram model, LSTM, original REN
(with no question in the gating function) and End To End Memory Network
(MemN2N) [20], which is currently the State-Of-The-Art in this setting. To the
best of our knowledge we achieved the lowest number of failed tasks, failing just
8 tasks compared with the previous State-Of-The-Art which was 11. Comparing
our QDREN with the original Recurrent Entity Network (REN) we achieved, on
average, an improvement of 11% in the average error rate and we passed 7 tasks
more. Table |2|shows the error rateﬂ in the test set obtained using each compared
model, and the hyper-parameter setting used in each task. We improve the mean
error compared to the original REN, however we still do know reach the error
rate achieved by the End To End Memory Network (even if we passed more
tasks). It is worth to notice the following two facts: first, in task 14 and 18 the
error is very close to the threshold for passing the task (5%); second, in task 2,
we achieved a slightly worse result (10% error more) with respect to the original
REN.

CNN news articles: in this dataset, the entities in the original paragraph are re-
placed by an ID, making the task even more challenging. The CNN dataset is al-
ready tokenized and cleaned, therefore we did not apply any text pre-processing.
As it was done in other models, the set of possible answers is restricted to the
set of hidden entities in the text, that are much less, around 500, compared to
all the words (120K) in the vocabulary. Compared to the model used for bAbI,
we changed the activation function of the output layer, using a sigmoid instead
of parametric ReLU, since after several experiments we noticed that such acti-
vation was hurting the model performance. Moreover, the input was not split
into sentences, thus we divided the text into sentences using the dot token (”.”).
sentence splitting in general is itself a challenging task, but in this case the input
was already cleaned and normalised. However, the sentence may be very long,
thus we intrdocued a windowing mechanism. The same approach has been used

3 The error is the percentage of wrong answers.

74



Table 2: Test set error rate comparison between n-gram, LSTM, QDREN, REN
and End To End Memory Network (MemN2N). All the results have been taken
from the original articles. In bold we highlight the task in which we greatly out-
perform the other models. On the right the hyper-parameters used in QDREN.

Task n-gram LSTM MemN2N REN QDREN|Blk A a Dr
1 64 50 0 0.7 0 20 0 0.001 0.5
2 98 80 8.3 56.4 67.6 30 0 0.001 05
3 93 80 40.3 69.7 60.8 40 0 0.001 0.5
4 50 39 2.8 1.4 0 20 0 0.001 0.5
5 80 30 13.1 4.6 2.0 50 0 0.001 0.2
6 51 52 7.6 30 29 30 0 0.001 0.5
7 48 51 17.3 22.3 0.7 30 0 0.001 0.5
8 60 55 10 19.2 2.5 20 0.001 0.001 0.7
9 38 36 13.2 31.5 4.8 40 0.0001 0.001 0.5
10 55 56 15.1 15.6 3.8 20 0 0.001 0.5
11 71 28 0.9 8 0.6 20 0 0.001 0.5
12 91 26 0.2 0.8 0 20 0 0.0001 0.5
13 74 6 0.4 9 0.0 40 0.001 0.001 0.7
14 81 73 1.7 62.9 15.8 30 0.0001 0.001 0.5
15 80 79 0 57.8 0.3 20 0 0.001 0.5
16 57 7 1.3 53.2 52 20 0.001 0.001 0.5
17 54 49 51 46.4 37.4 40 0.001 0.001 0.5
18 48 48 11.1 8.8 10.1 30 0.0001 0.001 0.5
19 10 92 82.8 90.4 85 20 0 0.001 0.5
20 24 9 0 2.6 0.2 20 0 0.001 0.5

Failed Tasks (>5%):| 20 20 11 15 8
Mean Error: 65.9 50.8 13.9 29.6 18.6

in the End To End Memory Network |20] as a way to encode the input sentence.
This method takes each entity marker (Qentity;) and it creates a window of b
words around it. Formally, {wii%7 s Wiy W 0o }, where w; represent
the entity of interest. For the question, a single window is created around the
placeholder marker (the word to predict). Moreover, we add 2(b — 1) tokens for
the entities at the beginning and at the end of the text. To check whether our
QDREN could improve the existent REN and whether the window-based ap-
proach makes any difference in comparison with plain sentences, we separately
trained four different models: REN+SENT, REN+WIND, QDREN+SENT and
QDREN+WIND. Where SENT represent simple input sentences, and WIND
the window as a input. For each of this model, we conduct a separated model
selection using a various number of hyper-parameters. Table 3| shows an example
of the dataset and the used hyper-parameters. As for the bAbI task, we used
early stopping, ending the training once the validation accuracy does not im-
prove for 20 epochs. Since each training required a large amounts of time (using
a batch size of 64 an epoch takes around 7 hours), we opted for a random search
technique [2], and we used just a sub-sample of the training set, i.e. 10K sample,
for the model selection, but we still keep the validation set as it was. Obviously,
this is not an optimal parameter tuning, since the model is selected on just 10K
samples. Indeed, we noticed that the selected model, which is trained using all
the samples (380K), tends to under-fit. However, it was the only way to try dif-
ferent parameters in a reasonable amount of time. Moreover, we also limited the
vocabulary size to the most common 50K words, and we initialize the embed-

75



Table 3: On the left, an example from CNN news article, and on the right, the
model selection Hyper-parameters.

Parameter Values
Story Question Learning Rate () 0.1,0.01,0.001,0.0001
( @entityl ) @entity0 may ?@placeholder” star Window 2,3,4,5
be @entity2 in the popular @entity0 presents a Number of Blocks 10,20,50,70,90
@entity4 superhero films young child L2 reg. (\) 0.0,0.001,0.0001,0.00001
but he recently dealt in some |Answer Optimizer Adam,RMSProp
advanced bionic technology ...|@entity2 Batch Size 128,64,32
Dropout (Dr) 0.2,0.5,0.7,0.9

ding matrix using Glove [17] pre-trained word embedding of size 100. As before,

Table 4: Test set accuracy comparison between REN4SENT,
QDREN+SENT, REN+WIND and QDREN+WIND. We show the best
hyper-parameters picked by the model selection, and the accuracy values.

‘REN—&-SENT QDREN+SENT REN+WIND QDREN+WIND

Number of Blocks 20 10 50 20
Window - - 5 4
Learning Rate 0.001 0.001 0.0001 0.01
Optimizer Adam Adam RMSProp RMSProp
Dropout 0.7 0.2 0.5 0.5
Batch Size 128 64 64 64
A 0.0001 0.001 0.0001 0.0001
Loss Training 2.235 2.682 2.598 2.216
Loss Validation 2.204 2.481 2.427 1.885
Loss Test 2.135 2.417 2.319 1.724
Accuracy Training 0.418 0.349 0.348 0.499
Accuracy Validation 0.420 0.399 0.380 0.591
Accuracy Test 0.420 0.397 0.401 0.628

we selected the models that achieved the highest accuracy in the validation set,
and then we estimate its generalization error using the provided test set. The
selected models, with their hyper-parameters, are shown in Table [d] The best
accuracyﬁ is achieved by QDREN+WIND with a value of 0.628, while all other
models could not achieve an accuracy greater than 0.42. The window-based ver-
sion without question supervision could not achieve an accuracy higher than
0.401. Indeed, saving only facts relative to the question seems to be the key to
achieving a good score in this task. We also noticed that using plain sentences,
even with QDREN, we cannot achieve a higher accuracy. This might be due to
the sentence encoder, since just using the multiplicative masks does not provide
enough expressive power for getting key features of the sentence. Moreover, we
notice that the accuracy achieved in the training set is always lower than that
in the validation and test set. The same phenomenon is present also in other

4 Percentage of correct answers.

76



Table 5: Validation/Test accuracy (%) on CNN dataset. In the list AR stands
for Attentive Reader, AS for Attentive Sum, AoA for Attention over Attention,
and DER for Dynamic Entity Representation.

Val Test Val Test Val Test
Max Freq.|30.5 33.2 MemN2N 63.4 66.8| AS Reader|68.6 69.5
Frame-semantic|36.3 40.2| Attentive Reader|61.6 63 Ao0A|73.174.4
‘Word distance|50.5 50.9 |Impatient Reader|61.8 63.8| EpiReader|73.4 74
LSTM Reader| 55 57 Stanford (AR)|72.5 72.7 DER|71.3 72.9

models, in our particular case this might be due to the strong regularization
term used in our models. Our model achieves an accuracy comparable to the
Attentive and Impatient Reader [9], but not yet State-Of-The-Art model (i.e.
Attention over Attention (AoA)). It is worth noting though that our model is
much simpler and it goes through each paragraph just once. A summary of the
other models’ results are shown in Table [

5 Analysis

To better understand how our proposed model (i.e. QDREN) works and how it
improves the accuracy of the existing REN, we studied the gating function be-
havior. Indeed, the output of this function decides how much and what we store
in each memory cell, and it is also where our model differs from the original one.
Moreover, we trained the QDREN and the original REN using the bAbI task
number 1 (using 20 memory blocks). We pick up this task since both models
pass it, and it is one of the simplest, which also allows to better understand
and visualize the results. Indeed, we have tried to visualize other tasks but the
result was difficult to understand since there were too many sentences in input
and it was difficult to understand how the gate opened. The visualization result
is shown in Figure [2] where we plotted the activation matrix for both models,
using a sample of the validation set. In these plots, we can notice how the two
models learn which information to store.

In Figure [2] (a), we notice that the QDREN is opening the gates just when
in the sentence appears the entity named Mary. This because such entity is also
present in the question (i.e., "where is Mary?”). Even though the model is fo-
cusing on the right entity, its gates are opening all at the same times. In fact, we
guess that a sparser activation would be better since it may have modeled which
other entities are relevant for the final answer. Instead, the gaiting activation of
the original REN is sparse, which is good if we would like to learn all the relevant
facts in the text. Indeed, the model effectively assigns a block to each entity and
it opens the gates just ones such entity appears in the input sentences. For ex-
ample, in Figure [2| (b) the block cell number 13 supposedly represents the entity
Sandra, since each sentence in which this name appears the gate function of the
block fully opens (value almost 1). Futher, we can notice the same phenomenon

7



with the entity John (cell 10), Daniel (cell 4), and Mary (cell 14). Other entities
(e.g., kitchen, bathroom, etc.) are more difficult to recognize in the plot since

their activation is less strong and probably distributes this information among
blocks.

(a)

where is mary?

00

N N N N N o N
< ") o & & o @ S . <
N N & & N < S & & N
o o« « « & « & & o &
o & o o S &8 © S & Q
S $ ° © o &
S of & & & & o & N &
& « & & & s & & & &
S S o o & Ny s K S @
L4 & & & € @ § & N
N & & o ¢
5
where is mary?
10
2
19
18
7
08
16
15
“ | | |
= - | || .
o
12
1
w | | |
9
04
s || ]
7
s |
s
02
. |
3
2
1
00
& & & e & & e & & &
& 8 S L @ 2 &
< © « © & 0 & o &
© © © o s © 8 s ® o
N & & & « & & 5 & &
& & & & & & & & & o
s & & R R 5 & &
& N ) & PN & & &
L s @ & & A & &
& & & & & & N
& & ¥

Fig.2: Heatmap representing the gating function result for each memory block.
In the y-axes represents the memory block number (20 in this example), in the
x-axes, there are the sentences in the input divided into time steps, and at the
top, there is the question to be answered. Darker color means a gate more open
(values close to 1) and lighter colour means the gate less open. (a) shows QDREN
and (b) shows REN.

78



6 Conclusion

In this paper we presented the Question Dependent Recurrent Entity Network,
used for reasoning and reading comprehension tasks. This model uses a particu-
lar RNN cell in order to store just relevant information about the given question.
In this way, in combination with the original Recurrent Entity Network (keys and
memory), we improved the State-of-The-Art in the bAbI 1k task and achieved
promising results in the Reading comprehension task on the CNN & Daily news
dataset. However, we believe that there are still margins for improving the be-
havior for the proposed cell. Indeed, the cell has not enough expressive power to
make a selective activation among different memory blocks (notice in Figure
(a) the gates open for all the memories). This does not seem to be a serious
problem since we actually outperform other models, but it could be the key to
finally pass all the bAbI tasks.

Acknowledgments

This work has been supported in part by grant no. GA_2016_.009 ”Grandi At-
trezzature 2016” by the University of Pisa.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
http://tensorflow.org/, software available from tensorflow.org

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal
of Machine Learning Research 13(Feb), 281-305 (2012)

3. Chen, D., Bolton, J., Manning, C.D.: A thorough examination of the cnn/daily
mail reading comprehension task. arXiv preprint arXiv:1606.02858 (2016)

4. Cho, K., Van Merriénboer, B., Bahdanau, D., Bengio, Y.: On the proper-
ties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259 (2014)

5. Cui, Y., Chen, Z., Wei, S., Wang, S., Liu, T., Hu, G.: Attention-over-attention neu-
ral networks for reading comprehension. arXiv preprint arXiv:1607.04423 (2016)

6. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint
arXiv:1410.5401 (2014)

7. Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-
Barwiniska, A., Colmenarejo, S.G., Grefenstette, E., Ramalho, T., Agapiou, J.,
et al.: Hybrid computing using a neural network with dynamic external memory.
Nature 538(7626), 471-476 (2016)

8. Henaff, M., Weston, J., Szlam, A., Bordes, A., LeCun, Y.: Tracking the world state
with recurrent entity networks. arXiv preprint arXiv:1612.03969 (2016)

79


http://tensorflow.org/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Hermann, K.M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman,
M., Blunsom, P.: Teaching machines to read and comprehend. In: Advances in
Neural Information Processing Systems. pp. 16931701 (2015)

Hill, F., Bordes, A., Chopra, S., Weston, J.: The goldilocks principle: Read-
ing children’s books with explicit memory representations. arXiv preprint
arXiv:1511.02301 (2015)

Kadlec, R., Schmid, M., Bajgar, O., Kleindienst, J.: Text understanding with the
attention sum reader network. arXiv preprint arXiv:1603.01547 (2016)

Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Kobayashi, S., Tian, R., Okazaki, N., Inui, K.: Dynamic entity representation with
max-pooling improves machine reading. In: Proceedings of NAACL-HLT. pp. 850-
855 (2016)

Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., Ondruska, P.,
Gulrajani, I., Socher, R.: Ask me anything: Dynamic memory networks for natural
language processing. CoRR, abs/1506.07285 (2015)

LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436-444
(2015)

Onishi, T., Wang, H., Bansal, M., Gimpel, K., McAllester, D.: Who did what: A
large-scale person-centered cloze dataset. arXiv preprint arXiv:1608.05457 (2016)
Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP). pp.
1532-1543 (2014), http://www.aclweb.org/anthology/D14-1162

Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,0004+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)
Richardson, M., Burges, C.J., Renshaw, E.: Mctest: A challenge dataset for the
open-domain machine comprehension of text. In: EMNLP. vol. 3, p. 4 (2013)
Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In:
Advances in neural information processing systems. pp. 2440-2448 (2015)
Trischler, A., Ye, Z., Yuan, X., Suleman, K.: Natural language comprehension with
the epireader. arXiv preprint arXiv:1606.02270 (2016)

Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems. pp. 2692-2700 (2015)

Weston, J., Bordes, A., Chopra, S., Rush, A.M., van Merriénboer, B., Joulin, A.,
Mikolov, T.: Towards ai-complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698 (2015)

Weston, J., Chopra, S., Bordes, A.: Memory networks. arXiv preprint
arXiv:1410.3916 (2014)

Xiong, C., Merity, S., Socher, R.: Dynamic memory networks for visual and textual
question answering. arXiv 1603 (2016)

80


http://www.aclweb.org/anthology/D14-1162

	Question Dependent Recurrent Entity Network for Question Answering

