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Abstract

Recently, large quantities of data is produced every day, such as web pages, sensor data, social

media data, digital pictures and videos, purchase transaction records, and so on. Development

of techniques for data analysis is very important because the large data may hold key to solving

problems in our daily life. The difficulty in dealing with the rapidly growing data is not only

because they are vast, but also because they are often “unstructured” and “non-uniform”. Tra-

ditional database technologies are based on the theory of relational algebra proposed by Codd

in 1970 [16], and are able to handle structured data (relations) that can be represented as tables,

but have difficulty in handling unstructured data. This new type of data can be regarded as se-

quences of symbols (i.e., strings), and therefore efficient string processing techniques can play

key role in processing them. Developing efficient string processing algorithms requires to have

not only rich knowledge of algorithms and data structures, but also deep insights on algebraic

and combinatorial properties on strings.

In this thesis, we focus on combinatorial properties concerning Lyndon words, discover

combinatorial properties, and develop algorithms on Lyndon words. A string λ is said to be

a Lyndon word if λ is lexicographically smaller than every proper suffix of λ. Since Lyndon

words are used for detecting structures in strings (e.g., repetitive structures), studies concerning

Lyndon words could lead to making efficient string processing algorithms. Lyndon factoriza-

tions (sequence of Lyndon words in lexicographically non-increasing order) are also studied.

We consider the following four problems concerning Lyndon words. Firstly, we consider the

reverse-engineering problems on Lyndon factorizations. When we are given a form of the Lyn-

don factorization of some string, we compute a string which have the input as the Lyndon fac-

torization. Solving the reverse-engineering problem gives combinatorial properties and deeper

insights in to the input structure. We propose some variant of the reverse-engineering problems

and present efficient algorithms. Secondly, we present efficient algorithms to compute the Lyn-

don factorization of “compressed string”. Thirdly, we study relations on the size of Lyndon
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factorizations and Lempel-Ziv 77 factorizations. We give the first direct connection of these

two factorizations. Finally, we consider relations between Lyndon words and runs. Runs are

important repetitive structures in strings. We show a new upper bound on the maximum number

of runs in a string. We also present a new algorithm to compute all runs in a string.
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Chapter 1

Introduction

Recently, large quantities of data is produced every day, such as web pages, sensor data, social

media data, digital pictures and videos, purchase transaction records, and so on. Development

of techniques for data analysis is very important because the large data may hold key to solving

problems in our daily life. The difficulty in dealing with the rapidly growing data is not only

because they are vast, but also because they are often “unstructured” and “non-uniform”. Tra-

ditional database technologies are based on the theory of relational algebra proposed by Codd

in 1970 [16], and are able to handle structured data (relations) that can be represented as tables,

but have difficulty in handling unstructured data. This new type of data can be regarded as se-

quences of symbols (i.e., strings), and therefore efficient string processing techniques can play

key role in processing them. Developing efficient string processing algorithms requires to have

not only rich knowledge of algorithms and data structures, but also deep insights on algebraic

and combinatorial properties on strings.

Let us take an example of string pattern matching problem, which is one of the most impor-

tant problems in Computer Science, where given a pattern string and a text string, the objective

is to find the occurrences of the pattern in the text. For this problem, the Knuth-Morris-Pratt

algorithm [64] is known as the first linear time algorithm. This algorithm is based on the Pe-

riodicity Lemma [35] which is one of well-known combinatorial properties of periodicity on

strings. On the other hand, the Crochemore-Perrin algorithm [25] works in linear time and

constant space for the same problem. The correctness is guaranteed by Critical Factorization

Theorem [72] which is one of combinatorial properties. From these facts, discovering new

combinatorial properties on strings leads to efficient and simple string processing algorithms.

In this thesis, we focus on combinatorial properties concerning Lyndon words [73]. We

study some problems concerning Lyndon words. Firstly, we tackle the reverse-engineering
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CHAPTER 1. INTRODUCTION

problems. Secondly, we consider the problem of computing the Lyndon factorizations [14] over

compressed strings. Thirdly, we study relations on the size of Lyndon factorizations and LZ77

factorizations. Finally, we consider relations between Lyndon words and runs.

1.1 Lyndon Words and Lyndon Factorizations

A string λ is said to be a Lyndon word, if λ is lexicographically smaller than all of proper

suffixes of λ. For example, aab is a Lyndon word, but aba and baa are not. Lyndon words are

named after Roger Lyndon, a mathematician who introduced them in [73] under the name of

standard lexicographic sequences.

Lyndon words have various and important applications in algebra and combinatorics. For

example, Lyndon words have an application to the description of free Lie algebras in construct-

ing bases. This fact is considered as original motivation for introducing Lyndon words. Lyndon

words also have many applications to musicology [12], bioinformatics [27], approximation al-

gorithm [79], string matching [25], and word combinatorics [39, 66, 80].

The Lyndon factorization of a non-empty string T ∈ Σ+, is the factorization λe11 , . . . , λ
em
m of

T , such that each λi ∈ Σ+ is a Lyndon word, ei ≥ 1, and λi � λi+1 for all 1 ≤ i < m. We call

each element in the sequence a factor. If each factor in a factorization of T is a Lyndon word

and all factors are arranged in the lexicographically non-increasing order, the factorization is

called the Lyndon factorization of T . Lyndon factorizations are introduced by Chen, Fox and

Lyndon in [14]. It is known that the Lyndon factorization is unique for each string. Lyndon

factorizations are used in a bijective variant of Burrows-Wheeler transform [47, 70] and a digital

geometry algorithm [9].

Several efficient algorithms to compute Lyndon factorizations exist: Duval [30] proposed

an elegant on-line algorithm to compute the Lyndon factorization of a given string T of length

N in O(N) time. Efficient parallel algorithms to compute the Lyndon factorization of a given

string are also known [1, 26]. Recently, algorithms to compute the Lyndon factorization of a

given compressed string were proposed [60, 61].

1.2 Our Problems

In this section, we state problems we consider in this thesis and explain motivation and related

works of the problems.
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CHAPTER 1. INTRODUCTION

1.2.1 Reverse-engineering problems on Lyndon factorizations

Reverse-engineering problems on structures of strings have been studied. Solving reverse-

engineering problems on structures of strings provides us with further insight concerning com-

binatorial properties on strings, and string data structures. There exists a linear-time algorithm

that finds a string over an unbounded alphabet, such that the border array of the string co-

incides with a given integer array [37]. There also exists a simpler linear-time to the same

problem for a bounded alphabet [32]. For the parameterized version of border arrays, linear-

time and O(N1.5)-time inferring algorithms on a binary alphabet and an unbounded alphabet,

respectively, exist [58]. Linear-time inferring algorithms for suffix arrays [3, 34], KMP failure

tables [33, 46], prefix tables [15], cover arrays [23], palindromic structures [56], suffix trees

on binary alphabets [57], directed acyclic word graphs [3] and directed acyclic subsequence

graphs [3] have been proposed. On the other hand, some hardness results are also known. The

reverse-engineering problem on longest previous factor tables is NP-hard [51]. Also, infer-

ring a string from runs is NP-hard, on a finite alphabet of size at least 4 [76]. Counting and

enumerating versions of some of the above-mentioned problems have also been studied in the

literature [58, 78, 84].

We consider reverse-engineering problems on Lyndon factorizations. Since the Lyndon

factorization of a string can be represented by the sequence (|λ1|, e1), . . . , (|λm|, em) of two

positive integers, we consider a sequence of pairs of positive integers as an input of our problem.

For example, most basic problem is to compute a string which has an input sequence as its

Lyndon factorization. We solve four variants of the problem in Chapter 3.

1.2.2 Lyndon factorization algorithms for compressed strings

Compressed string processing (CSP) is a task of processing compressed string data without

explicit decompression. As any method that first decompresses the data requires time and space

dependent on the decompressed size of the data, CSP without explicit decompression has been

gaining importance due to the ever increasing amount of data produced and stored. A number

of efficient CSP algorithms have been proposed (e.g., see [42, 43, 44, 50, 52, 91]).

Many of problems on CSPs considered a straight-line program (SLP) as an input com-

pressed string. An SLP is a context free grammar in the Chomsky normal form that derives

a single string. Since SLPs can widely accept various text compression schemes, CSPs for an

SLP are widely studied. On the other hand, CSPs for specific representations of strings (e.g.,
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CHAPTER 1. INTRODUCTION

LZ78 [93], run-length encoded strings) are also well studied.

In this thesis, we consider Lyndon factorization algorithms for compressed strings. In Chap-

ter 4 and 5, we present Lyndon factorization algorithms for SLPs. In Chapter 5, we also present

a Lyndon factorization algorithm for an LZ78 compressed string.

1.2.3 Relations between Lyndon factorizations and LZ77 factorizations

The Lempel-Ziv factorizations (shortly LZ factorizations) are factorizations defined by using

information of previous occurrences of factors. The LZ factorizations have its origins in data

compression, and are still used in popular file compressors 1 and as part of larger software

systems (see, e.g., [10, 54] and references therein). Originally, Ziv and Lempel were introduced

LZ77 factorization [92] and LZ78 factorization [93] (shortly LZ77 and LZ78, respectively).

LZ factorizations are well used for detecting structures in strings and making efficient string

processing algorithms. For example, LZ77 gives a lower bound of the smallest grammar [11],

and is used in algorithms to compute all runs in strings (described in section 1.2.4).

On the other hand, Lyndon factorizations also give a lower bound of the smallest gram-

mar [61] (see also Chapter 5). Our overarching motivation is to obtain a deeper understanding

of how these two fundamental factorizations — LZ77 and Lyndon — relate. Toward this aim,

we ask: by how much can the number of Lempel-Ziv factors and the number of Lyndon factors

for the same string differ? We give relations of these factorizations in Chapter 6.

1.2.4 Detecting runs by using Lyndon words

Repetitions in strings are one of the most basic and well studied characteristics of strings, with

various theoretical and practical applications (see [19, 87, 88] for surveys). A maximal repeti-

tion, or a run, is a maximal periodic sub-interval of a string, that is at least as long as twice its

smallest period. For example, for a string T [1..11] = aababaababb, [1..2] = a2, [6..7] = a2,

and [10..11] = b2 are runs with period 1, [2..6] = (ab)5/2 and [7..10] = (ab)2 are runs with

period 2, [4..9] = (aba)2 is a run with period 3, and [1..10] = (aabab)2 is a run with period 5.

Runs essentially capture all consecutive repeats of a substring in a string.

The most remarkable property of runs, first proved by Kolpakov and Kucherov [68], is

that the maximum number of runs ρ(N) in a string of length N , is in fact linear in N . Al-

though their proof did not give a specific constant factor, it was conjectured that ρ(N) < N .

1For example gzip, p7zip, lz4, and snappy all have the LZ factorization at their core.
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CHAPTER 1. INTRODUCTION

In order to further understand the combinatorial structure of runs in strings, this “runs con-

jecture” has, since then, become the focus of many investigations. The first explicit constant

was given by Rytter [83], where he showed ρ(N) < 5N . This was subsequently improved to

ρ(N) < 3.48N by Puglisi et al. [81] with a more detailed analysis using the same approach.

Crochemore and Ilie [18] further reduced the bound to ρ(N) < 1.6N , and showed how better

bounds could be obtained by computer verification. Based on this approach, Giraud proved

ρ(N) < 1.52N [48] and later ρ(N) < 1.29N [49], but only for binary strings. The best known

upper bound is ρ(N) < 1.029N obtained by intense computer verification (almost 3 CPU

years) [20], based on [18]. On the other hand, a lower bound of ρ(N) ≥ 0.927N was shown

by Franek et al. [38]. Although this bound was first conjectured to be optimal, the bound was

later improved by Matsubara et al. [77] to ρ(N) ≥ 0.944565N . The best known lower bound is

ρ(N) ≥ 0.944575712N by Simpson [86]. While the conjecture was very close to being proved,

all of the previous linear upper bound proofs are based on heavy application of the periodicity

lemma by Fine and Wilf [35], and are known to be very technical, which seems to indicate that

we still do not yet have a good understanding of how runs can be contained in strings. For

example, the proof for ρ(N) < 1.6N by Crochemore and Ilie [18] required consideration of at

least 61 cases (Table 2 of [18]) in order to bound the number of runs with period at most 9 by

N .

Algorithms to compute all runs in the string are also well-studied. The first linear-time

algorithm for computing all runs, proposed by Kolpakov and Kucherov [68], relies on the com-

putation of the LZ77 factorization [92] of the string. All other existing linear-time algorithms

basically follow their algorithm, but focus on more efficient computation of the parsing, which

is the bottleneck [13, 17].

1.3 Our Contributions

1.3.1 Reverse-engineering problems on Lyndon factorizations

We solve four variants of reverse-engineering problems on Lyndon factorizations. Firstly, we

present a simple O(N)-time algorithm to compute a string T of length N such that a given

sequence of pairs of positive integers corresponds to the Lyndon factorization of T . Secondly,

we propose an O(N)-time algorithm to compute a string T such that an input is the Lyndon

factorization of T and the existing character in T is the smallest possible. This algorithm

5



CHAPTER 1. INTRODUCTION

has a generating algorithm to compute the lexicographically next smaller Lyndon word of a

given length as a subroutine. Some generating algorithm to compute the lexicographically next

smaller or larger Lyndon word of the same length exist. Since our generating algorithm can

generate the next Lyndon word of “any length”, our algorithm is somewhat general algorithm.

We also present an algorithm to solve the same problem in compact representation. Thirdly,

we show an O(m)-time algorithm to compute only the smallest size of alphabet where m is the

size of the input (i.e., the size of the Lyndon factorization). Finally, we consider an enumerating

problem, we propose a compact representation of all valid strings and an efficient algorithm to

compute the representation.

1.3.2 Lyndon factorization algorithms for compressed strings

We propose Lyndon factorization algorithms for compressed strings. For an uncompressed

string of lengthN , an elegantO(N)-time algorithm to compute the Lyndon factorization is well-

known [30]. We consider an SLP and an LZ78 compressed strings as inputs. In Chapter 4, we

present an efficient Lyndon factorization algorithm for an SLP. This algorithm compute Lyndon

factors from right to left by computing the smallest suffix of a string. The rightmost decomposed

Lyndon factor of a string T is the lexicographically smallest suffix of T . In Chapter 5, we present

a faster Lyndon factorization algorithm for an SLP. The algorithm is based on key lemmas in

parallel algorithms for Lyndon factorizations [1, 26], but unfortunately their proof (and the

algorithm therein) appears to be incorrect. We give a corrected proof and algorithm. As yet

another byproduct, we show that the size m of the Lyndon factorization of string T is bounded

by the size n of any SLP representing T , i.e. m ≤ n, which may be of independent interest.

In Chapter 5, we also propose an efficient algorithm for an LZ78 factorization. All of our

algorithms are faster than an O(N)-time algorithm if the input string is highly compressed.

1.3.3 Relations between Lyndon factorizations and LZ77 factorizations

We study relations between Lyndon factorizations and non-overlapping LZ77 factorizations.

For most strings, the number of Lyndon factors is much smaller. Indeed, any string has a

rotation with a Lyndon factorization of size one. However, we showed that there are strings

with t + Θ(
√
t) Lyndon factors, where t is the number of LZ77 factors. Our main result is to

show that number of Lyndon factors cannot be more than 2t. This result improves significantly

a previous, indirect bound given in Chapter 5 that the number of Lyndon factors cannot be more

6



CHAPTER 1. INTRODUCTION

than the size of the smallest SLP. Since the smallest SLP is at most a logarithmic factor bigger

than the LZ77 factorization [11, 82], this established an indirect, logarithmic factor bound,

which we improve to a constant factor two.

1.3.4 Detecting runs by using Lyndon words

We give new insights into the runs conjecture, significantly improving our understanding of

the structure of runs in strings. Our study of runs is based on combinatorics of Lyndon words.

Lyndon words have recently been considered in the context of runs [21, 22], since any run with

period p must contain a length-p substring that is a Lyndon word, called an L-root of the run.

Concerning the number of cubic runs (runs with exponent at least 3), Crochemore et al. [21]

gave a very simple proof that it can be no more than 0.5N . The key observation is that, for any

given lexicographic order, a cubic run must contain at least two consecutive occurrences of its

L-root, and that the boundary position cannot be shared by consecutive L-roots of a different

cubic run. However, this idea does not work for general runs, since, unlike cubic runs, only one

occurrence of an L-root for a given lexicographic order is guaranteed, and the question of how

to effectively apply Lyndon arguments to the analysis of the number of general runs has so far

not been answered.

The contributions in Chapter 7 are summarized below:

Proof of ρ(N) < N and σ(N) < 3N We discover and establish a connection between the

L-roots of runs and the longest Lyndon word starting at each position of the string. Based

on this novel observation, we give an affirmative answer to the runs conjecture. The proof

is remarkably simple.

Based on the same observation, we obtained a bound of 3N for the maximum sum of

exponents σ(N) of runs in a string of length N . The best known bound was 4.1N by

Crochemore et al. [24], whose arguments were based on the bound of ρ(N) < 1.029N .

We note that plugging-in ρ(N) < N into their proof still only gives a bound of 4N .

Let ρk(N) be the maximum number of runs with exponent at least k in a string of length

N , and let σk(N) be the maximum sum of exponents of runs with exponent at least k in

a string of length N . For any integer k ≥ 2, we prove a bound of ρk(N) < N/(k − 1)

and σk(N) < N(k + 1)/(k − 1). For k = 3, this yields σ3(N) < 2N which improves

on the bound of 2.5N by Crochemore et al. [24]. We also proved conjectured bounds

7



CHAPTER 1. INTRODUCTION

of ρ(N, d) ≤ N − d and if N > 2d, ρ(N, d) ≤ N − d − 1 [28], where ρ(N, d) is the

maximum number of runs in a string of lengthN that contains exactly d distinct symbols2.

Linear-time computation of all runs without Lempel-Ziv parsing We give a novel, concep-

tually simple linear-time algorithm for computing all runs contained in a string, based on

the proof of ρ(N) < N . Our algorithm is the first linear-time algorithm which does not

rely on the Lempel-Ziv factorization of the string, and thus may help pave the way to

more efficient algorithms for computing all runs in the string [89].

Runs and Lyndon trees We also establish a relationship between L-roots of runs in a string

and nodes of what is called the Lyndon tree of the string [4], which is a full binary tree

defined by recursive standard factorization. We showed a simple optimal solution to the

2-Period Query problem that was recently solved by Kociumaka et al. [67], i.e., given

any interval [i..j] of a string T of length N , return the smallest period p of T [i..j] with

p ≤ (j − i+ 1)/2, if such exists, in constant time with O(N) preprocessing.

1.4 Organization

The rest of this thesis is organized as follows: In Chapter 3, we consider the reverse-engineering

problems for Lyndon factorizations. In Chapter 4, we propose Lyndon factorization algorithms

for compressed strings. In Chapter 5, we propose faster Lyndon factorization algorithms for

compressed strings. In Chapter 6, we study the relation between Lyndon factorizations and

non-overlapping LZ77 factorizations. In Chapter 7, we show the runs theorem and propose a

linear time algorithm to compute all runs in a given string.

2We note that Deza and Franek have independently and simultaneously proved similar bounds [29], based on
our proof of the runs conjecture in an earlier version of this result.
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Chapter 2

Preliminaries

In this chapter, we give the notations to be used in this thesis.

2.1 Notation

Let Σ be an ordered finite alphabet, and let σ = |Σ|. An element of Σ∗ is called a string. The

length of a string w is denoted by |w|. The empty string ε is a string of length 0. Let Σ+ be the

set of non-empty strings, i.e., Σ+ = Σ∗ − {ε}. For a string w = xyz, x, y and z are called a

prefix, substring, and suffix of w, respectively. A prefix (resp. suffix) x of w is called a proper

prefix (resp. proper suffix) of w if x 6= w. The set of suffixes of w is denoted by Suffix (w).

The i-th character of a string w is denoted by w[i] for 1 ≤ i ≤ |w|. For a string w and two

integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins at position i and ends

at position j. For convenience, let w[i..j] = ε when i > j. For any string w let w0 = ε, and

for any integer k ≥ 1 let wk = wwk−1, i.e., wk is a k-time repetition of w. Let w∞ denote an

infinite repetition of w. For any non-empty string w and integer 2 ≤ i ≤ |w|, let csi(w) denote

the i-th cyclic shift of w, namely, csi(w) = w[i..|w|]w[1..i− 1], and let cs1(w) = w.

A sequence of non-empty strings w1, . . . , wj is said to be a factorization of a string w if

w1 · · ·wj = w.

An integer p ≥ 1 is said to be a period of a string w if w[i] = w[i+p] for all 1 ≤ i ≤ |w|−p.

If p is a period of a string w with p < |w|, then |w| − p is said to be a border of w. If w has no

borders, then w is said to be border-free.

If character c is lexicographically smaller than another character c′, then we write c ≺ c′.

For any non-empty strings x, y ∈ Σ+, let lcp(x, y) be the length of the longest common prefix

of x and y, namely, lcp(x, y) = max({j | x[i] = y[i] for all 1 ≤ i ≤ j} ∪ {0}). For any

9
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non-empty strings x, y ∈ Σ+, we write x ≺ y iff either lcp(x, y) + 1 ≤ min{|x|, |y|} and

x[lcp(x, y) + 1] ≺ y[lcp(x, y) + 1], or x is a proper prefix of y. For any non-empty set A ⊆ Σ∗

of strings, let min≺A denote the lexicographically smallest string in A.

2.2 Lyndon Words

Here, we introduce two equivalent definitions of Lyndon words [73].

Definition 1. A string λ is said to be a Lyndon word, if λ ≺ csi(λ) for all 2 ≤ i ≤ |λ|.

Definition 2. A string λ is said to be a Lyndon word, if λ ≺ x for any non-empty proper suffix

x of λ.

Notice that any Lyndon word is border-free. The following lemma is also useful.

Lemma 1 (Proposition 1.3 [30]). For any Lyndon words λ1 and λ2, λ1λ2 is a Lyndon word iff

λ1 ≺ λ2.

2.3 Lyndon Factorizations

Definition 3 (Lyndon factorization [14]). The Lyndon factorization of a non-empty string T ∈
Σ+, denoted LF T , is the factorization λe11 , . . . , λ

em
m of T , such that each λi ∈ Σ+ is a Lyndon

word, ei ≥ 1, and λi � λi+1 for all 1 ≤ i < m.

Each λeii is called a Lyndon factor, and λi is called a decomposed Lyndon factor. The

Lyndon factorization is unique for each string T , and can be represented by the sequence

(|λ1|, e1), . . . , (|λm|, em) of two positive integers. For string T = abaaabaaabaa, LF T =

(ab)1(aaab)2(a)2. Note that all strings ab, aaab, and a in LF T are Lyndon words, aligned in

lexicographically decreasing order. LF T can be represented by the sequence (2, 1), (4, 2), (1, 2).

The follwing lemma can be obtaied by the definition.

Lemma 2 ([30]). It holds that λ1 is the longest prefix of T which is a Lyndon word and p1 is the

largest integer k such that λk1 is a prefix of T .

Also, the Lyndon factorization of any string T of length N can be computed in O(N)

time [30]. Algorithm 1 shows a pseudo-code of the main part of the algorithm that computes

the leftmost Lyndon factor (|λ|, e) of a given string T . The next Lyndon factor can be computed

by running this algorithm on the suffix T [|λ|e + 1..|T |] of T . Throughout this thesis, we refer

to the algorithm as Duval’s algorithm.

10
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Algorithm 1: Algorithm to compute the leftmost Lyndon factor of T .
Input: String T .
Output: Leftmost Lyndon factor (|λ|, e) of T .

1 i← 1, j ← 2;
2 while j ≤ |T | and T [i] � T [j] do
3 if T [i] ≺ T [j] then i← 1; else i← i+ 1;
4 j ← j + 1;

5 (|λ|, e)← (j − i, b(j − 1)/(j − i)c);
6 output (|λ|, e);

2.4 Lempel-Ziv Factorizations

In this section, we introduce LZ77 factorizations [92] and LZ78 factorizations [93].

2.4.1 LZ77 factorizations

The non-overlapping LZ77 factorization of a string T is its factorization g1, . . . , gt built left to

right in a greedy way by the following rule: each gi is either the leftmost occurrence of a letter

in T or the longest prefix of gi · · · gt which occurs in g1 · · · gi−1. We refer to each gi as LZ77

phrase.

2.4.2 LZ78 factorizations

The LZ78 factorization of a string T is a factorization f1, . . . , fs of T , where each fi ∈ Σ+ for

each 1 ≤ i ≤ s is defined as follows: For convenience, let f0 = ε. Then, fi = T [p..p + |fj|]
where p = |f0 · · · fi−1| + 1 and fj(0 ≤ j < i) is the longest previous factor which is a prefix

of T [p..|T |]. The LZ78 encoding of T is a sequence (k1, a1), . . . , (ks, as) of pairs s.t. each pair

(ki, ai) represents the i-th LZ78 factor fi, where ki is the identifier of the previous factor fki ,

and ai is the new character T [|f1 · · · fi|]. The LZ78 encoding requires O(s) space. Regarding

this pair as a parent and edge label, the factors can also be represented as a trie of size O(s), see

Figure 2.1.

2.5 Straight Line Programs

A straight line program (SLP) is a set of productions S = {X1 → expr1, . . . , Xn → exprn},
where each Xi is a variable and each expri is an expression, where expri = a (a ∈ Σ), or

11
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Figure 2.1: LZ78 trie for aaabaabbbaaaba$. Node i represents fi, e.g., f4 = aab.
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X6

X1 X2
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X1
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Figure 2.2: The derivation tree of SLP S = {X1 → a, X2 → b, X3 → X1X2, X4 →
X1X3, X5 → X3X4, X6 → X4X5, X7 → X6X5}, representing string S = val(X7) =
aababaababaab.

expri = Xl(i)Xr(i) (i > l(i), r(i)) for any 1 ≤ i ≤ n. It is essentially a context free grammar in

Chomsky normal form, that derives a single string. Let val(Xi) represent the string derived from

variable Xi. To ease notation, we sometimes associate val(Xi) with Xi and denote |val(Xi)|
as |Xi|, and val(Xi)[u..v] as Xi[u..v] for 1 ≤ u ≤ v ≤ |Xi|. An SLP S represents the string

T = val(Xn). The size of the program S is the number n of productions in S. Let N be the

length of the string represented by SLP S, i.e., N = |T |. Then N can be as large as 2n−1.

The derivation tree of SLP S is a labeled ordered binary tree where each internal node is

labeled with a non-terminal variable in {X1, . . . , Xn}, and each leaf is labeled with a terminal

character in Σ. The root node has label Xn. An example of the derivation tree of an SLP is

shown in Figure 2.2.

2.5.1 Longest common extension problem on SLPs

The longest common extension (LCE) problem on SLPs is to preprocess an SLP so that we can

efficiently answer LCE queries that ask to compute lcp(val(Xi)[k1..|Xi|], val(Xi)[k2..|Xi|]) for

any variable Xi and 1 ≤ k1, k2 ≤ |Xi|. The currently best data structures to solve this problem

12
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deterministically are the following.

Lemma 3 ([55]). Given an SLP of size n representing a string of length N , we can preprocess

in O(n log(N/n)) time and O(n+ t log(N/t)) space to support LCE queries in O(logN) time

where t is the size of non-overlapping LZ77 factorization.

With the data structure, we are also able to answer the lexicographical order of val(Xi)

[k1..|Xi|] and val(Xi)[k2..|Xi|] in the same complexities.

In order to describe our complexity independent from the choice of LCE data structures, we

denote by P (n,N), S(n,N) and Q(n,N), the preprocessing time, space and query time of an

LCE data structure, respectively.

2.6 Computation Model

Our model of computation is the word RAM: We assume the computer word size is at least

dlog2 |T |e, and hence, standard operations on values representing lengths and positions of string

T can be manipulated in O(1) time. Space complexities will be determined by the number of

computer words (not bits).

13



Chapter 3

Inferring Strings from Lyndon
Factorization

In this chapter, we tackle some reverse-engineering problems on Lyndon factorizations. This

is the first study for the problems. In Section 3.1, we present an algorithm to compute a string

on an alphabet of arbitrary size s.t. its Lyndon factorization corresponds to an input. We also

propose an efficient algorithm to compute a string on an alphabet of smallest size. In Section 3.2,

we show an algorithm to compute only the smallest alphabet size. In Section 3.3, we solve an

enumerating problem.

3.1 Computing a String with Given Lyndon Factorization

In this section, we consider two problems. Firstly, we explain an input of our problems. Since

the Lyndon factorization of a string can be represented by ordered pairs of integers (see Sec-

tion 2.3), an input of each problem considered in this chapter is given as a sequence I of ordered

pairs of integers. We naturally assume that each integer is strictly greater than zero.

Throughout this chapter, we assume Σ = {c1, . . . , cσ}, where ci is the i-th “largest” element

of Σ for any 1 ≤ i ≤ σ. Namely, ci � ci+1 for any 1 ≤ i < σ.

3.1.1 Computing a string on an alphabet of arbitrary size

The simplest variant of our reverse-engineering problem is the following:

Problem 1. Given a sequence I = ((`1, e1), . . . , (`m, em)) of ordered pairs of positive integers,

compute a string T ∈ Σ+ such that LF T = λe11 , . . . , λ
em
m and |λi| = `i.

14
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The length N of T is clearly N =
∑m

i=1 `iei. In Problem 1, there is no restriction on the

size of the alphabet from which the output string T is drawn. We get the following Theorem 1

by, basically just assigning decreasingly smaller characters to the first character of each factor.

Theorem 1. Problem 1 can be solved in O(N) time, where N is the length of an output string.

Proof. We process the input sequence I = ((`1, e1), . . . , (`m, em)) from left to right. Assume

we have processed the first j elements of I , and have computed the prefix T [1..pj] of output

string T , where pj =
∑j

i=1(`iei). Let q(0) = 0, and for 1 ≤ j ≤ m let q(j) be the number

of distinct characters occurring in the prefix T [1..pj]. For the j-th element (`j, ej) of I , let

λj = cq(j−1)+1 if `j = 1, and λj = cq(j−1)+2(cq(j−1)+1)`j−1 otherwise. Also, let Λj = (λj)
ej . It

is easy to see λj is a Lyndon word. Since cq(j−1) � cq(j), λj−1 � λj holds. Therefore, string

T = Λ1 · · ·Λm is a solution to the problem. Since we can compute each Λj in O(|Λj|) =

O(`jej) time, the overall time complexity is O(
∑m

j=1 `jej) = O(N).

Theorem 1 also implies that for any input sequence I of ordered pairs of positive integers,

there exists a string T which is a solution to Problem 1. We show a supplementary example of

the simple solution in the following.

Example 1. Let Σ = {h, g, f, e, d, c, b, a}. For an input sequence I = ((3, 1), (2, 2), (2, 1),

(4, 1)), a solution to Problem 1 is T = ghhefefcdabbb, since LF T = (ghh)1, (ef)2, (cd)1,

(abbb)1.

3.1.2 Computing a string on an alphabet of the smallest size

Now, we consider a more interesting variant of our reverse-engineering problem, where a string

on an alphabet of the smallest size is to be computed.

For any 1 ≤ j ≤ σ, let Σj = {c1, . . . , cj} denote the set of the j largest characters of Σ.

The problem is formalized as follows:

Problem 2. Given a sequence I = ((`1, e1), . . . , (`m, em)) of ordered pairs of positive integers,

compute a string T ∈ Σ+
r such that LF T = λe11 , . . . , λ

em
m , |λi| = `i, and r is the smallest

possible.

An example of Problem 2 is shown below. Let Σ = {d, c, b, a}. For an input sequence

I = ((3, 1), (2, 2), (2, 1), (4, 1)) of positive integers, a solution to Problem 2 is string T =
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cddcdcdbdbcdd where LF T = (cdd)1, (cd)2, (bd)1, (bcdd)1. Remark that the output string of

the example contains only 3 distinct characters, while that of example above contains 8 distinct

characters, for the same input sequence I .

In what follows, we present an O(N)-time algorithm to solve Problem 2. This algorithm

computes Lyndon factors from left to right, and is based on the lemma below.

Lemma 4. Let I = ((`1, e1), . . . , (`m, em)) be a sequence of ordered pairs of positive integers.

If for some string w ∈ Σ+, LFw = λe11 , . . . , λ
em
m , where λ1 is the lexicographically largest

Lyndon word of length `1 and for all 2 ≤ i ≤ m, λi is the lexicographically largest Lyndon

word of length `i which is lexicographically smaller than λi−1, then, T ∈ Σ+
r where Σr =

{c1, . . . , cr} ⊆ Σ and r is the smallest possible.

Proof. Let L1 � · · · � Lα be the decreasing sequence of Lyndon words on Σ of length at most

max{`i | 1 ≤ i ≤ m}. Then the sequence λ1, . . . , λm is a subsequence of L1, . . . , Lα, i.e., there

exist 1 ≤ i1 < · · · < im ≤ α s.t. λ1 = Li1 , . . . , λm = Lim . If Li ∈ Σ+
r − Σ+

r−1 for some i, then

it must be that Li[1] = cr or else Li cannot be a Lyndon word. Thus, for any Lyndon words

Li ∈ Σ+
r−1 and Lj ∈ Σ+

r −Σ+
r−1, Li � Lj , and thus i < j holds. As the condition on T indicates

that i1 = min{i | |Li| = `1} and ij = min{i | Lij−1
� Li, |Li| = `j} for any 1 < j ≤ m, im is

the smallest possible, and thus r is the smallest possible.

See also Figure 3.1 for an example of Lemma 4. The string T of Lemma 4 is the lexi-

cographically largest string whose Lyndon factorization corresponds to input I . We compute

T as defined in Lemma 4. In the rest of this chapter, for any string x and integer k, the lex-

icographically largest Lyndon word of length k which is lexicographically smaller than x by

PredLyn(x, k).

Duval [31] proposed a linear time algorithm which, given a Lyndon word, computes the next

Lyndon word (i.e., the lexicographical successor) of the same length. Although our algorithm to

be shown in this section is somewhat similar to his algorithm, ours is more general in that it can

compute the previous Lyndon word (i.e., the lexicographical predecessor) of a “given length”,

in linear time.

If `1 = 1, then λ1 = c1. If `1 ≥ 2, then λ1 = c2c
`1−1
1 . Assume that we have already

computed λ1, . . . , λi−1 for 1 < i ≤ m, and we are computing λi. In so doing, we will need

Lemma 5 and Lemma 6.
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Figure 3.1: An example of Lemma 4. Let Σ = {c, b, a} and I =
((1, 3), (2, 2), (3, 1), (3, 2), (2, 1)). For example, the first factor c is the lexicographically
largest Lyndon word of length 1, and the last factor ac is the lexicographically largest Lyndon
word of length 2 which is lexicographically smaller than previous factor acc.

Lemma 5. Let x be any Lyndon word such that |x| ≥ 2 and x[i..|x|] = cqc
|x|−i
1 for some

1 < i ≤ |x| and some 1 < q ≤ σ. Then, for any 1 ≤ p < q, y = x[1..i− 1]cpc
|x|−i
1 is a Lyndon

word.

Proof. Firstly, we show that y[1..i] is a Lyndon word. Assume on the contrary that y[1..i] is not

a Lyndon word. Then, there exists 2 ≤ j ≤ i satisfying y[1..i] � y[j..i]. Since x[1..i − 1] =

y[1..i − 1] and x[i] = cq ≺ cp = y[i], y[1..i] � x[1..i] and y[j..i] � x[j..i]. Since 2 ≤ j,

|y[j..i]| = i − j + 1 ≤ i − 1. Since y[1..i − 1] = x[1..i − 1], we get x[1..i] � y[j..i], which

implies that x[1..i] � x[j..i]. However, this contradicts that x is a Lyndon word. Hence y[1..i]

is a Lyndon word.

Now we show y is a Lyndon word by induction on k, where i ≤ k ≤ |y|. The case where

k = i has already been shown. Assume y[1..k] is a Lyndon word for i ≤ k < |y|. As 2 ≤ i ≤ k,

y[1..k] ≺ y[k + 1] = c1. Since y[k + 1] = c1 is a Lyndon word, by Lemma 1, y[1..k + 1] is a

Lyndon word. This completes the proof.

Lemma 6. For any Lyndon word x with |x| ≥ 2 and any 1 ≤ i ≤ |x|, y = x[1..i]c
|x|−i
1 is a

Lyndon word.

Proof. Let k = |x|−i. We prove the lemma by induction on k. If k = 0, i.e. i = |x|, then y = x

and hence the lemma trivially holds. Assume the lemma holds for some 0 ≤ k < |x| − 1, i.e.,
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x[1..|x| − k]ck1 = x[1..i]c
|x|−i
1 is a Lyndon word. Then, by Lemma 5, x[1..|x| − (k + 1)]ck+1

1 =

x[1..i− 1]c
|x|−i+1
1 is also a Lyndon word. Hence the lemma holds.

We show examples of the above lemmas. Let x = abcadd be a Lyndon word and Σ =

{d, c, b, a}. By Lemma 5, abcbdd, abccdd, and abcddd are also Lyndon words. By Lemma 6,

abcddd, abdddd, addddd are also Lyndon words.

Computing λi from λi−1 when `i = `i−1.

Here, we describe how to compute λi from λi−1 when `i = `i−1, namely, |λi| = |λi−1|. The

following is a key lemma:

Lemma 7. For any non-empty string x, PredLyn(x, |x|) = x[1..i−1]cj+1c
|x|−i
1 where x[i] = cj

and i is the largest position s.t. x[1..i− 1]cj+1c
|x|−i
1 is a Lyndon word.

Proof. Let y = PredLyn(x, |x|). Assume on the contrary that there is a Lyndon word λ of

length |x| s.t. y ≺ λ ≺ x. As x[1..i − 1] = y[1..i − 1] and cj = x[i] � y[i] = cj+1,

there is a position i′ > i s.t. λ[1..i′ − 1] = x[1..i′ − 1] and λ[i′] ≺ x[i′]. By Lemma 6,

λ[1..i′]c
|λ|−i′
1 = x[1..i′ − 1]λ[i′]c

|x|−i′
1 is a Lyndon word. By Lemma 5, x[1..i′ − 1]cj′+1c

|x|−i′
1 is

a Lyndon word, where x[i′] = cj′ � cj′+1 � λ[i′]. This contradicts that i is the largest position

in x s.t. x[1..i− 1]cj+1c
|x|−i
1 is a Lyndon word.

Algorithm 2 shows a pseudo-code of our linear-time algorithm to find PredLyn(x, |x|). To

efficiently compute i of Lemma 7, we use, as a sub-routine, Duval’s algorithm [30] which

computes the Lyndon factorization of a string. In the next lemma, we show how Algorithm 2

works and its time complexity.

Lemma 8. For any non-empty string x, Algorithm 2 computes PredLyn(x, |x|) in O(|x|) time.

Proof. Let Cx be an array of length |x| such that, for any 1 ≤ i ≤ |x|, Cx[i] = max{q |
x[i..i + q − 1] = cq1}. Namely, Cx[i] represents the number of consecutive c1’s starting at

position i in x. Algorithm 2 firstly computes Cx.

For 1 ≤ k ≤ |x|, let xk = x[1..k − 1]cĵ+1c
|x|−k
1 , where cĵ = x[k]. Namely, xk is the

concatenation of the prefix of x of length k− 1, the lexicographically next character cĵ+1 to the

character cĵ = x[k], and the repetition of c1 of length |x|−k (see also Figure 3.2 for illustration

of xk). The algorithm checks whether xk is a Lyndon word for all 1 ≤ k ≤ |x| in increasing

order of k, based on Duval’s algorithm [30].
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Algorithm 2: Compute next smaller Lyndon word of same length.
Input: String x.
Output: PredLyn(x, |x|).

1 compute Cx;
2 k′ ← 1, k ← 2, i← 0;
3 if x[1] 6= cσ then i← 1;
4 while k ≤ |x| do
5 if x[k] 6= cσ then
6 if x[k′] ≺ cĵ+1 then i← k ; // cĵ = x[k]

7 else if x[k′] = cĵ+1 then
8 len ← min{Cx[k′ + 1], k − k′ − 1};
9 if len < |x| − k then i← k;

// Operation of Duval’s algorithm.
10 if x[k′] ≺ x[k] then k′ ← 1, k ← k + 1;
11 else if x[k′] = x[k] then k′ ← k′ + 1, k ← k + 1;
12 else break;

13 output x[1..i− 1]cj+1c
|x|−i
1 ; // cj = x[i]

For each k, our algorithm maintains a variable k′ to be the largest integer satisfying xk[1..k′−
1] = xk[k − k′ + 1..k − 1] and xk[1..k − 1] is a Lyndon word (see also Figure 3.2). To check

if xk is a Lyndon word, we compare xk[k′] = x[k′] and xk[k] = cĵ+1 (lines 6 and 7). There are

the three following cases:

• If x[k′] ≺ cĵ+1, then we know that x[1..k − 1]cĵ+1 is a Lyndon word, due to Duval’s

algorithm [30]. It follows from Lemma 1 that x[1..k−1]cĵ+1c
|x|−k
1 is a Lyndon word. The

value of i is replaced by k (line 6).

• If x[k′] � cĵ+1, then we know that x[1..k − 1]cĵ+1c
|x|−k
1 is not a Lyndon word, due to

Duval’s algorithm [30].

• If x[k′] = cĵ+1, then x[1..k′] = x[k − k′ + 1..k − 1]cĵ+1. In this case, we compare

the substrings immediately following x[1..k′] and x[k − k′ + 1..k − 1]cĵ+1, respectively.

Since xk[k + 1..|x|] = c
|x|−k
1 , if we know the number of consecutive c1’s from position

k′ + 1 in x, then we can efficiently check’ whether or not xk is a Lyndon word. Let len

be the number of consecutive c1’s from position k′ + 1 in xk which can be calculated by

min{Cx[k′ + 1], k − k′ − 1}. We compare len with the number of consecutive c1’s from

position k+ 1 in xk, which is clearly |x| − k. If len < |x| − k, then xk is a Lyndon word.

Otherwise, xk is not a Lyndon word since it has a border.
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Figure 3.2: Illustration of string xk in proof of Lemma 8.

In lines 10-12 we update the values of k′ and k using Duval’s algorithm [30].

After the while loop, the variable i stores the largest integer s.t. x[1..i − 1]cj+1c
|x|−i
1 is a

Lyndon word, which is the output of the algorithm (line 13).

It is easy to see that Cx can be computed in O(|x|) time. The while loop repeats at most

|x| times, and each operation in the while loop takes constant time. Therefore the overall time

complexity is O(|x|).

Computing λi from λi−1 when `i−1 6= `i.

Here, we show how to compute λi from λi−1 when their lengths `i and `i−1 are different. Firstly,

we consider the case where `i−1 > `i, namely |λi−1| > |λi|:

Lemma 9. For any non-empty string x and positive integer k < |x|, if x[1..k] is a Lyndon

word, then PredLyn(x, k) = x[1..k]. Otherwise, PredLyn(x, k) = x[1..i − 1]cj+1c
k−i
1 , where

x[i] = cj and i is the largest position s.t. x[1..i− 1]cj+1c
k−i
1 is a Lyndon word.

Proof. Let x′ = x[1..k]. No string of length k which is lexicographically smaller than x

and larger than x′ exists. Thus, if x′ is a Lyndon word, PredLyn(x, k) = x′. Otherwise,

PredLyn(x, k) = PredLyn(x′, k). Since |x′| = k, the statement follows from Lemma 7.

Secondly, we consider the case where `i−1 < `i, namely |λi−1| > |λi|.

Lemma 10. For any non-empty string x and positive integer k > |x|, PredLyn(x, k) = x[1..i−
1]cj+1c

k−i
1 , where x[i] = cj and i is the largest position s.t. x[1..i−1]cj+1c

k−i
1 is a Lyndon word

and 1 ≤ i ≤ |x|.
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Proof. Let y = PredLyn(x, k). Assume on the contrary that there exists a Lyndon word λ of

length k s.t. y ≺ λ ≺ x. This implies that λ[1..i′ − 1] = x[1..i′ − 1] and λ[i′] ≺ x[i′] with

i < i′ < |x|. The rest of proof is in a similar way of Lemma 7.

Due to the two above lemmas, λi can be computed from λi−1 in a similar way to the case

where |λi| = |λi−1|, using a slightly modified version of Algorithm 2, as described in the

following theorem.

Theorem 2. Problem 2 can be solved in O(N) time, where N is the length of an output string.

Proof. Assume we have already computed λ1, . . . , λi−1 and are computing λi.

• If |λi−1| > |λi|, then let x be the prefix of λi−1 of length `i, namely, x = λi−1[1..`i]. By

Lemma 9, if x is a Lyndon word, then λi = x. We can check whether x is a Lyndon word

or not in O(|x|) time, by using Duval’s algorithm [30]. Otherwise, λi can be computed

from x by Algorithm 2. This takes O(|λi|) = O(`i) time by Lemma 8.

• If |λi−1| = |λi|, then λi can be computed from λi−1 in O(`i) time, by Lemma 8.

• If |λi−1| < |λi|, then let x = λi−1c
|λi|−|λi−1|
1 . We take x as input to Algorithm 2, with a

slight modification to the algorithm. Since λi−1 � x � λi must hold, we are only inter-

ested in positions from 1 to |λi−1| in x. Hence, as soon as the value of k in Algorithm 2

exceeds λi−1, we exit from the while loop, and the resulting string is λi−1. The above

modification clearly does not affect the time complexity of the algorithm, and hence it

takes O(`i) time.

Thus we can compute the output string in O(
∑m

i=1 `iei) = O(N) time.

We can remark that for computing λ1, . . . , λm we do not use e1, . . . , em, and hence, the

following corollaries are immediate from Theorem 2.

Corollary 1. We can compute the Lyndon factorization λe11 , . . . , λ
em
m of a string which is a

solution to Problem 2 in O(
∑m

i=1 `i) time.

Corollary 2. Given a sequence I = ((`1, e1), . . . , (`m, em)) of ordered pairs of integers and an

integer r ≥ 1, we can determine in O(
∑m

i=1 `i) time if there exists a string T over an alphabet

of size at most r s.t. LF T = λe11 , . . . , λ
em
m and |λi| = `i.
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3.2 Computing the Smallest Alphabet Size

In this section we consider the following problem.

Problem 3. Given a sequence I = ((`1, e1), . . . , (`m, em)) of ordered pairs of positive inte-

gers, compute the smallest integer r for which there exists a string T ∈ Σ+
r such that LF T =

λe11 , . . . , λ
em
m and |λi| = `i.

An example of Problem 3 is shown below.

Example 2. For input sequence I = ((3, 1), (2, 2), (2, 1), (4, 1)), the solution is r = 3. This is

because for string T = bccbcbcacabcc over alphabet {c, b, a}, LF T = (bcc)1, (bc)2, (ac)1,

(abcc)1, and there is no string over an alphabet of size two or one whose Lyndon factorization

coincides with I .

Clearly, this problem can be solved in O(N) time by Theorem 2. However, since only the

smallest alphabet size is of interest, a string does not have to be computed in this problem. To

this end, we present an optimal O(m)-time algorithm to solve Problem 3, where m ≤ n is the

size of the input sequence I . The basic strategy is the same as the previous algorithm, i.e., we

simulate the algorithm of computing λi from λi−1, for all 1 < i ≤ m. The difficulty is that, in

order to achieve an O(m)-time algorithm, we cannot afford to store λi’s explicitly. Hence, we

simulate the previous algorithm on a compact representation of λi’s.

We introduce the largest character block encoding (LCBE ) Y of a non-empty string x.

Consider factorizing x into blocks according to the following rules; the b-th block Yb is the

longest prefix of x[pos(Yb)..|x|] s.t. Yb = cjc
q
1 for some j ≥ 1 and q ≥ 0, where pos(Yb) = 1

if b = 1, and pos(Yb) = pos(Yb−1) + |Yb−1| otherwise. Let ‖Y ‖ denote the number of blocks

of Y , i.e., x = Y = Y1Y2 . . . Y‖Y ‖. For any 1 < b ≤ ‖Y ‖, Yb[1] 6= c1. Notice that Y can be

encoded in O(‖Y ‖) space by storing Yb[1] and pos(Yb) for each block.

Let Y and Y ′ be the LCBE of λi−1 and λi, respectively. It holds that ‖Y ′‖ ≤ ‖Y ‖ + 1

and ‖Y ‖ ≤ m because of the algorithm described in the previous subsection. To compute

Y ′ from Y efficiently, each block Yb stores the information about the position k′ s.t. Y [k′]

and Y [pos(Yb)] are supposed to be compared in Algorithm 2. Since Y is a Lyndon word,

Y [k′] � Y [pos(Yb)] ≺ c1 and there exists a block starting at k′. Also, Y [1..k′− 1] is the longest

prefix which is a suffix of Y [1..pos(Yb)− 1]. Thus we let Yb have the value pbi(Yb) = max{b′ |
1 ≤ b′ < b, Y [1..pos(Yb′)− 1] = Y [pos(Yb)− pos(Yb′) + 1..pos(Yb)− 1]}, that is, b′ = pbi(Yb)
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is the block index s.t. k′ = pos(Yb′). We can let pbi(Y1) remain undefined since we will never

use it. An example of LCBE follows.

Example 3. Let Σ = {c, b, a} and λi−1 = acaccacbacaccbcc. Then the LCBE of λi−1

is Y = ac, acc, ac, b, ac, acc, bcc and pbi(Y2) = 1, pbi(Y3) = 1, pbi(Y4) = 2, pbi(Y5) =

1, pbi(Y6) = 2, pbi(Y7) = 3.

Lemma 11 shows how to efficiently compute Y ′ from Y using pbi . Since Y and Y ′ share at

least the first ‖Y ′‖ − 2 blocks, we do not build Y ′ from scratch.

Lemma 11. We can compute LCBE Y ′ of λi in O(max{1, ‖Y ‖ − ‖Y ′‖}) time from the given

LCBE Y of λi−1 with pbi (see also Algorithm 3).

Proof. Since it is trivial when Y = c1, we consider the case where Y 6= c1 and Y [1] ≺ c1.

We simulate the task described in Theorem 2. First, we adjust the length of Y to `i, i.e., add

c
`i−`i−1

1 if `i−1 < `i, or truncate Y to represent Y [1..`i] if `i−1 > `i. A major difference from the

algorithm of Theorem 2 is that we process the blocks from right to left, checking whether each

block contains the position k s.t. Y [1..k− 1]cj+1c
|Y |−k
1 is a Lyndon word, where cj = Y [k]. We

show each block Yb can be investigated in O(1) time by using LCBE and pbi .

For any 1 < k ≤ |Y |, let p(k) be the position k′ s.t. Y [1..k′ − 1] is the longest prefix of Y

which is a suffix of Y [1..k − 1]. In Algorithm 2, Y [k] is compared with Y [p(k)]. As described

in Lemma 8, for any 1 < k ≤ |Y | with Y [p(k)] ≺ Y [k] = cj , Y [1..k−1]cj+1c
|Y |−k
1 is a Lyndon

word iff Y [p(k)] ≺ cj+1 or |Y | − k > d, where d is the maximum repeat of c1’s as a prefix of

Y [p(k) + 1..k − 1].

Consider the case where b 6= 1. Let b′ = pbi(Yb). Since we know p(pos(Yb)) = pos(Yb′),

position µ = pos(Yb) + lcp(Yb, Yb′) is the leftmost position inside Yb s.t. Y [p(µ)] ≺ Y [µ]

if |Yb| > lcp(Yb, Yb′). By the definition of LCBE and that Y is a prefix of a Lyndon word,

lcp(Yb, Yb′) = 0 if Yb[1] 6= Yb′ [1], and lcp(Yb, Yb′) = |Yb′ | otherwise. For any k with µ < k ≤
pos(Yb) + |Yb| − 1, Y [p(k)] ≺ Y [k] = c1 holds since Y [1] ≺ c1 and p(k) = 1. Since we can

compute d from the information of LCBE in O(1) time, we can check if Y [1..µ− 1]cj+1c
|Y |−µ
1

is a Lyndon word or not in O(1) time. Since p(µ′′) = 1 and Y [µ′′] = c1 for any µ′′ with

µ < µ′′ ≤ pos(Yb) + |Yb| − 1, if Y [1] ≺ c2 or |Y | − µ′′ > d′, then Y [1..µ′′ − 1]cj+1c
|Y |−µ′′
1

is a Lyndon word, where d′ is the maximum integer s.t. cd′1 is a prefix of Y [2..µ′′ − 1]. Hence

by a simple arithmetic operation we can compute in O(1) time the largest position µ′ with
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µ < µ′ ≤ pos(Yb) + |Yb|− 1 s.t. Y [1..µ′− 1]c2c
|Y |−µ′
1 is a Lyndon word. A minor remark is that

we add a constraint for µ′ not to exceed `i−1 when `i−1 < `i and b = ‖Y ‖.
The case where b = 1 can be managed in a similar way to the case where µ < µ′′ ≤

pos(Yb) + |Yb| − 1 described above, and hence it takes O(1) time.

We check each block from right to left until we find the largest position k s.t. Y [1..k −
1]cj+1c

|Y |−k
1 is a Lyndon word, where cj = Y [k]. Since each block can be checked in O(1)

time, the whole computational time is O(max{1, ‖Y ‖ − ‖Y ′‖}).

Since pbi for the blocks in Y ′ other than the last block remain unchanged from pbi for Y , it

suffices to calculate pbi for the last block of Y ′. Let b = ‖Y ′‖. Assume b > 1 since no updates

are needed when b = 1. Then pbi(Y ′b ) = pbi(Y ′b−1) + 1 if b− 1 ≥ 2 and Y ′pbi(Y ′b−1) = Y ′b−1, and

pbi(Y ′b ) = 1 otherwise.

Theorem 3. Problem 3 can be solved in O(m) time and O(m) space.

Proof. We begin with LCBE of λ1 and transform it to LCBE of λ2, λ3, . . . , λm in increasing

order, using Lemma 11. Finally we get LCBE of λm and we can obtain the alphabet size by

looking into the first character of λm.

Let B1, B2, . . . , Bm denote the number of blocks in LCBE s of λ1, λ2, . . . , λm, respec-

tively. Clearly B1 = 1. By Lemma 11, the total time complexity to get LCBE of λm is

O(
∑m

i=2 max{1, Bi−1 −Bi}) = O(m+B1 −Bm) = O(m).

3.2.1 Computing a string on an alphabet of the smallest size in a compact
representation

We also remark that an O(m)-size compact representation of the lexicographically largest solu-

tion for Problem 2 can be computed inO(m) time through the algorithm described in the above.

To do so, we store all LCBE ’s of λ1, λ2, . . . , λm as a tree where the common prefix blocks are

shared. Using this representation, we can obtain the desired string in O(N) time.

Our compact representation is defined as follows:

• each node is labeled with pair (c, q) s.t. c ∈ Σ, q is an integer,

• a pair (c, q) represents a block ccq1,

• a path from the root to a node represents a string that is the concatenation of strings

represented by each node on the path,
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Algorithm 3: Algorithm to convert LCBE Y of λi into that of λi−1.
Input: LCBE Y of λi−1 with pbi .
Result: Make Y to be the LCBE of λi with pbi .

1 if Y = c1 then return Y ← c2c
`i−1
1 ;

2 if `i−1 < `i then Y ← Y c
`i−`i−1

1 ;
3 else if `i−1 > `i then
4 Y ← Y [1..`i];
5 if Y is a Lyndon word then return Y ;

6 b← ||Y ||;
7 while true do
8 if `i−1 < `i and b = ||Y || then η ← `i−1;
9 else η ← pos(Yb) + |Yb| − 1;

10 if b = 1 then
11 if Y1[1] ≺ c2 then return Y ← Y [1..η − 1]cj+1c

`i−η
1 ; // cj = Y [η]

12 µ′ ← max{µ′′ ≤ η | `i − µ′′ ≥ µ′′ − 1};
13 return Y ← Y [1..µ′ − 1]cj+1c

`i−µ′
1 ; // cj = Y [µ′]

// In what follows, b 6= 1.
14 b′ ← pbi(Yb);
15 if Yb[1] = Yb′ [1] then
16 if |Yb| = |Yb′ | then b← b− 1, continue;
17 µ← pos(Yb) + |Yb′|, b′ ← b′ + 1;

18 else µ← pos(Yb);
19 if µ < η then
20 if Y1[1] ≺ c2 then return Y ← Y [1..η − 1]cj+1c

`i−η
1 ; // cj = Y [η]

21 µ′ ← max{µ′′ ≤ η | `i − µ′′ ≥ |Y1|};
22 if µ < µ′ then return Y ← Y [1..µ′ − 1]cj+1c

`i−µ′
1 ; // cj = Y [µ′]

23 if Yb′ [1] = cj+1 then // cj = Y [µ]
24 if b = b′ then d← µ− pos(Yb);
25 else d← |Yb′ |;
26 if `i − µ < d then b← b− 1, continue;

27 return Y ← Y [1..µ− 1]cj+1c
`i−µ
1 ; // cj = Y [µ]

• a path from the root to a leaf represents a Lyndon factor of T ,

• leaves are sorted in the order of Lyndon factors.

We show an example in Figure 3.3 for T = bcbbcccbbcbcbbcbbccac.

By the definition, each node corresponds to a block of the LCBE . Thus the number of

nodes is O(m), and the number of edges is also O(m). Therefore, this representation takes

O(m) space. We can also compute this representation by using the algorithm described in the
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root!

(b,1)! (b,0)!

(b,3)! (b,1)!

(b,1)! (b,0)!

(b,2)!

(a,1)!

!
1!

!
2!

!
3!

!
4
 = bbcbbcc

!

!
5!

Figure 3.3: Let I = ((2, 1), (5, 1), (5, 1), (7, 1), (2, 1)). Then the solution of Problem 3 is
T = bcbbcccbbcbcbbcbbccac, since LF T = (bc)1, (bbccc)1, (bbcbc)1, (bbcbbcc)1, (ac)1.
This trie represents LF T . For example, λ4 = bbcbbcc.

above.

Theorem 4. Given a sequence of integer pairs I = ((`1, e1), . . . , (`m, em)), we can compute

O(m)-representation of a string T over an alphabet of the smallest size in O(m) time s.t.

LF T = λe11 , . . . , λ
em
m , |λi| = `i.

3.3 Enumerate Strings with Given Lyndon Factorization

In this section, we consider a problem of enumerating all strings whose Lyndon factorizations

correspond to a given sequence of integer pairs:

Problem 4. Given a sequence I = ((`1, e1), . . . , (`m, em)) of ordered pairs of positive integers

and Σr = {c1, . . . , cr}, compute all strings T ∈ Σ+
r such that LF T = λe11 , . . . , λ

em
m and |λi| =

`i.

We show an example of this problem.

Example 4. Let Σr = {c, b, a}. For an input sequence I = ((3, 1), (2, 2), (2, 1)) of positive

integers, a solution to Problem 4 is T = bccbcbcac, bccbcbcab, bccacacab, bbcacacab,

accacacab, acbacacab, since LF T = ((bcc)1, (bc)2, (ac)1), ((bcc)1, (bc)2, (ab)1), ((bcc)1,

(ac)2, (ab)1), ((bbc)1, (ac)2, (ab)1), ((acc)1, (ac)2, (ab)1), ((acb)1, (ac)2, (ab)1).
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Let K be the set of output strings for Problem 4. We consider a tree lfTree defined as

follows. Let root be the root of lfTree.

• root is Troot, which is the lexicographically largest string in K, computed by the algo-

rithm of Section 3.1.2;

• Each child v of any node u is a pair (Tv, j) of a string and integer j, such that Tv is the

string obtained by replacing the j-th factor λejj of the Lyndon factorization of Tu with

(λ′j)
ej , where λ′j is a Lyndon word of length `j satisfying λj � λ′j � λj+1 (λm+1 denotes

ε for convenience);

• For any non-root node u = (Tu, i) and any child v = (Tv, j) of u, i > j.

The next lemma shows that lfTree represents all and only the strings in K.

Lemma 12. Let I = ((`1, e1), . . . , (`m, em)) be a sequence of ordered pairs of positive integers.

Then lfTree contains all and only strings T ∈ Σ+
r s.t. LF T = λe11 , . . . , λ

em
m with |λi| = `i for

all 1 ≤ i ≤ m.

Proof. If T is the lexicographically largest string in K, then it is represented by root, i.e.,

T = Troot. Otherwise, let LF T = λe11 , . . . , λ
em
m and LF Troot = (λ̂1)e1 , . . . , (λ̂m)em . Let J =

{j | λ̂j � λj} and µ = |J |. For any 1 ≤ i ≤ µ, let ji denote the i-th smallest element of J .

The node u that corresponds to T can be located from root, as follows. By the definition of

lfTree, (λjµ , jµ) is a child of root. Assume we have arrived at a non-root node vji = (λji , ji)

with 1 < i ≤ µ. Let LF Tv = xe11 , . . . , x
em
m . Then, for any k < ji, xk = λ̂k. Thus we have that

λ̂ji−1
= xji−1

� λji−1
� λji−1+1 = xji−1+1. This implies that vji−1

= (λji−1
, ji−1) is a child of

vji . Note that for any k′ > ji−1, xk′ = λk′ . Hence, vj1 = u, the desired node which corresponds

to T .

By the definition of lfTree, any string corresponding to a node of lfTree is in K.

A naïve representation of lfTree requires O(|K|N) space. To reduce the output size of

Problem 4, we introduce the following compact representation of lfTree:

• root is LF Troot = (λ̂1)e1 , . . . , (λ̂m)em , where Troot is the lexicographically largest string

in K, computed by the algorithm of Section 3.1.2;
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(bc)2 bbc  ac
!

(ab,3)! (acc,2)!

= (bc)2 abb ab!

(acb,2)!

(acc,2)!(acb,2)!(acb,2)!(abb,2)!

(ac,1)!(ac,1)!= (ac)2 abb ab!

Figure 3.4: This figure shows the tree lfTree when I = ((2, 2), (3, 1), (2, 1)) and Σ = {c, b, a}.

• Each child v of any node u is a pair (λ′j, j) of a Lyndon word λ′j of length `j and integer

j, such that LF Tv is obtained by replacing the j-th factor λejj of the Lyndon factoriza-

tion LFTu of Tu with (λ′j)
ej , where λ′j satisfies λj � λ′j � λj+1 (λm+1 denotes ε for

convenience);

• For any non-root node u = (λ′i, i) and any child v = (λ′′j , j) of u, i > j.

Let `max = max{`i | 1 ≤ i ≤ m} and N ′ =
∑m

i=1 `i. Then, this compact representation

of T requires only O(|K|`max + N ′) space. In the sequel, we mean by lfTree the compact

representation of lfTree. An example of lfTree is given in Figure 3.4.

The number of nodes in lfTree is |K|. Since the root has LFTroot and other nodes have a

pair of a factor and an integer, lfTree takes O(|K|`max +N ′) space.

We show how to construct lfTree in linear time. Let LF Troot = (λ̂1)e1 , . . . , (λ̂m)em . LetH be

the set of integers η (1 ≤ η ≤ m) s.t. there exists a Lyndon word λ̃η satisfying λ̂η � λ̃η � λ̂η+1,

where λ̂m+1 is the empty string ε for convenience.

Lemma 13. Given a sequence I = ((`1, e1), . . . , (`m, em)) of ordered pairs of integers, H can

be computed in O(N ′) time, where N ′ = Σm
i=1`i.

Proof. We compute LF Troot = (λ̂1)e1 , . . . , (λ̂m)em in O(N ′) time by Corollary 1. For each

1 ≤ η ≤ m, we apply Algorithm 2 to λ̂η and compute the lexicographically largest Lyndon

word λ̃η of length |λ̃η| = `η that is lexicographically smaller than λ̂η. If η < m, then we

lexicographically compare λ̃η with λ̂η+1, and η ∈ H only if λ̃η � λ̂η+1. This takes O(`η) time

for each η. If η = m, then m ∈ H only if λ̃m contains at most r = |Σr| distinct characters.

This can be easily checked in O(`m) time. Hence, it takes a total of O(N ′) time for all 1 ≤ η ≤
m.
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Theorem 5. An O(|K|`max +N ′)-size representation of the solution to Problem 4 can be com-

puted in O(|K|`max + N ′) time with O(N ′) extra working space, where |K| is the number of

strings corresponding to a given I , `max = max{`i | 1 ≤ i ≤ m} and N ′ =
∑m

i=1 `i.

Proof. We first check if there is a string over a given alphabet Σk whose Lyndon factorization

corresponds to the input sequence I , in O(N ′) time by Corollary 2. If there exist such strings,

then K = ∅ and thus the theorem holds.

Assume K 6= ∅. The root node root of T is the Lyndon factorization LFwroot
= (λ̂1)e1 , . . . ,

(λ̂m)em , which can be computed in O(N ′) by Corollary 1. Then, we compute the children of

root as follows. For all η ∈ H , we compute all the Lyndon words λ̃η of length |λ̂η| = `η that

satisfy λ̂η � λ̃η � λ̂η+1, over alphabet Σr. Each of these Lyndon words can be computed in

O(`η) = O(`max) time by Lemma 8.

Given a non-root node u = (λj, j), we compute the children of u as follows. If j =

1, then u is a leaf and has no children. Otherwise, we first compute all the Lyndon words

λ′j−1 of length |λ̂j−1| = `j−1 that satisfy λ̂j−1 � λ′j−1 � λj , over alphabet Σr. Then, for all

η ∈ H ∩ {1, .., j − 2}, we compute all the Lyndon words λ′η of length |λ̂η| = `η that satisfy

λ̂η � λ′η � λ̂η+1, over alphabet Σr. Each of these Lyndon words can be computed in O(`max)

time as well.

We can compute H in O(N ′) time by Lemma 13. Since each node can be computed in

O(`max) time as above, the total running time for constructing lfTree is O(|K|`max + N ′). We

need extra O(N ′) working space to store H .

We show the correctness of the algorithm. Clearly, all the children of root are computed

by the above algorithm. Consider any non-root node u = (λj, j) of lfTree. Let Tu be the string

that corresponds to node u. Since λ̂j � λj , if j ≥ 2, then there may exist some Lyndon words

λ′j−1 of length |λ̂j−1| with λ̂j−1 � λ′j−1 � λj . All such Lyndon words over Σr are computed by

the above algorithm. Consider the other children of u. Since the first j − 1 factors of LF Tu are

(λ̂1)e1 , . . . , (λ̂j−1)ej−1 , all the Lyndon words λ′η of length |λ̂η| satisfying λ̂η � λ′η � λ̂η+1 with

η ∈ H ∩{1, ..., j− 2} correspond to the children of u. All these Lyndon words over Σr are also

computed by the above algorithm. This completes the proof.
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3.4 Conclusions

In this chapter, we considered the reverse-engineering problems on Lyndon factorizations. This

work is the first contribution of these problems. In Section 3.1, we presented a linear time

algorithm to compute a string T on an alphabet of the smallest size such that the Lyndon fac-

torization of T can be represented by an input sequence I . In Section 3.2, we also presented

an efficient algorithm to compute only the smallest alphabet size (we do not compute a string

T explicitly). Due to this technique, we can represent a string T which is obtained by our al-

gorithm in O(m) space where m is the number of the Lyndon factorization. In Section 3.3, we

considered an enumerating version of our problem. For this problem, we proposed a compact

representation of all valid strings and an efficient algorithm to compute the representation.

One of the most important points of our algorithms is how to generate the next Lyndon

word of a given length. Duval [31] proposed a linear time algorithm which, given a Lyndon

word, computes the next Lyndon word (i.e., the lexicographical successor) of the same length.

Ours is more general in that it can compute the previous Lyndon word (i.e., the lexicographical

predecessor) of a “given length”, in linear time.

A remaining our interest for the reverse-engineering problem on Lyndon factorization is a

counting version of the problem. Can we compute only the number of strings such that the

Lyndon factorizations can be represented by I without computing all strings explicitly?
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Chapter 4

Lyndon Factorization Algorithm for
Compressed Text

In this chapter, we propose a Lyndon factorization algorithm for a compressed string. We focus

on a grammar compressed string called an SLP as an input string.

4.1 Computing Lyndon Factorization from SLP

The problem we tackle in this chapter is the following.

Problem 5. Given an SLP S representing a string T , compute the Lyndon factorization LF T .

In this section, we show how, given an SLP S of n productions representing string T , we

can compute LF T of size m in O(nh(P (n,N) + Q(n,N) logN) + n3h) time. We will make

use of the following known results:

Lemma 14 ([30]). For any string T , let LF T = λe11 , . . . , λ
em
m . Then, λm = min≺ Suffix (w),

i.e., λm is the lexicographically smallest suffix of T .

Lemma 15 ([71]). Given an SLP S of size n representing a string T of length N , and two

integers 1 ≤ i ≤ j ≤ N , we can compute in O(n) time another SLP of size O(n) representing

the substring T [i..j].

Lemma 16 ([59]). Given an SLP S of size n representing a string T of length N , we can

compute the shortest period of T in O(n2h) time and O(n2) space.

By Lemma 14, Problem 5 is reduced to the following sub-problem:
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Problem 6. Given an SLP S representing a string T , compute the length of the lexicographi-

cally smallest suffix of T .

For any non-empty string w ∈ Σ+, let LFCand(w) = {x | x ∈ Suffix (w), ∃y ∈ Σ+ s.t. xy

= min≺ Suffix (wy)}. Intuitively, LFCand(w) is the set of suffixes of w which are a prefix of

the lexicographically smallest suffix of string wy, for some non-empty string y ∈ Σ+.

The following lemma may be almost trivial, but will play a central role in our algorithm.

Lemma 17. For any two strings u, v ∈ LFCand(w) with |u| < |v|, u is a prefix of v.

Proof. If v[1..|u|] ≺ u, then for any non-empty string y, vy ≺ uy. However, this contradicts

that u ∈ LFCand(w). If v[1..|u|] � u, then for any non-empty string y, vy � uy. However,

this contradicts that v ∈ LFCand(w). Hence we have v[1..|u|] = u.

Lemma 18. For any stringw, let λ = min≺ Suffix (w). Then, the shortest string of LFCand(w)

is λp, where p ≥ 1 is the maximum integer such that λp is a suffix of w.

Proof. For any string x ∈ LFCand(w), and any non-empty string y, xy = min≺ Suffix (wy)

holds only if y ∈ {y′ | λ ≺ min≺ Suffix (y′)}. Let M = {y′ | λ ≺ min≺ Suffix (y′)}.
Firstly, we compare λp with the suffixes x of w shorter than λp, and show that λpy ≺ xy

holds for any y ∈ M . Such suffixes x are divided into two groups: (1) If x is of form λk for any

integer 1 ≤ k < p, then λpy ≺ λky = xy ≺ y holds for any y � λ; (2) If x is not of form λk,

then since λ is border-free, λ is not a prefix of x, and x is not a prefix of λ, either. Thus λ / x

holds, implying that λpy / xy for any y.

Secondly, we compare λp with the suffixes x of w longer than λp, and show that λpy ≺ xy

holds for some y ∈ M . Since λ = min≺ Suffix (w) and |x| > |λp|, x � λp holds. If x . λp, then

λpy ≺ xy. Let x = λku s.t. q ≥ p is the maximum integer such that λk is a prefix of x, and

u ∈ Σ+. By definition, λ ≺ u and λ is not a prefix of u. Choosing y = λk−pu′ with u′ ≺ u, we

have λpy = λku′ ≺ λku = x ≺ xy.

Hence, λp ∈ LFCand(w) and no shorter strings exist in LFCand(w).

By Lemma 14 and Lemma 18, computing the last Lyndon factor λemm of T = val(Xn)

reduces to computing LFCand(Xn) for the last variable Xn. In what follows, we propose a

dynamic programming algorithm to compute LFCand(Xi) for each variable. Firstly we show

the number of strings in LFCand(Xi) is O(logN), where N = |val(Xn)| = |T |.
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Lemma 19. For any string w, let xj be the jth shortest string of LFCand(w). Then, |xj+1| >
2|xj| for any 1 ≤ j < |LFCand(w)|.

Proof. Assume on the contrary that |xj+1| ≤ 2|xj|. If |xj+1| = 2|xj|, then xj+1 = xjxj . There

are two cases to consider: (1) If xjy ≺ y, then xj+1y ≺ xjy. (2) Otherwise, y ≺ xjy. It

means that min≺{xj+1y, y} ≺ xjy for any y, however, this contradicts that xj ∈ LFCand(w).

If |xj+1| < 2|xj|, by Lemma 17, xj is a prefix of xj+1, and therefore xj has a period q such that

xj+1 = ukv and xj = uk−1v, where u = xj[1..q], k ≥ 1 is an integer, and v is a proper prefix of

u. There are two cases to consider: (1) If uvy ≺ vy, then ukvy ≺ uk−1vy = xjy. (2) If vy ≺
uvy, then vy ≺ uvy ≺ u2vy ≺ · · · ≺ uk−1vy = xjy. It means that min≺{ukvy, vy} ≺ xjy for

any y � λ, however, this contradicts that xj ∈ LFCand(w). Hence |xj+1| > 2|xj| holds.

Since xj is a suffix of xj+1, it follows from Lemma 17 and Lemma 19 that xj+1 = xjtxj with

some non-empty string t ∈ Σ+. This also implies that the number of strings in LFCand(w)

is O(logN), where N is the length of T . By identifying each suffix of LFCand(Xi) with

its length, and using Lemma 19, LFCand(Xi) for all variables can be stored in a total of

O(n logN) space.

The following lemma shows a dynamic programming approach to compute LFCand(Xi)

for each variable Xi. We will mean by a sorted list of LFCand(Xi) the list of the elements of

LFCand(Xi) sorted in increasing order of length.

Lemma 20. Let Xi = XlXr be any production of a given SLP S of size n. Provided that sorted

lists for LFCand(Xl) and LFCand(Xr) are already computed, a sorted list for LFCand(Xi)

can be computed in O(P (n,N) +Q(n,N) logN) time and O(S(n,N) + logN) space.

Proof. Let Di be a sorted list of the suffixes of Xi that are candidates for LFCand(Xi). We

initially set Di ← LFCand(Xr).

We process the elements of LFCand(Xl) in increasing order of length. Let x be any string

in LFCand(Xl), and d be the longest string in Di. Since any string of LFCand(Xr) is a prefix

of d by Lemma 17, in order to compute LFCand(Xi) it suffices to lexicographically compare

x · val(Xr) and d. Let L = lcp(x · val(Xr), d)). See also Figure 4.1.

• If (x · val(Xr))[L+ 1] ≺ d[L+ 1], then x · val(Xr) ≺ d. Since any string in Di is a prefix

of d by Lemma 17, we observe that any element in Di that is longer than L cannot be an

element of LFCand(Xi). Hence we delete any element of Di that is longer than L from

Di, then add x · val(Xr) to Di, and update d← x · val(Xr). See also Figure 4.2.
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Figure 4.1: Lemma 20: Initially Di = LFCand(Xr) and L = lcp(x · val(Xr), d) with x being
the shortest string of LFCand(Xl).
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Figure 4.2: Lemma 20: Case where (x · val(Xr))[L+ 1] = α ≺ d[L+ 1] = β. d and any string
in Di that is longer than L are deleted from Di. Then x ·val(Xr) becomes the longest candidate
in Di.

• If (x · val(Xr))[L+ 1] � d[L+ 1], then x · val(Xr) � d. Since x · val(Xr) cannot be an

element of LFCand(Xi), in this case neither Di nor d is updated. See also Figure 4.3.

• If L = |d|, i.e., d is a prefix of x · val(Xr), then there are two sub-cases:

– If |x · val(Xr)| ≤ 2|d|, d has a period q such that x · val(Xr) = ukv and d = uk−1v,
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Figure 4.3: Lemma 20: Case where (x · val(Xr))[L + 1] = α � d[L + 1] = β. There are no
updates on Di.

where u = d[1..q], k ≥ 1 is an integer, and v is a proper prefix of u. By similar

arguments to Lemma 19, we observe that d cannot be a member of LFCand(Xi)

while x · val(Xr) may be a member of LFCand(Xi). Thus we add x · val(Xr) to

Di, delete d from Di, and update d← x · val(Xr). See also Figure 4.4.

X
i
!

X
l 

X
r
!

L 

d!

x! val(X
r
)!

u …! v!u u 
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Figure 4.4: Lemma 20: Case where L = |d| and |x · val(Xr)| ≤ 2|d|. Since x · val(Xr) = ukv
and d = uk−1v, d is deleted from Di and x · val(Xr) is added to Di.

– If |x·val(Xr)| > 2|d|, then both d and x·val(Xr) may be a member of LFCand(Xi).
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Thus we add x · val(Xr) to Di, and update d← x · val(Xr). See also Figure 4.5.
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Figure 4.5: Lemma 20: Case where L = |d| and |x · val(Xr)| > 2|d|. We add x · val(Xr) to
Di, and x · val(Xr) becomes the longest member of Di.

We represent the strings in LFCand(Xl), LFCand(Xr), LFCand(Xi), andDi by their lengths.

Given sorted lists of LFCand(Xl) and LFCand(Xr), the above algorithm computes a sorted

list forDi, and it follows from Lemma 19 that the number of elements inDi is alwaysO(logN).

Thus all the above operations on Di can be conducted in O(logN) time in each step.

By using LCE queries on SLPs, lcp(x · val(Xr), d) can be computed in O(Q(n,N)) time

for each x ∈ LFCand(Xl). Since there exist O(logN) elements in LFCand(Xl), we can

compute LFCand(Xi) in O(P (n,N) + Q(n,N) logN) time. The total space complexity is

O(S(n,N) + logN).

Since there are n productions in a given SLP, using Lemma 20 we can compute LFCand(Xn)

for the last variable Xn in a total of O(n(P (n,N) + Q(n,N) logN)) time. The main result of

this chapter follows.

Theorem 6. Given an SLP S of size n representing a string T , we can compute LF T in

O(nh(P (n,N) + Q(n,N) logN) + n3h) time and O(n2 + S(n,N)) space, where h is the

height of the derivation tree of S.

Proof. Let LF T = λe11 · · ·λemm . First, using Lemma 20 we compute LFCand for all variables

in S in O(n(P (n,N) + Q(n,N) logN)) time. Next we will compute the Lyndon factors from

right to left. Suppose that we have already computed λej+1

j+1 · · ·λemm , and we are computing the
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jth Lyndon factor λejj . Using Lemma 15, we construct in O(n) time a new SLP of size O(n)

describing T [1..|T | −
∑m

k=j+1 ek|λk|], which is the prefix of T obtained by removing the suffix

λ
ej+1

j+1 · · ·λemm from T . Here we note that the new SLP actually has O(h) new variables since

T [1..|T |−
∑m

k=j+1 ek|λk|] can be represented by a sequence ofO(h) variables in S. Let Y be the

last variable of the new SLP. Since LFCand for all variables in S have already been computed,

it is enough to compute LFCand for O(h) new variables. Hence using Lemma 20, we compute

a sorted list of LFCand(Y ) = LFCand(T [1..|T |−
∑m

k=j+1 ek|λk|]) in a total ofO(h(P (n,N)+

Q(n,N) logN)) time. It follows from Lemma 18 that the shortest element of LFCand(Y ) is

λ
ej
j , the jth Lyndon factor of T . Note that each string in LFCand(Y ) is represented by its

length, and so far we only know the total length ej|λj| of the jth Lyndon factor. Since λj is

border free, |λj| is the shortest period of λejj . We construct a new SLP of size O(n) describing

λ
ej
j , and compute |λj| inO(n2h) time using Lemma 16. We repeat the above procedurem times

and use an inequality m ≤ n by [61] (see also Chapter 5), and hence LF T can be computed

in a total of O(n(P (n,N) + Q(n,N) logN) + m(h(P (n,N) + Q(n,N) logN) + n2h)) =

O(nh(P (n,N) + Q(n,N) logN) + n3h) time. To compute each Lyndon factor of LF T , we

need O(n2 + S(n,N)) space for Lemma 16 and Lemma 20. Since LFCand(Xi) for each

variableXi requiresO(logN) space, the total space complexity isO(n2+S(n,N)+n logN) =

O(n2 + S(n,N)).

Using Lemma 3 we can obtain the following corollary:

Corollary 3. Given an SLP of size n representing string T of length N , we can compute LF T

in O(n3h) time and O(n2) space.

4.2 Conclusions

In this chapter, we developed a Lyndon factorization algorithm for a grammar compressed

string. We can compute the Lyndon factorization of a string which is represented by an SLP in

O(nh(P (n,N) +Q(n,N) logN) + n3h) time and O(n2 + S(n,N)) space, where n is the size

of an input SLP S, N is the length of the string derived by S , h is the height of the derivation

tree of S, and P (n,N), S(n,N) and Q(n,N) are the preprocessing time, space and query time

of an LCE data structure, respectively. Our algorithm computes the smallest suffix of a string. If

we want the Lyndon factorization of a string, we only have to use the algorithm recursively. Our
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algorithm is faster than Duval’s algorithm (for an uncompressed string) when the input string is

highly compressed.

We consider the same problem in the next chapter. Our future works for the problem will

state in the next chapter.
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Chapter 5

Faster Lyndon Factorization Algorithms
for Compressed Texts

In this chapter, we propose a faster Lyndon factorization algorithms for an SLP. We also propose

a Lyndon factorization algorithm for an LZ78 compressed strings. This chapter is organized as

follows: In Section 5.1, we give additional notation for this chapter. In Section 5.2, we show

useful properties on strings and Lyndon words. In Section 5.3 and 5.4, we present Lyndon

factorization algorithms for an SLP compressed string and an LZ78 compressed string, respec-

tively.

5.1 Notation

For any string T , let LF T = λp11 · · ·λpmm . Let lfbT (i) denote the position where the i-th Lyndon

factor begins in T , i.e., lfbT (1) = 1 and lfbT (i) = lfbT (i− 1) + |λpi−1

i−1 | for any 2 ≤ i ≤ m. For

any 1 ≤ i ≤ m, let lfsT (i) = λpii λ
pi+1

i+1 · · ·λpmm and lfpT (i) = λp11 λ
p2
2 · · ·λ

pi
i . For convenience,

let lfsT (m+ 1) = lfpT (0) = ε.

5.2 Properties of Strings and Lyndon Words

In this section, we introduce some fundamental properties of strings and Lyndon words which

will be used in our algorithms.

Lemma 21. Let u ∈ Σ+ and v ∈ Σ∗. If v ≺ u∞, then v ≺ u1v ≺ u2v ≺ . . . holds. If v � u∞,

then v � u1v � u2v � . . . holds.
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Proof. We only show the former statement, as the latter can be shown similarly. It suffices to

show v ≺ uv, since then for any positive integer k, ukv ≺ uk+1v holds. If v � u, then clearly

v ≺ uv. If v � u, then let x = lcp(v, u∞). Since u ≺ v ≺ u∞, |x| ≥ |u| holds. Let j be the

maximum integer such that uj is a prefix of x, and let v = ujw. Since v ≺ u∞, we have w ≺ u,

and therefore v = ujw ≺ uj+1 ≺ uj+1w = uv.

Lemma 22 ([30]). For any 1 ≤ i < m, LF T = LF lfpT (i)LF lfsT (i+1).

The following lemmas are essentially the same as what Duval’s algorithm is founded on but

are tailored for explaining our algorithm.

Lemma 23. Let j > 1 be any position of a string T such that T ≺ T [i..|T |] for any 1 < i ≤ j.

Then, T ≺ T [k..|T |] also holds for any j < k ≤ j + lcp(T, T [j..|T |]).

Proof. Let h = lcp(T, T [j..|T |]). There are two cases:

• When j > h+1: Since T ≺ T [j..|T |], T [h+1] ≺ T [j+h]. Hence, T ≺ T [k−j+1..|T |] ≺
T [k..|T |] holds for any j < k ≤ j + lcp(T, T [j..|T |]).

• When j ≤ h+1: Since T = T [1..h]T [h+1..|T |] ≺ T [j..|T |] = T [j..j+h−1]T [j+h..|T |],
we have that T [h+ 1] ≺ T [j + h]. Noting that T [1..j + h− 1] has period q = j − 1, we

have that T [k..j + h− 1] = T [k− q..j + h− q − 1] = · · · = T [i..i+ j + h− k− 1] and

thus T [k..j + h] � T [k − q..j + h − q] = · · · = T [i..i + j + h − k] where i = k − pq,
p ≥ 1, 1 < i ≤ j. The lemma follows since T ≺ T [i..|T |].

Lemma 24. It holds that |λ1| = ĵ−1 and p1 = 1+bĥ/|λ1|c, where ĵ = min{j | w � T [j..|T |]}
and ĥ = lcp(T, T [ĵ..|T |]).

Proof. For any 1 < k ≤ ĵ − 1, let hk = lcp(T, T [k..|T |]). By definition of ĵ we have T ≺
T [k..|T |], and also k+hk ≤ ĵ−1 due to Lemma 23. Thus, T [hk+1..ĵ−1] ≺ T [k+hk..ĵ−1] and

therefore T [1..ĵ−1] = T [1..hk]T [hk+1..ĵ−1] ≺ T [k..k+hk−1]T [k+hk..ĵ−1] = T [k..ĵ−1],

for all 1 < k ≤ ĵ − 1, indicating that λ̂1 = T [1..ĵ − 1] is a Lyndon word. Next, suppose that

there exists a Lyndon word λ = T [1..|λ|] such that |λ| > |λ̂1|. By definition of ĵ and ĥ, either

ĵ + ĥ = n + 1 or T [1 + ĥ] � T [ĵ + ĥ], thus, λ must be a prefix of T [1..ĵ + ĥ − 1]. However,

since T [1..ĥ] = T [ĵ..ĵ + ĥ− 1], λ has period |λ̂1| and thus is not border-free, contradicting that

λ is a Lyndon word. Hence, from Lemma 2, λ̂1 = λ1. It is easy to see that p1 = 1 + bĥ/|λ1|c,
and the lemma follows.
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Thus, computing the first Lyndon factor reduces to computing ĵ and ĥ. From a definition of

Lyndon words and Lemma 24, the following lemma holds.

Lemma 25. For any 1 ≤ i ≤ m and 1 ≤ j < lfbT (i), T [j..|T |] � lfsT (i).

5.3 Computing Lyndon Factorization from SLP

Here, we present a faster algorithm to compute Lyndon factorization of a string represented by

an SLP. Our algorithm employs the following lemma which is used in parallel algorithms to

compute Lyndon factorization of an uncompressed string. Below, let LF u = up11 · · ·upmm and

LF v = vq11 · · · v
qm′
m′ for u, v ∈ Σ+.

Lemma 26 ([1, 26]). LF uv = up11 . . . upcc z
kv

qc′
c′ . . . v

qm′
m′ for some 0 ≤ c ≤ m, 1 ≤ c′ ≤ m′ + 1

and LF lfsu(c+1)lfpv(c′−1) = zk.

This lemma implies that we can obtain LF uv from LF u and LF v by computing the medial

Lyndon factor zk since the other Lyndon factors remain unchanged in uv, see Figure 5.1.

LF
u 

LF
v 

zk!

LF
uv 

Figure 5.1: This is a conceptual diagram of Lemma 26.

5.3.1 How to compute the medial Lyndon factor zk

Unfortunately, the algorithm for computing zk given in the proof of Theorem 2.2 of [26], ap-

pears to be incorrect.

Here is a counter example: Consider two strings u = abc|abbb|ab and v = bcc|bc|b|abc|
abb|ab|a, where | denotes the boundary of Lyndon factors. To compute the Lyndon factorization

of uv, the right-extension procedure of [26] extends the last Lyndon factor ab of u to the right,
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and obtains string abbccbcbabcabb. Then, the left-extension procedure extends this string to

the left, and obtains string y = abbbabbccbcbabcabb. Theorem 2.2 of [26] claims that this

string y must be the medial Lyndon factor of uv that crosses the boundary of u and v, but clearly

y is not a Lyndon word.

In the sequel, we present several combinatorial properties from which a correct and efficient

algorithm to compute the medial Lyndon factor zk follows.

Let γu be the minimum integer such that lfsu(i + 1) is a prefix of ui for any γu ≤ i ≤ m

(see also Example 5).

Lemma 27. For any 1 ≤ j < γu, uj . lfsu(j + 1).

Proof. Since we have lfsu(j) � lfsu(j + 1) from Lemma 25, we only have to show that

lcp(uj, lfsu(j + 1)) < min{|uj|, |lfsu(j + 1)|}. Note that uj is not a prefix of lfsu(j + 1) since

otherwise the j-th Lyndon factor should extend to the right with at least another occurrence

of uj . It follows from the definition of γu that lfsu(γu) is not a prefix of uγu−1, and hence

uγu−1 . lfsu(γu) holds. If we assume on the contrary that lfsu(j + 1) is a prefix of uj for some

1 ≤ j < γu − 1, since lfsu(γu) appears before the (γu − 1)-th Lyndon factor, there exists a

suffix u[i..|u|] = lfsu(γu)z of u with i < lfbu(γu − 1). It follows from uγu−1 . lfsu(γu) that

u[i..|u|] = lfsu(γu)z / uγu−1 ≺ lfsu(γu − 1), which contradicts Lemma 25.

We define the set of significant suffixes Γu of u as Γu = {lfsu(i) | γu ≤ i ≤ m}. It is clear

from the definition of Lyndon factorization and γu that for any γu ≤ i ≤ m, ui = lfsu(i+1)yi for

some non-empty string yi. Let xi denote the suffix of u of length |ui|. Note that xi = yilfsu(i+1)

and lfsu(i) = upii lfsu(i+ 1) = (lfsu(i+ 1)yi)
pi lfsu(i+ 1) = lfsu(i+ 1)xpii .

Example 5. If u = ababbabababbababa, then LF u = ababb|abababb|abab|a. Thus γu = 2

and Γu = {abababbababa, ababa, a}. Also, y2 = bb, y3 = bab, y4 = a, x2 = bbababa,

x3 = baba and x4 = a.

Lemma 28. For any string u, |Γu| = O(log |u|).

Proof. Straightforward, since |lfsu(i)| > 2|lfsu(i+ 1)| for any γu ≤ i ≤ m.

Lemma 29. For any γu ≤ i < m, yi . x∞i+1.
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Proof. Since ui = lfsu(i + 1)yi = (lfsu(i + 2)yi+1)pi+1 lfsu(i + 2)yi, if we assume that

yi = x∞i+1[1..|yi|] = (yi+1lfsu(i+2))∞[1..|yi|] we get a contradiction that ui has period |lfsu(i+
2)yi+1|. Also, if yi ≺ x∞i+1[1..|yi|], ui+1[1 + |lfsu(i+ 2)yi+1|..|ui+1|] ≺ ui+1 holds, a contradic-

tion.

From Lemma 29, we get x∞γu−1 � yγu � x∞γu+1 � yγu+1 � · · · � x∞m−1 � ym−1 � x∞m =

u∞m , where we assume for convenience that x∞γu−1 = ω∞ (ω is the lexicographically largest

character in Σ).

Now let us see what happens to the lexicographical order of suffixes of u when extending

them by appending v.

Lemma 30. If sv = min≺{s′v | s′ ∈ Suffix (u)}, then s ∈ Γu.

Proof. We show for any s ∈ (Suffix (u)− Γu), sv 6= min≺{s′v | s′ ∈ Suffix (u)}.

• If s 6= uki lfsu(i + 1) with 1 ≤ k ≤ pi, namely, s = turi lfsu(i + 1) with 1 ≤ i ≤ m and

0 ≤ r < pi, where t is a proper suffix of ui. It follows from the definition of Lyndon word

t . ui, and hence, sv 6= min≺{s′v | s′ ∈ Suffix (u)}.

• If s = uki lfsu(i + 1) with 1 ≤ k < pi. From Lemma 21, sv � min≺{u0
i lfsu(i +

1)v, upii lfsu(i+ 1)v}. Therefore, sv 6= min≺{s′v | s′ ∈ Suffix (u)}.

• If s = lfsu(i) /∈ Γu. From Lemma 27, s . lfsu(i + 1). Therefore, sv /∈ min≺{s′v | s′ ∈
Suffix (u)}.

Lemma 31. If x∞i−1 � v � x∞i with γu ≤ i ≤ m, lfsu(i)v = min≺{sv | s ∈ Suffix (u)}, and

lfsu(1)v � · · · � lfsu(i− 1)v � lfsu(i)v ≺ lfsu(i+ 1)v ≺ · · · ≺ lfsu(m+ 1)v holds.

Proof. By Lemma 27, lfsu(1)v . . . . . lfsu(γw − 1)v . uγuv. By Lemma 29, x∞j � v and

also lfsu(j + 1)x∞j = u∞j � lfsu(j + 1)v hold for any γu ≤ j < i, and hence, it follows

from Lemma 21 that lfsu(j)v = u
pj
j lfsu(j + 1)v � lfsu(j + 1)v. Also, since v � x∞j′ for any

i ≤ j′ ≤ m, lfsu(j
′)v ≺ lfsu(j

′+ 1)v holds. Therefore, we get lfsu(1)v � · · · � lfsu(i− 1)v �
lfsu(i)v ≺ lfsu(i + 1)v ≺ · · · ≺ lfsu(m)v holds. It is clear from Lemma 30 that lfsu(i)v is the

lexicographically smallest string in {sv | s ∈ Suffix (u)}.

We can compute the medial Lyndon factor as follows:
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Lemma 32. Given LF u = up11 · · ·upmm and LF v = vq11 · · · v
qm′
m′ for u, v ∈ Σ+, we can compute

LF uv = up11 · · ·upcc zkv
qc′
c′ · · · v

qm′
m′ by O(logm+ logm′) lexicographical string comparisons.

Proof. Clearly, it holds that LF uv = LF uLF v if um � v1, and that LF uv = up11 · · ·u
pm−1

m−1 u
pm+q1
m

vq22 · · · v
qm′
m′ if um = v1. In what follows we consider the case when um ≺ v1. Note that v � u∞m

holds in this situation.

First, we compute integer j such that 1 ≤ j ≤ m + 1 and lfsu(j)v = min≺{sv | s ∈
Suffix (u)}. From Lemma 31, for any 1 ≤ i ≤ m, j ≤ i iff lfsu(i)v ≺ lfsu(i + 1)v. Hence

we can find j by binary search which requires O(logm) lexicographical string comparisons.

Next, we compute j′ = min{j′′ | 1 ≤ j′′ ≤ m′, lfsu(j)v � lfsv(j
′′ + 1)}. Since lfsv(1) �

lfsv(2) � . . . � lfsv(m
′ + 1), j′ can be found by O(logm′) lexicographical string comparisons

with binary search.

We show z = lfsu(j)lfpv(j
′) is the first decomposed Lyndon factor of lfsu(j)v. By defini-

tion of j, for any position i with lfbu(j) < i ≤ |u|, lfsu(j)v ≺ (uv)[i..|uv|]. Since lfsu(j)v ≺
lfsv(j

′), it follows from Lemma 25 that for any |u| < i < |u| + lfbv(j
′), lfsu(j)v ≺ lfsv(j

′) ≺
(uv)[i..|uv|]. Next we show vj′ is not a prefix of lfsu(j)v. Assume on the contrary that

lfsu(j)v = vj′t. The beginning position of t in uv is at most |u|+ lfbv(j
′) since the occurrences

of vj′ cannot overlap, and hence lfsu(j)v ≺ t. Since lfsu(j)v = vj′t ≺ lfsv(j
′), lfsu(j)v ≺

t ≺ v
qj′−1

j′ lfsv(j
′ + 1). Applying this deduction qj′ times, we get lfsu(j)v ≺ t ≺ lfsv(j

′ + 1), a

contradiction. Thus, lfsu(j)v / vj′ � (uv)[i..|uv|] for any |u|+ lfbv(j
′) ≤ i < |u|+ lfbv(j

′+ 1).

Since |u|+ lfbv(j
′ + 1) is the first position where the suffix becomes lexicographically smaller

than lfsu(j)v, the claim follows from Lemma 24.

Finally, we show uj−1 � z. Assume on the contrary that uj−1 ≺ z. By Lemma 1 uj−1z is a

Lyndon word, which implies uj−1z /z. This contradicts lfsu(j)v = min≺{s′v | s′ ∈ Suffix (u)}
due to uj−1lfsu(j)v / lfsu(j)v.

The above procedure correctly computes the decomposed Lyndon factorization of uv. The

exponent of z can be computed by checking if uj = z and/or uj′+1 = z and packing them

together if needed. Hence the total number of lexicographical string comparisons is O(logm+

logm′).

5.3.2 Algorithm

Given an SLP S of size n, we process each production Xi → XlXr in increasing order of i, and

compute LFXi from LFXl and LFXr using dynamic programming. We use Lemma 32 to com-
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pute the medial Lyndon factor for each variable Xi. In the final stage where i = n, we obtain

the Lyndon factorization LFXn = LF T for the uncompressed string T . Using Lemma 32, LFXi

can be computed by O(logml + logmr) string comparisons, where ml and mr are respectively

the number of Lyndon factors in LFXl and LFXr .

In order to bound the size of the Lyndon factorization for SLPs we can show the following

lemma.

Lemma 33. Let n be the size of any SLP representing a string T . The size m of the Lyndon

factorization of T is at most n.

Proof. It follows from Lemma 26 that every production introduces at most one new Lyndon

factor, that is, the medial Lyndon factor. Hence LF T consists of at most n distinct Lyndon

words. Since all Lyndon factors in LF T are distinct, the statement holds.

We are ready to show the main result of this section.

Theorem 7. Given an SLP of size n representing string T of length N , we can compute LF T

in O(n2 + P (n,N) +Q(n,N)n log n) time and O(n2 + S(n,N)) space.

Proof. By Lemmas 32, 33 and an LCE data structure, for each production Xi → XlXr we can

compute LFXi in O(Q(n,N) log n) time, provided that LFXl and LFXr are already computed.

Using a dynamic programming method, this takes a total of O(Q(n,N)n log n) time. The

space complexity for this dynamic programming is O(n2) since for each variable Xi we have

to store at most n beginning positions of the Lyndon factors of Xi. Putting these and the pre-

processing costs of an LCE data structure together, we conclude that our algorithm takes a total

of O(n2 + P (n,N) +Q(n,N)n log n) time and O(n2 + S(n,N)) space.

Using Lemma 3 we can obtain the following corollary:

Corollary 4. Given an SLP of size n representing string T of length N , we can compute LF T

in O(n2 + n log n logN) time and O(n2) space.

Lemma 34. We can pre-process, in O(n2 + P (n,N) + Q(n,N)n log n) time and O(n2 +

S(n,N)) space, an SLP of size n and height h describing string T of length N so that the

following query can be answered in O(h(n+Q(n,N) log n)) time: given an interval [b, e] with

1 ≤ b ≤ e ≤ N , compute LF T [b..e].

By Lemma 34, we can compute the Lyndon factorization of a query substring of T , without

decompression. Lemma 34 is more efficient than applying Theorem 7 to an SLP describing

substring T [b..e].
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5.4 Computing Lyndon Factorization from LZ78

In this section, we show how, given an LZ78 encoding of string T , we compute the Lyndon

factorization LF T = λp11 · · ·λpmm of T . At a high level, our algorithm is based on Duval’s

algorithm [30] which computes the Lyndon factorization of a given string T of length N in

O(N) time by scanning T from left to right.

From Lemma 23 and Lemma 24, we can compute the first Lyndon factor by initializing

j ← 2 and executing the following: 1) compute h← lcp(T, T [j..|T |]). 2) if T [1+h] ≺ T [j+h],

set j ← j+h+1 and go back to Step 1); otherwise, output |λ1| ← j−1 and p1 ← 1+bh/|λ1|c.
Let ĵ and ĥ denote the last values of j and h, respectively. Duval’s algorithm computes

h ← lcp(T, T [j..|T |]) by character comparisons, and it takes a total of O(ĵ + ĥ) time. Note

O(ĵ + ĥ) = O(|λ1|p1) since ĵ + ĥ < |λ1|p1 + |λ1|. By Lemma 22, we can compute the second

Lyndon factor by executing the above procedure with the remaining string T [1+|λ1|p1..|T |]. By

applying this recursively, the Lyndon factorization of T can be computed in O(
∑m

i=1 |λi|pi) =

O(|T |) time.

In Section 5.4.3, we show how to simulate, inO(s log s) time and space, the above algorithm

on the LZ78 encoding of size s. The key ideas to achieve this are summarized as follows:

• Let us call a substring of an LZ78 factor LZ-block. After pre-processing LZ78 factors

in O(s) time, we can check, given two equivalent-length LZ-blocks, if they are the same

string or not in constant time (see Section 5.4.1).

• A major difference between our algorithm and Duval’s lies in how we reset j when T [1 +

h] ≺ T [j + h] happens. While Duval’s algorithm sets j ← j + h + 1, our algorithm

skips some positions by utilizing the fact that the LZ78 factor fk appears before, where

T [j + h] is in the i-th LZ78 factor with the form fi = fka (see Section 5.4.2).

• We can represent T by a sequence of LZ-blocks (trivially by LZ78 factorization itself).

During the computation, our algorithm occasionally finds consecutive LZ-blocks that can

be replaced by a single LZ-block, and greedily restructure it. The restructuring shrinks

the number of LZ-blocks involved in the future LZ-block wise matching, and makes our

analysis possible. This kind of technique has been employed in efficient algorithms on

LZ78-compressed strings [41, 45, 2].
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5.4.1 LZ-block wise matching

Given the LZ78 encoding of size s corresponding to a string T , we can build the LZ78 trie

LZtrieT in O(s) time. For any LZ78 factor v, let v denote the corresponding node of LZtrieT .

We use the following data structures LAQ and LCS:

Lemma 35 (Level Ancestor Query (LAQ) [7]). We can pre-process a given rooted tree in linear

time and space so that the i-th node in the path from any node to the root can be found in O(1)

time for any i ≥ 0, if such exists.

The suffix tree of a reversed trie can be constructed in linear time [85]. Combined with the

constant-time LCA data structure [7], we obtain the following:

Lemma 36 (Longest Common Suffix (LCS)). We can pre-process a given trie in linear time

and space so that the length of the longest common suffix of any two strings in the trie can be

answered in O(1) time.

Using LAQ, given a node v of the LZ78 trie LZtrieT , we can access any position of the

corresponding LZ78 factor v in O(1) time.

Let u be an LZ-block, i.e., a substring of some LZ78 factor of T . Since any node of LZtrieT

corresponds to an LZ78 factor, there exists at least one node v of the trie s.t. u is a suffix of v.

Such node v is called a handler of u. Then u can be represented by a pair (v, |u|), in constant

space. Let ρ(u) and ρ(u) denote a handler of u and its corresponding LZ78 factor, respectively.

For any LZ-block u and 1 ≤ i ≤ j ≤ |u|, u[i..j] is also an LZ-block and its handler can be

computed from ρ(u) in O(1) time by using LAQ, i.e., when we write u′ ← u[i..j], it means we

compute ρ(u′) as the (|u| − j)-th ancestor of ρ(u). Using LCS, we can check the equality of

two given LZ-blocks u and u′ of the same length in O(1) time. lcp(u, u′) can be computed in

O(log |u|) time by a binary search and finding the position where the first mismatch occurs.

5.4.2 Skipping insignificant suffixes that appear before

We use the following Lemma.

Lemma 37. Let T be non-empty string such that T = xvyvz with v ∈ Σ+ and x, y, z ∈ Σ∗. If

|xvy| < lfbT (k) ≤ |xvyv| for some k, then lfbT (k) ∈ {|xvy| + lfbv(j) | γv ≤ j ≤ m′}, where

LF v = vq11 · · · v
qm′
m′ .
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Proof. By Lemma 26, lfbT (k) ∈ {|xvy| + lfbv(j) | 1 ≤ j ≤ m′}. On the contrary, assume

lfbT (k) = |xvy| + lfbv(j) with j < γv. By Lemma 27, lfsv(j) . lfsv(γv) and T [|xvy| +

lfbv(j)..|T |] . T [|x|+ lfbv(γv)..|T |], a contradiction due to Lemma 25.

Thanks to Lemma 37, when a string u appears multiple times without overlapping, we can

utilize Γu to skip some suffix comparisons of Duval’s algorithm.

Also, we can compute Γu for all LZ78 factors u efficiently.

Lemma 38. Given the LZ78 encoding of size s of a string T , we can compute Γfk for all LZ78

factors fk, 1 ≤ k ≤ s, in a total of O(s log s) time and space.

Proof. It follows from |fk| ≤ s and Lemma 28 that |Γfk | = O(log s) for any 1 ≤ k ≤ s. We

consider an LZ78 factor fk = fha, where 1 ≤ h < k ≤ s and a ∈ Σ, and show how to compute

LF lfsfk
(γfk ) from LF lfsfh

(γfh ) in O(log s) time.

Note that LF fk = LF lfpfh
(γfh−1)LF lfsfh

(γfh )a holds from Lemmas 32 and 27. Moreover

γfh ≥ γfk , and hence, we do not need the information of LF lfpfh
(γfh−1) to compute LF lfsfk

(γfk ).

We can use a simplified version of the algorithm of Lemma 32 to compute Lyndon factorization

of lfsfh(γfh)a by O(log log s) lexicographical string comparisons. Since lfsfh(j) is a proper

prefix of lfsfh(i) for any γfh ≤ i < i′ ≤ m, it suffices to compare lfsfh(i)[|lfsfh(i′)| + 1] and

a in order to compare lfsfh(i)a and lfsfh(i′)a, which can be done in O(1) time by using a data

structure of LAQ (see Lemma 35). Let LF lfsfh
(γfh )a = xp11 · · ·xpmm . Since m = O(log s), we

useO(log s) time and space to store LF lfsfh
(γfh )a. Next we get LF lfsfk

(γfk ) from LF lfsfh
(γfh )a by

discarding xp11 . . . x
pj
j of LF lfsfh

(γfh )a, where j is the largest integer such that xj+1
j+1 is not a prefix

of xj . Such j can be found by binary search, requiring O(log log s) string comparisons. Again

each comparison can be done in O(1) time by using the fact that lfsfh(j) is a proper prefix of

lfsfh(i) for any γfh ≤ i < i′ ≤ m.

Hence we can compute Γfk for all LZ78 factors fk in a total of O(s log s) time and space.

5.4.3 Algorithm

Any substring of T can be represented by a sequence of LZ-blocks. Our algorithm to compute

the first Lyndon factor of T maintains a sequence of LZ-blocks representing T by a dynamic

linked list K , which is initially set to the LZ78 factorization of T itself but is restructured

during the computation. After computing the leftmost Lyndon factor, we will also modify K
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Algorithm 4: Algorithm to compute the first Lyndon factor.
Input: The linked list of LZ-blocks K initialized to the sequence of the LZ78 factors of

T .
Output: The first Lyndon factor λp11 of strK .
// Variables u, u′, v, v′, x and y are LZ-blocks and manipulated

via handlers.
1 u← K .first; v ← u[2..|u|];
2 cu ← 0; cv ← 0;
3 j ← 2; h← 0;
4 while true do
5 if u = ε then u← next(u);
6 if v = ε then v ← next(v);
7 if v is an LZ78 factor which is used for the first time then
8 x← K .first; y ← K .second;
9 v′ ← the longest member in Γv ∪ {ε} s.t. (xy)[1..|v′|] = v′;

10 if |x|+ 1 = |v′| then
11 restructure the first LZ-block to be v′, and reset u and/or v if needed;

12 d← min{|u|, |v|};
13 u′ ← u[1..d]; u← u[d+ 1..|u|];
14 v′ ← v[1..d]; v ← v[d+ 1..|v|];
15 if u′ = v′ then
16 h← h+ d;
17 if u = ε & cu ≥ 2 then
18 restructure the last two LZ-blocks before u to be a single LZ-block;

19 if v = ε & cv ≥ 2 then
20 restructure the last two LZ-blocks before v to be a single LZ-block;

21 if u = ε & v = ε then cu ← 1; cv ← 1;
22 else if u = ε then cu ← cu + 1; cv ← 0;
23 else if v = ε then cv ← cv + 1; cu ← 0;

24 else
25 h′ ← lcp(u′, v′);
26 if u′[1 + h′] � v′[1 + h′] then h← h+ h′; break;

// Below u′[1 + h′] ≺ v′[1 + h′]. Reset j by Lemma 37.
27 cu ← 0; cv ← 0;
28 x← K .first;
29 v′ ← the longest member in Γv[1..|v|−1] ∪ {ε} s.t. x[1..|v′|] = v′;
30 j ← the position in strK where the v′ begins if v′ 6= ε, the position where the v

ends otherwise;
31 h← |v′|; u← x[1 + h..|x|]; v ← v[|v|];

32 output |λ1| ← j − 1 and p1 ← 1 + bh/|λ1|c;
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to represent the remaining suffix of T in order to compute the remaining Lyndon factors. Let

strK denote the string represented by K . For any positions i ≤ j of strK , let #K [i, j] denote

the number of LZ-blocks used to represent strK [i..j].

A pseudo-code of our algorithm is shown in Algorithm 4, which simulates Duval’s algorithm

to compute the first Lyndon factor of T on K .

The algorithm initializes j ← 2 and h ← 0, then starts with computing lcp(T, T [j..|T |]).

Here, variables u and v are used for showing LZ-blocks which describe prefixes of T [1+h..|T |]
and T [j+h..|T |], respectively, where variable h shows that currently T [1..h] and T [j..j+h−1]

match. We can see at Lines 12-16 that the algorithm computes lcp(T, T [j..|T |]) by block-to-

block comparisons, namely, the prefixes of length d = min{|u|, |v|} of u and v are cut out to

LZ-blocks u′ and v′, and compared at Line 15. If u′ = v′, we set h ← h + d and continue

matching the following LZ-blocks.

When we face LZ-blocks u′ and v′ that have a mismatch, we compute h′ ← lcp(u′, v′) by

binary search at Line 25. At this moment h ← h + h′ is equal to lcp(T, T [j..|T |]), and T and

T [j..|T |] mismatch with u′[1 + h′] and v′[1 + h′]. If u′[1 + h′] � v′[1 + h′], we have done the

computation as Duval’s algorithm does.

When we reset j after u′[1 + h′] ≺ v′[1 + h′] happens, we skip some positions by utilizing

Γv[1..|v|−1] in light of Lemma 37. Let fi = fkv[|v|] = ρ(v), i.e., we are processing the i-th LZ78

factor. Since fk is an LZ78 factor appearing before fi, we can use Lemma 37, i.e., we only

have to consider the positions where significant suffixes of fk begin. Moreover, at Lines 8-11

we have maintained the first LZ-block x of K to be the longest member in
⋃i
i′=1 Γfi′ that is

also a prefix of T . Since x[1..|v′|] � v′ for any v′ ∈ Γfk , we can notice that x[1..|v′|] ≺ v′ if

x[1..|v′|] 6= v′, and hence we are able to skip such positions. Then we set j to be the beginning

position of the longest member v′ ∈ Γfk with x[1..|v′|] = v′ if such exists, otherwise the ending

position of v, and restart suffix competition.

As for the maintenance of the first LZ-block of K at Lines 8-11, since any LZ78 factor has

form fi = fka with 1 ≤ k < i ≤ s and a ∈ Σ, the length of the longest member in
⋃i
i′=1 Γfi′

that is also a prefix of T increases at most one when processing the new LZ78 factor. Hence the

procedures at Lines 8-11 works fine as far as the first LZ-block has maintained properly.

The following is the main theorem of this section.

Theorem 8. Given the LZ78 encoding of size s for string T , we can compute LF T in O(s log s)

time and space.

50



CHAPTER 5. FASTER LYNDON FACTORIZATION ALGORITHMS FOR COMPRESSED TEXTS

Proof. We compute the Lyndon factorization of T from left to right using Algorithm 4 recur-

sively. We pre-process in O(s) time and space for data structures LAQ and LCS on LZtrieT .

We also compute Γfi for all LZ78 factors fi in O(s log s) time and space by Lemma 38.

During the whole computation, for any LZ78 factor fi we execute Lines 8-11 just once.

Since |Γfi | = O(log s) it takes in total of O(s log s) time. In what follows, we consider the cost

other than that comes from Lines 7-11.

Let K1 denote the linked list of the sequence of the LZ78 factors of T . We show that

Algorithm 4 computes, given K1, the first Lyndon factor of T in O(µ1 log s + η1) time, where

ĵ1 and ĥ1 are respectively the last values of j and h when algorithm halts, and µ1 = #K1 [1, ĵ1]

and η1 = #K1 [1, ĵ1 + ĥ1].

Firstly, let us estimate the total cost for the if-control of Line 15. Let t, t′ and t′′ be the

numbers we execute Lines 21, 22 and 23, respectively. When we enter the if-control, any one of

them must be executed. Here note that next(v) is executed at most η1. Since next(v) must be

executed just after either Line 21 or Line 23 is executed, t+ t′′ ≤ η1. In addition, if we execute

Line 22 more than three consecutive times Line 18 reduces the number of LZ-blocks in K1, and

hence t′ ≤ 3η1. Since the unit cost of the if-control is O(1), the total cost for the if-control is

O(t + t′ + t′′) = O(η1). Next, the else-control of Line 24 is executed O(µ1) times since we

either halt the computation at Line 26, or reset j to be in the last LZ-block we are processing at

Line 30 and j will get over that LZ-block when Line 30 is executed next time. Since Line 25

and Line 29 take O(log s) time, the cost for the else-control is O(µ1 log s) in total. Hence the

first Lyndon factor of T can be computed in O(µ1 log s+ η1) time.

After computing the first Lyndon factor, we modify K1 to K2 which represents the remaining

suffix of T , i.e., we discard the LZ-blocks representing T [1..|λ1|p1]. Also we maintain its first

block to be the longest member in
⋃i
i′=1 Γfi′ , where fi is the last LZ78 factor we have processed.

The modification takes O(η1) time.

Then we use Algorithm 4 to compute the second Lyndon factor of T , i.e., the first Lyndon

factor of strK2 . The computation takes O(µ2 log s+ η2) time, where ĵ2 and ĥ2 are respectively

the last values of j and h when algorithm halts, and µ2 = #K2 [1, ĵ2] and η2 = #K2 [1, ĵ2 + ĥ2].

We iterate this procedure until we get the last Lyndon factor λpmm of T . The sum of the cost is

O(
∑m

i=1 µi log s +
∑m

i=1 ηi). Since lfbT (i) + ĵi ≤ lfbT (i + 1) for any 1 ≤ i < m,
∑m

i=1 µi =

O(
∑m

i=1 #Ki [1, ĵi]) = O(#K1 [1, |T |]) = O(s), and hence O(
∑m

i=1 µi log s) = O(s log s).

The final concern is how we can analyze
∑m

i=1 ηi = O(s). Since the substrings of T consid-

ered in each iteration are overlapped, e.g., T [1..ĵ1 + ĥ1] and T [lfbT (2)..lfbT (2) + ĵ2 + ĥ2 − 1]
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are overlapped at most |λ1|, we cannot conclude immediately that
∑m

i=1 ηi = O(#K1 [1, |T |]) =

O(s). However, we can charge the cost from the overlapped LZ-blocks to the previous LZ-

blocks thanks to the restructuring at Line 20. For example, when T [1..ĵ1+ĥ1] and T [lfbT (2)..|T |]
are overlapped (i.e., lfbT (2) = |λ1|p1+1 ≤ ĵ1+ĥ1), #K2 [1, ĵ1+ĥ1−|λ1|p1] = O(#K1 [lfbT (2)−
|λ1|, ĵ1 + ĥ1− |λ1|]) holds (see also Figure 5.2). Hence,

∑m
i=1 ηi = O(2

∑m
i=1 #Ki [1, |λi|pi]) =

O(2#K1 [1, |T |]) = O(s).

Therefore the statement holds.

a

b

b

h1

w

j1

^
h1

^

restructured LZ-blocks

^

Figure 5.2: Illustration for Theorem 8. We compute ĵ1 and ĥ1 by LZ-block wise comparisons.
In this picture, p1 = 1 and lfbT (2) = |λ1|p1 + 1 = ĵ1. Then T [1..ĵ1 + ĥ1] and T [lfbT (2)..|T |]
overlap by ĥ1 characters. As a result of restructuring at Line 20, the number of the restructured
LZ-blocks representing T [ĵ1..ĵ1 + ĥ1] is upper bounded by O(#K1 [ĵ1 − |λ1|, ĵ1 + ĥ1 − |λ1|]),
and hence #K2 [1, ĵ1 + ĥ1 − |λ1|p1] = O(#K1 [ĵ1 − |λ1|, ĵ1 + ĥ1 − |λ1|]).

5.5 Conclusions

In this chapter, we developed Lyndon factorization algorithms for compressed strings again.

Firstly, we presented an algorithm to compute the Lyndon factorization of a grammar com-

pressed string. Our algorithm runs in O(n2 + P (n,N) + Q(n,N)n log n) time and O(n2 +

S(n,N)) space. This algorithm is faster than the algorithm presented in Chapter 4. Secondly,

we presented an algorithm to compute the Lyndon factorization of an LZ78 compressed string.

This algorithm works in O(s log s) time and space where s is the size of the LZ78 factorization.

In this chapter, we showed an independent result that the size of the Lyndon factorization, for

any string, is a lower bound of the size of the smallest grammar. This result led to the problem

which is considered in Chapter 6.

Our question for this problem are the following:

• Can we compute the Lyndon factorization of an SLP compressed string more efficiently?
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• Can we compute the Lyndon factorization of an LZ78 compressed string in O(s) time

with O(s log s) space?

• Can we make an efficient algorithm for other compressed strings?
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Chapter 6

On the Size of Lempel-Ziv and Lyndon
Factorizations

In this chapter, we study relations between Lyndon factorizations and non-overlapping LZ77

factorizations. We present an upper bound and a lower bound of the size of Lyndon factoriza-

tions by using the size of LZ77 factorizations.

6.1 Notation

We consider finite strings over an alphabet Σ = {c1, . . . , cσ}, which is linearly ordered: c1 ≺
c2 ≺ · · · ≺ cσ. A factor u may be equal to several substrings of T , referred to as occurrences of

u in T .

A string u over Σ is lexicographically smaller than a string v (denoted by u � v) if either u

is a prefix of v or u = xaw1, v = xbw2 for some strings x,w1, w2 and some letters a ≺ b. In

the latter case, we refer to this occurrence of a (resp., of b) as the mismatch of u with v (resp.,

of v with u).

6.2 Upper Bound

The aim of this section is to prove the following theorem.

Theorem 9. Let LF T = λe11 · · ·λemm and LZ77 T = g1 · · · gt. For any string T , m < 2t holds.

Let us fix an arbitrary string T and relate all notation (λi, ei,Λi, gi,m, t) to T . The main

line of the proof is as follows. We identify occurrences of some substrings in T that must
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contain a boundary between two LZ77 phrases. Non-overlapping occurrences contain different

boundaries, so our aim is to prove the existence of more than m/2 such occurrences. We start

with two basic facts; the first one is obvious.

Lemma 39. For any strings u, v, w1, w2, the relation uw1 ≺ v ≺ uw2 implies that u is a prefix

of v.

Lemma 40. The inequality j < i implies λj � Λi.

Proof. We prove that λj � λki for any k, arguing by induction on k. The base case k = 1

follows from the definitions. Let λj � λk−1
i . In the case of mismatch, λj � λki holds trivially.

Otherwise, λj = λk−1
i x for some x 6= ε. If x = λi or x ≺ λi, then x ≺ λj , and so λj is not a

Lyndon word. Hence x � λi and thus λj = λk−1
i x � λki . Thus, the inductive step holds.

The next lemma locates the leftmost occurrences of the Lyndon factors and their products.

Lemma 41. Let d ≥ 1 and 1 ≤ i ≤ m − d + 1, and assume that ΛiΛi+1 · · ·Λi+d−1 has an

occurrence to the left of the trivial one in T . Then:

1. The leftmost occurrence of ΛiΛi+1 · · ·Λi+d−1 is a prefix of λj for some j < i;

2. ΛiΛi+1 · · ·Λi+d−1 is a prefix of every λk with j < k < i.

Proof. (1) Let j be the smallest integer such that the leftmost occurrence of ΛiΛi+1 · · ·Λi+d−1

in T overlaps Λj . Suppose first that the leftmost occurrence of ΛiΛi+1 · · ·Λi+d−1 is not entirely

contained inside a single occurrence of λj . Then there exists a non-empty suffix u of λj that

is equal to some prefix of one of the decomposed Lyndon factors λi, . . . , λi+d−1, say λi′ . We

cannot have u = λj because then λj � λi′ which is impossible since j < i′. Thus u must be a

proper suffix of λj . But then u � λi′ ≺ λj , which contradicts λj being a Lyndon word.

Suppose then that the leftmost occurrence of ΛiΛi+1 · · ·Λi+d−1 in T is entirely contained

inside λj but is not its prefix, i.e., λj = vΛiΛi+1 · · ·Λi+d−1v
′ for some strings v 6= ε and v′.

Since λj is a Lyndon word we have λj ≺ ΛiΛi+1 · · ·Λi+d−1v
′. Consider the position of the

mismatch of ΛiΛi+1 · · ·Λi+d−1v
′ with λj . If the mismatch occurs inside ΛiΛi+1 · · ·Λi+d−1, we

can write λj = Λi · · ·Λi′−1λ
e
i′x where i ≤ i′ < i + d, 0 ≤ e < ei, and x is a suffix of λj

that satisfies x ≺ λi′ ≺ λj , which contradicts λj being a Lyndon word. On the other hand, the

mismatch inside v′ implies that λj begins with ΛiΛi+1 · · ·Λi+d−1, contradicting the assumption

that the inspected occurrence of ΛiΛi+1 · · ·Λi+d−1 is the leftmost in T .
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(2) We prove this part by induction on d. Let d = 1. By Lemma 40 we have λj � λk � Λi.

Since λj begins with Λi by statement 1, so does λk by Lemma 39. Assume now that the claim

holds for all d′ < d. From the inductive assumption Λi and Λi+1 · · ·Λi+d−1 are both prefixes

of λk. Let y, y′, and z be such that λj = ΛiΛi+1 · · ·Λi+d−1y, λk = Λi+1 · · ·Λi+d−1y
′ = Λiz.

We have j < k and thus λk ≺ λj must hold which, since Λi is a prefix of both λj and λk,

implies z ≺ Λi+1 · · ·Λi+d−1y. On the other hand, since λk is a Lyndon word, we have λk =

Λi+1 · · ·Λi+d−1y
′ ≺ z. By Lemma 39, Λi+1 · · ·Λi+d−1y

′ ≺ z ≺ Λi+1 · · ·Λi+d−1y implies that

Λi+1 · · ·Λi+d−1 is a prefix of z or equivalently that ΛiΛi+1 · · ·Λi+d−1 is a prefix of λk.

6.2.1 Domains

Lemma 41 motivates the following definition.

Definition 4. Let d ≥ 1 and 1 ≤ i ≤ m − d + 1. We define the d-domain of Lyndon fac-

tor Λi as the substring domd(Λi) = ΛjΛj+1 · · ·Λi−1, j ≤ i of T , where Λj is the Lyndon

factor (which exists by Lemma 41) starting at the same position as the leftmost occurrence of

ΛiΛi+1 · · ·Λi+d−1 in T . Note that if ΛiΛi+1 · · ·Λi+d−1 does not have any occurrence to the left

of the trivial one then domd(Λi) = ε. The integers d and i − j are called the order and size of

the domain, respectively.

The extended d-domain of Λi is the substring extdomd(Λi) = domd(Λi)Λi · · ·Λi+d−1 of T .

Lemma 41 implies two easy properties of domains presented below as Lemma 42. These

properties lead to a convenient graphical notation to illustrate domains (see Figure 6.1).

Lemma 42. Let domd(Λi) = Λj · · ·Λi−1, j ≤ i. Then:

• For any d′ > d, domd′(Λi) is a suffix of domd(Λi);

• For any d′ ≥ 1, domd′(Λk) is a substring of domd(Λi) if j ≤ k < i.

Definition 5. Consider domd(Λi) for some d ≥ 1, 1 ≤ i ≤ m−d+1, and let α = Λi · · ·Λi+d−1.

We say that the leftmost occurrence of α in T is associated with domd(Λi).

For example, in Figure 6.1, T [7..9] is associated with dom2(T [23..24]); T [7..17] is associ-

ated with dom1(T [7..17]) even though it is not shown, since dom1(T [7..17]) = ε. Observe that

due to Lemma 42 this implies that domd(T [7..17]) = ε for any d > 1, and hence for example

the substring of T associated with dom2(T [7..17]) is T [7..22].
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Λj · · · Λi−1 Λi · · · Λi+d−1

d

extdomd(Λi)

domd(Λi)
a b b a b b a b a b b a b a b b b a b a b b a b a

1

1

2

1, 2, 3

T [i]:
i: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 6.1: Left: Graphical notation used to illustrate domd(Λi) = Λj · · ·Λi−1. Also shown is
extdomd(Λi) = Λj · · ·Λi+d−1. Right: all non-empty domains for the example string with the
Lyndon factorization of size 5. Note that due to Lemma 42 there are no non-trivial intersections
between domains.

A substring T [i..i+k], k ≥ 0 is said to contain an LZ77 phrase boundary if some phrase of

the LZ-factorization of T begins in one of the positions i, . . . , i+k. Clearly, non-overlapping

substrings contain different phrase boundaries. Furthermore, if the substring of T does not have

any occurrence to the left (in particular, if it is the leftmost occurrence of a single symbol), it

contains an LZ77 phrase boundary, thus we obtain the following easy observation.

Lemma 43. Each substring associated with a domain contains an LZ77 phrase boundary.

6.2.2 Tandem Domains

Definition 6. Let d ≥ 1 and 1 ≤ i ≤ m − d. A pair of domains domd+1(Λi), domd(Λi+1) is

called a tandem domain if domd+1(Λi) ·Λi = domd(Λi+1) or, equivalently, if extdomd+1(Λi) =

extdomd(Λi+1). Note that we permit domd+1(Λi) = ε.

For example, dom3(T [18..22]), dom2(T [23..24]) is a tandem domain in Figure 6.1, because

we have extdom3(T [18..22]) = extdom2(T [23..24]) = T [7..25].

Definition 7. Let domd+1(Λi), domd(Λi+1) be a tandem domain. Since Λi+1 · · ·Λi+d is a prefix

of Λi by Lemma 41, we let Λi = Λi+1 · · ·Λi+dx. The leftmost occurrence of Λi · · ·Λi+d in T

can thus be written as Λi+1 · · ·Λi+dxΛi+1 · · ·Λi+d. We say that this particular occurrence of

the substring xΛi+1 · · ·Λi+d is associated with the tandem domain domd+1(Λi), domd(Λi+1).

Remark 1. Note that the above definition permits domd+1(Λi) = ε. If domd+1(Λi) 6= ε, then

α, the substring of T associated with domd+1(Λi), domd(Λi+1), is (by Lemma 41) a substring

of Λj , where Λj , j < i is the leftmost Lyndon factor inside domd+1(Λi). Otherwise, α overlaps

at least two Lyndon factors. In both cases, however, α is a substring of extdomd+1(Λi).
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Lemma 44. Each substring associated with a tandem domain contains an LZ77 phrase bound-

ary.

Proof. Let domd+1(Λi), domd(Λi+1) be a tandem domain and let u = xΛi+1 · · ·Λi+d be the

associated substring of T . Suppose to the contrary that u contains no LZ77 phrase boundaries.

Then some LZ77-phrase gτ contains u and the letter preceding u. Since we consider a non-

overlapping LZ77 variant, the previous occurrence of gτ in T must be a substring of g1 · · · gτ−1.

Note, however, that u is preceded in T by the leftmost occurrence of Λi+1 · · ·Λi+d, which is

the prefix of Λj (see Definition 7). Thus, the leftmost occurrence of u in T either immediately

precedes the associated substring, or overlaps it, or coincides with it. This, however, rules out

the possibility that the previous occurrence of gτ occurs in g1 · · · gτ−1, a contradiction.

We say that a tandem domain domd+1(Λi), domd(Λi+1) is disjoint from a tandem domain

domd̂+1(Λk), domd̂(Λk+1) if all i, i+ 1, k, k + 1 are different, i.e., i+ 1 < k or k + 1 < i.

Lemma 45. Substrings associated with disjoint tandem domains do not overlap each other.

Proof. Let domd+1(Λi), domd(Λi+1) and domd̂+1(Λk), domd̂(Λk+1) be tandem domains called

the d-tandem and d̂-tandem, respectively. Without the loss of generality let i+ 1 < k.

Case 1: domd+1(Λi) 6= ε and domd̂+1(Λk) 6= ε. First observe that if the d-tandem and

d̂-tandem begin with different Lyndon factors, then the associated substrings trivially do not

overlap by the above Remark. Assume then that all considered domains start with Λj , j < i. By

Definition 7 we can write Λj as Λj = Λi+1 · · ·Λi+dxΛi+1 · · ·Λi+dy, where |Λi+1 · · ·Λi+dx| =

|Λi| and xΛi+1 · · ·Λi+d is the substring of T associated with the d-tandem. Similarly we have

Λj = Λk+1 · · ·Λk+d̂x
′Λk+1 · · ·Λk+d̂y

′ where |Λk+1 · · ·Λk+d̂x
′| = |Λk| and x′Λk+1 · · ·Λk+d̂ is

the substring of T associated with the d̂-tandem. However, by Lemma 41, Λk · · ·Λk+d̂ is a prefix

of Λi+1 and thus |Λk+1 · · ·Λk+d̂x
′Λk+1 · · ·Λk+d̂| ≤ |Λi+1|, i.e., the substring of T associated

with the d̂-tandem is inside the prefix Λi+1 of Λj and thus is on the left of the substring associated

with the d-tandem.

Case 2: domd+1(Λi) = Λj · · ·Λi−1, j < i, and domd̂+1(Λk) = ε. In this case the substring

associated with the d̂-tandem begins in Λk by the above Remark and thus is on the right of the

substring associated with the d-tandem.

Case 3: domd+1(Λi) = ε and domd̂+1(Λk) = ε. This is only possible if i + d < k since

otherwise Λk (and thus also Λk+1 · · ·Λk+d̂) occurs in Λi, contradicting domd̂(Λk+1) = Λk.

Then, extdomd+1(Λi) does not overlap extdomd̂+1(Λk), and the claim holds by above Remark.
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Case 4: domd+1(Λi) = ε and domd̂+1(Λk) = Λj · · ·Λk−1, j < k. Then, the substring of

T associated with d̂-tandem is a substring of Λj . If i > j, then clearly extdomd+1(Λi) does

not overlap Λj . On the other hand, if i < j, it must also hold i + d < j since otherwise Λj

(and thus also Λk · · ·Λk+d̂) occurs in Λi, contradicting domd̂+1(Λk) = Λj · · ·Λk−1, and thus

again, extdomd+1(Λi) does not overlap Λj . In both cases the Remark above implies the claim.

Finally, if i = j, we must also have i + 1 < k from the assumption about the disjointness of

d- and d̂-tandem. By Lemma 41 we can write Λi = Λi+1 · · ·Λi+dx, Λi+1 = Λk · · ·Λk+d̂x
′ and

hence also Λi · · ·Λi+d = Λk · · ·Λk+d̂x
′Λi+2 · · ·Λi+dxΛi+1 · · ·Λi+d. In this decomposition, the

substring associated with the d̂-tandem occurs inside the prefix Λk · · ·Λk+d̂, and the substring

associated with the d-tandem is the suffix xΛi+1 · · ·Λi+d, which proves the claim.

6.2.3 Groups

We now generalize the concept of tandem domain.

Definition 8. Let d ≥ 1, 2 ≤ p ≤ m, and 1 ≤ i ≤ m − d − p + 2. A set of p do-

mains domd+p−1(Λi), domd+p−2(Λi+1), . . ., domd(Λi+p−1) is called a p-group if for all q =

0, . . . , p − 2 the equality domd+p−1−q(Λi+q) · Λi+q = domd+p−2−q(Λi+q+1) holds or, equiva-

lently, extdomd+p−1(Λi) = . . . = extdomd(Λi+p−1). Note that we permit domd+p−1(Λi) = ε.

Lemma 46. Substrings associated with tandem domains from the same group do not overlap

each other.

Proof. Consider a p-group, p ≥ 3 and assume first that p = 3. By Lemma 41 we have Λi =

Λi+1 · · ·Λi+d+1x
′ and Λi+1 = Λi+2 · · ·Λi+d+1x for some words x′ and x. We can thus write the

leftmost occurrence of Λi · · ·Λi+d+1 in T as Λi+2 · · ·Λi+d+1xΛi+2 · · ·Λi+d+1x
′Λi+1 · · ·Λi+d+1.

It is easy to see that those occurrences of xΛi+2 · · ·Λi+d+1 and x′Λi+1 · · ·Λi+d+1 are associated

with (resp.) tandem domains domd+1(Λi+1), domd(Λi+2) and domd+2(Λi), domd+1(Λi+1), and

thus the claim holds.

For p > 3 it suffices to consider all subgroups of size three, in left-to-right order, to verify

that the substrings associated with all tandem domains occur in reversed order as a contiguous

substring and thus no two substrings overlap each other.

The above Lemma is illustrated in Figure 6.2. It also motivates the following definition

which generalizes the concept of associated substring from tandem domains to groups.
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Figure 6.2: Illustration of Lemma 46. In the examples u, v, w, x, y are Lyndon factors
from the Lyndon factorization of T . The top figure shows a 3-group: dom3(w) = u · · · v,
dom2(x) = u · · · vw, dom1(y) = u · · · vwx. αwx is a substring associated with the tandem do-
main dom3(w), dom2(x), and αxy is a substring associated with the tandem domain dom2(x),
dom1(y). Observe that the substrings associated with tandem domains occur as a contiguous
substring and in reverse order (compared to the order of the corresponding tandem domains
in T ). The bottom figure shows a 4-group: dom5(u) = ε, dom4(v) = u, dom3(w) = uv,
dom2(x) = uvw and demonstrates the case when the leftmost domain in a group is empty.

Definition 9. Consider a p-group domd+p−1(Λi), domd+p−2(Λi+1), . . ., domd(Λi+p−1) for some

p ≥ 2. From Lemma 41, Λi+p−1 · · ·Λi+p+d−2 is a prefix of Λi. Thus, the leftmost occurrence

of Λi · · ·Λi+p+d−2 in T can be written as Λi+p−1 · · ·Λi+p+d−2xΛi+1 · · ·Λi+p+d−2. We say that

this particular occurrence of the substring xΛi+1 · · ·Λi+p+d−2 is associated with the p-group

domd+p−1(Λi), domd+p−2(Λi+1), . . ., domd(Λi+p−1).

It is easy to derive a formal proof of the following Lemma from the proof of Lemma 46.

Lemma 47. The substring associated with a p-group is the concatenation, in reverse order, of

the p− 1 substrings associated with the tandem domains belonging to the p-group.

Our consideration of groups culminates in the next two results.

Corollary 5. The substring associated with a p-group contains at least p − 1 different LZ77

phrase boundaries.

We say that a p-group domd+p−1(Λi), . . ., domd(Λi+p−1) is disjoint from a p′-group

domd′+p′−1(Λk), . . . , domd′(Λk+p′−1) if i + p − 1 < k or k + p′ − 1 < i. By combining

Lemma 45 and Lemma 47 we obtain the following fact.
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Lemma 48. Substrings associated with disjoint groups do not overlap.

6.2.4 Subdomains

The concept of p-group does not easily extend to p = 1. If we simply define the 1-group

as a single domain and extend the notion of groups to include 1-groups then Lemma 48 no

longer holds (e.g. in Figure 6.1 the substring associated with tandem domain dom3(T [18..22]),

dom3(T [23..24]) is T [10..14] and the substring associated with domain dom1(T [7..17]) is

T [7..17]). Instead, we introduce a weaker lemma (Lemma 49) that also includes single domains.

Definition 10. We say that a domain domd̂(Λk) is a subdomain of a domain domd(Λi) =

Λj · · ·Λi−1, j ≤ i if k = i and d̂ = d (i.e., the domain is its own subdomain), or j ≤ k < i

and extdomd̂(Λk) is a substring of extdomd(Λi) (or equivalently, if k + d̂ ≤ i + d). In other

words, Λk has to be one of the Lyndon factors among Λj , . . ., Λi−1 and the extended domain of

Λk cannot extend (to the right) beyond the extended domain of Λi.

Lemma 49. Consider a tandem domain domd̂+1(Λk), domd̂(Λk+1) such that domd̂+1(Λk) and

domd̂(Λk+1) are subdomains of domd(Λi). Then, the substring associated with the tandem

domain domd̂+1(Λk), domd̂(Λk+1) does not overlap the substring associated with domd(Λi).

Proof. First, observe that in order for a tandem domain consisting of two subdomains to exist,

domd(Λi) has to be non-empty. Thus, let domd(Λi) = Λj · · ·Λi−1 for some j < i. This implies

(Lemma 41) that the substring associated with domd(Λi) is a prefix of Λj .

Assume first that domd̂+1(Λk) = Λj′ · · ·Λk−1, j < j′ ≤ k. The substring associated with

the tandem domain is a substring of extdomd̂+1(Λk) thus it trivially does not overlap Λj .

Assume then that domd̂+1(Λk) = Λj · · ·Λk−1. If k+1 < i then by Lemma 41, Λi · · ·Λi+d−1

is a prefix of Λk+1. By Definition 7 the leftmost occurrence of Λk · · ·Λk+d̂ in T can be written as

Λk+1 · · ·Λk+d̂xΛk+1 · · ·Λk+d̂. Thus clearly the leftmost occurrence of Λi · · ·Λi+d−1 (associated

with domk(Λi)) occurs in a prefix Λk+1 not overlapped by xΛk+1 · · ·Λk+d̂ (which is a substring

associated with the tandem domain).

The remaining case is when k + 1 = i. Then by Definition 10 we must have d̂ = d and

again the claim holds easily from Definition 7.

For any domain domd(Λi) = Λj · · ·Λi−1, j < i we define the set of canonical subdomains

as follows. Consider the following procedure. Initialize the set of canonical subdomains to
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contain domd(Λi). Then initialize δ = d and start scanning the Lyndon factors Λj , . . ., Λi−1

right-to-left. When scanning Λτ we check if domδ+1(Λτ ) = Λj · · ·Λt−1.

• If yes, we include domδ+1(Λτ ) into the set, increment δ and continue scanning from Λτ−1.

• Otherwise, i.e., if domδ+1(Λτ ) = Λj′ · · ·Λτ−1 for some j′ > j, we include the domain

domδ+1(Λτ ) into the set. Then we set δ = 0 and continue scanning from Λj′−1. All

domains that were included into the set of canonical subdomains in this case are called

loose subdomains.

See Figure 6.3 for an example. The above procedure simply greedily constructs groups of

domains, and whenever the candidate for the next domain in the current group does not have a

domain that starts with Λj , we terminate the current group, add the loose subdomain into the

set and continue building groups starting with the next Lyndon factor outside the (just included)

loose subdomain.

Note that the current group can be terminated when containing just one domain, so it is not

a group in this case. Hence we call the resulting sequences of non-loose domains clusters, i.e.,

a cluster is either a single domain, or a p-group (p ≥ 2). Note also that during the construction

we may encounter more than one loose subdomain in a row, so clusters and loose subdomains

do not necessarily alternate, but no two clusters occur consecutively.

Finally, observe that the sequence of clusters and loose subdomains always ends with a

cluster (possibly of size one) containing domd′(Λj) for some d′ (d′ = 3 for the example in

Figure 6.3), since domd′(Λj) = ε for all d′.

6.2.5 Proof of the Main Theorem

We are now ready to prove the key Lemma of the proof. Recall that the size of domd(Λi) =

Λj · · ·Λi−1, j ≤ i is defined as i− j.

Lemma 50. Let domd(Λi) be a domain of size k ≥ 0. Then extdomd(Λi) contains at least

dk/2e+ 1 different LZ77 phrase boundaries.

Proof. Let domd(Λi) = Λj · · ·Λi−1, j ≤ i and k = i − j. The proof is by induction on k. For

k = 0, extdomd(Λi) is the substring of T associated with domd(Λi) (see Definition 5) and thus

by Lemma 43, extdomd(Λi) contains at least one LZ77 phrase boundary.
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Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Λ8 Λ9 Λ10 Λ11 Λ12 Λ13 Λ14 Λ15 Λ16

extdom2(Λ6) extdom3(Λ9) extdom5(Λ12)

Figure 6.3: An example showing the set of canonical subdomains of dom2(Λ15). Using notation
from Lemma 50, the set has p = 4 clusters of size (left-to-right): q1 = 3, q2 = 1, q3 = 2, q4 = 3,
and t = 3 loose subdomains: dom2(Λ6) = Λ4Λ5, dom3(Λ9) = Λ8, dom5(Λ12) = ε of size
k1 = 2, k2 = 1, k3 = 0. Note how the extended domains of loose subdomains do not
overlap each other. Furthermore, note that extdom2(Λ15) = Λ1 · · ·Λ16 can be factorized as
Λ1 · · ·Λq1 concatenated with the extended domains. By Corollary 5 and Lemmas 48 and 49,
Λ1 · · ·Λq1 contains 1 +

∑p
h=1(qh − 1) = 6 LZ77 phrase boundaries, while the extended do-

mains extdom2(Λ6), extdom3(Λ9), extdom5(Λ12) contain
∑t

h=1(dkh/2e+1) = 5 LZ77 phrase
boundaries by Lemma 50.

Let k > 0 and assume now that the claim holds for all smaller k. Consider the set Ci,d
of canonical subdomains of domd(Λi). If Ci,d contains no loose subdomain, it consists of a

single cluster which is a (k+ 1)-group. By Corollary 5, the substring associated with this group

contains k phrase boundaries; by Lemma 49, one more boundary is provided by the domain

domd(Λi) itself. We have 1 + k ≥ 1 + dk/2e, which concludes the proof of this case.

For the rest of the proof assume that Ci,d contains τ ≥ 1 loose subdomains, denoted, left to

right, by domd1(Λi1), . . . , domdτ (Λiτ ). Note that dτ > d. Let kh be the size of domdh(Λih),

h = 1, . . . , τ . Further, let q ≥ 1 be the size of the leftmost cluster (the one that contains some

domain of Λj). By the construction of the canonical set we have

extdomd(Λi) = Λj · · ·Λj+q−1extdomd1(Λi1)extdomd2(Λi2) · · · extdomdτ (Λiτ ). (6.1)

Both clusters and loose subdomains contribute some number of LZ77 phrase boundaries into

their total. The boundaries contributed by clusters are all different by Lemma 48; let S be their

number. These boundaries are also different from the boundary inside the substring associated

with domd(Λi) by Lemma 49. Furthermore, it is easy to see from the proof of Lemma 49 that

all these phrase boundaries are located inside Λj · · ·Λj+q−1. The number of phrase boundaries
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inside the extended domains of loose subdomains can be estimated by the inductive assumption

(by Eq. 6.1, these external domains do not overlap each other or Λj · · ·Λj+q−1). So we obtain

that extdomd(Λi) contains at least

1 +
τ∑
h=1

(⌈
kh
2

⌉
+ 1

)
+ S (6.2)

different LZ77 phrase boundaries. Let us evaluate
∑t

h=1 kh. By the construction, a loose dh-

subdomain is followed by exactly dh Lyndon factors which are outside loose subdomains; then

another loose subdomain follows (cf. Figure 6.3). The only exception is the rightmost loose

subdomain, which is followed by dτ −d Lyndon factors outside loose subdomains (note that we

only count Lyndon factors inside domd(Λi)). Then

τ∑
h=1

kh = k − q −
τ∑
h=1

dh + d. (6.3)

Next we evaluate S. By Corollary 5, a cluster of size r contributes r − 1 phrase boundaries.

Then the leftmost (resp., rightmost) cluster contributes q−1 (resp., dτ−d−1) boundaries. Each

of the remaining clusters is preceded by a loose dh-subdomain, where dh > 1, and contributes

dh − 2 boundaries. Using Knuth’s notation [predicate] for the numerical value (0 or 1) of the

predicate in brackets, we can write

S = q − 1 +
τ∑
h=1

dh − τ − d−
τ−1∑
h=1

[dh > 1]. (6.4)

Finally, we estimate the number in Eq. 6.2 using Eq. 6.3 and Eq. 6.4:

1+
τ∑
h=1

(⌈
kh
2

⌉
+ 1

)
+S ≥ 1+τ+

k − q −
∑τ

h=1 dh + d

2
+q−1+

τ∑
h=1

dh−τ−d−
τ−1∑
h=1

[dh > 1]

=
k

2
+
q

2
+

τ∑
h=1

dh
2
− d

2
−

τ−1∑
h=1

[dh > 1] =
q + dτ − d

2
+
k

2
+

τ−1∑
h=1

(
dh
2
− [dh > 1]

)
≥ 1 +

k

2
.

The obtained lower bound for an integer can be rounded up to 1 + dk/2e, as required.

Using the above Lemma we can finally prove the main Theorem.

Proof.[Proof of Theorem 9] Partition the string T into extended domains as follows: take the
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string T ′ such that T = T ′ · extdom1(Λm) and partition T ′ recursively to get

T = extdom1(Λi1) · · · extdom1(Λiτ ), where iτ = m.

By Lemma 50, each extended domain extdom1(Λih) contains at least dkh/2e+1 phrase bound-

aries, where kh is the size of the domain dom1(Λih). Clearly,
∑τ

h=1 kh = m− τ ; hence the total

number t of the boundaries satisfies

t ≥
τ∑
h=1

(⌈
kh
2

⌉
+ 1

)
≥
⌈
m− τ

2

⌉
+ τ =

⌈
m+ τ

2

⌉
>
m

2
,

as required.

6.3 Lower Bound

The upper bound on the number of factors in the Lyndon factorization of a string, given in of

Theorem 9, is supported by the following lower bound. Consider a string Tk = B0 · · ·Bka,

k ≥ 0, where:

B0 = b,

B1 = ab,

B2 = a2baba2b,

· · ·

Bk = (akba1b) · · · (akbak−1b)akb.

For example, T3 = (b)(ab)(a2baba2b)(a3baba3ba2ba3b)(a).

Theorem 10. Let λ1 · · ·λmk and g1 · · · gtk be the Lyndon factorization and the non-overlapping

LZ77 factorization of the string Tk, k ≥ 2. Then mk = k2/2 + k/2 + 2, tk = k2/2− k/2 + 4,

and thus mk = tk + Θ(
√
tk).

Proof. First we count Lyndon factors. All factors will be different, so their number coincides

with the number of Lyndon factors. By the definition of Lyndon factorization, the block Bi

(0 < i ≤ k) is factorized into i Lyndon factors:

Bi = aiba1b · aiba2b · · · aibai−1b · aib. (6.5)
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For any suffix u of B0 · · ·Bi−1 and any prefix v of Bi, u � v holds since ai is a prefix of Bi and

this is the leftmost occurrence of ai. Thus there is no Lyndon word that begins in B0 · · ·Bi−1

and ends in Bi. This implies that the factorization of Tk is the concatenation of the first b, then

k factorizations Eq. 6.5, and the final a, k2/2 + k/2 + 2 factors in total.

Let LZ77 Tk denote the LZ factorization of Tk. The size of LZ77 T2 = b · a · ba · aba · baaba
is 5. For k ≥ 3, we prove by induction that

LZ77 Tk = LZ77 Tk−1
· ak−1babak−1 · aba2bak−1 · · · abak−2bak−1 · abak−1bakba. (6.6)

For k = 3 we have LZ77 T3 = LZ77 T2 · aababaa · abaabaaaba and thus the claim holds.

If k > 3, by the inductive hypothesis the last phrase in LZ77 Tk−1
is g = abak−2bak−1ba. The

substring g has only one previous occurrence: it occurs at the boundary between Bk−2 and

Bk−1, followed by b. So, g remains a phrase in LZ77 Tk . Each of subsequent k − 2 phrases of

Eq. 6.6 also has a single previous occurrence (inside Bk−1), and this occurrence is followed

by b because Bk−1 has no substring ak. Thus, Eq. 6.6 correctly represents LZ77 Tk . Direct

computation now gives tk = k2/2− k/2 + 4.

6.4 Conclusions

In Chapter 6, we studied relations between Lyndon factorizations and non-overlapping LZ77

factorizations. We showed that the number of Lyndon factors cannot be more than 2t where t is

the number of LZ77 phrases. This result is the first direct connection of these two factorizations.

The result improves significantly a previous, indirect bound given in Chapter 5. We also showed

that there are strings with t+ Θ(
√
t) Lyndon factors.

Our question for this problem are the following:

• What are tighter upper bound and lower bound?

• Can we show some bounds for overlapping LZ77 factorizations?
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Chapter 7

The Runs Theorem

In this chapter, we give new insights into relations between runs and Lyndon words. Firstly,

we give additional notation for this chapter in Section 7.1. In Section 7.2, we show a new

upper bound of the maximum number of runs in a string. In Section 7.3, we propose a new

algorithm to compute all runs in a string. This algorithm is the first algorithm without Lempel-

Ziv factorization. Finally, we show how to characterize runs in a string using Lyndon trees in

Section 7.4.

7.1 Notation

For any set I of intervals, let Beg(I) denote the set of beginning positions of intervals in I .

Definition 11 (Runs). A triple r = (i, j, p) is a run of string T , if the smallest period p of T [i..j]

satisfies |T [i..j]| ≥ 2p, and the periodicity cannot be extended to the left or right, i.e., i = 1 or

T [i− 1] 6= T [i+ p− 1], and, j = N or T [j + 1] 6= T [j − p+ 1]. The rational number j−i+1
p

is

called the exponent of r, and is denoted by er.

Let Runs(T ) denote the set of runs of string T . Denote by ρ(N), the maximum number of

runs that are contained in a string of length N , and by σ(N), the maximum sum of exponents

of runs that are contained in a string of length N .

Example 6. Consider string T = babbabbababbabbabcwhich contains nine runs. Runs(T ) =

{(1, 9, 3), (1, 17, 8), (3, 4, 1), (4, 14, 5), (6, 7, 1), (7, 11, 2), (9, 17, 3), (11, 12, 1), (14, 15, 1)}.
(See Figure 7.1.)

The following is an important lemma that is central to two of our main observations (Lem-

mas 52 and 53) used to prove the runs conjecture in Section 7.2.

67



CHAPTER 7. THE RUNS THEOREM

Lemma 51 (Lemma 1.6 of [30]). Let T = uqu′a be a string for some Lyndon word u, a possibly

empty proper prefix u′ of u, a positive integer q, and a ∈ Σ with T [|u′|+1] 6= a. If u[|u′|+1] ≺ a,

T is a Lyndon word. If a ≺ u[|u′|+ 1], u is the longest prefix Lyndon word of any string having

a prefix uqu′a.

Definition 12 (L-root [22]). Let r = (i, j, p) be a run in string T ∈ Σ∗. An interval λ = [iλ..jλ]

of length p is an L-root of r with respect to ≺ if i ≤ iλ ≤ jλ ≤ j and T [iλ..jλ] is a Lyndon word

with respect to ≺.

It is easy to see that for any run and lexicographic order ≺, there exists at least one L-root

with respect to ≺.

7.2 The Runs Theorem

Since any string over a unary alphabet can only have at most one run, we assume a non-unary

alphabet Σ. Furthermore, we consider lexicographic orders on strings over Σ, induced by an

arbitrary pair of total orders ≺0, ≺1 on Σ such that for any pair of characters a, b ∈ Σ, a ≺0

b ⇔ b ≺1 a. For ` ∈ {0, 1}, let ` = 1 − `. For any string T ∈ Σ∗, let T̂ = T$, where $ 6∈ Σ

is a special character that satisfies $ ≺0 a (and thus a ≺1 $) for any a ∈ Σ. We first define a

notation for representing the interval corresponding to the longest Lyndon word that starts at a

given position.

Definition 13 (Longest Lyndon word that starts at given position). For any string T , position

i (1 ≤ i ≤ |T |), and ` ∈ {0, 1}, let l`(i) = [i..j] where j = max{j′ | T̂ [i..j′] is a Lyndon word

with respect to ≺`}.

Our first main observation is that, if we consider the longest Lyndon words with respect to

≺0 and ≺1 that starts at a given position i, one of them will be of length 1, while the other will

be of length greater than 1.

Lemma 52. For any string T and position i (1 ≤ i ≤ |T |), let ` ∈ {0, 1} be such that

T̂ [k] ≺` T̂ [i] for k = min{k′ | T̂ [k′] 6= T̂ [i], k′ > i}. Then, l`(i) = [i..i] and l`(i) = [i..j] for

some j > i.

Proof. The lemma follows from the definition of ≺` and Lemma 51, with u = T̂ [i], u′ = ε,

q = k − i, and a = T̂ [k].
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Example 7. Consider string T = abbabc and assume a ≺0 b ≺0 c, c ≺1 b ≺1 a. Then

(l0(1), . . . , l0(6)) = ((1, 6), (2, 2), (3, 3), (4, 6), (5, 6), (6, 6)) and (l1(1), . . . , l1(6)) = ((1, 1),

(2, 4), (3, 4), (4, 4), (5, 5), (6, 7)).

Our next main observation is that, given a run r, there is an order ≺`r∈ {≺0,≺1} such that

the L-roots of the run with respect to ≺`r coincides with the longest Lyndon word with respect

to ≺`r that starts at that position. Note that ≺`r is defined for each run, and depends on the

order between the two characters which break the periodicity of the run, i.e., the character that

immediately follows the run, and the character p positions earlier, where p is the period of r.

Lemma 53. Let r = (i, j, p) be an arbitrary run in string T , and let `r ∈ {0, 1} be such that

T̂ [j + 1] ≺`r T̂ [j + 1 − p]. Then, any L-root λ = [iλ..jλ] of r with respect to ≺`r is equal to

l`r(iλ).

Proof. Let [iλ..jλ] be an L-root of r with respect to ≺`r . Then, the lemma follows from the

definition of ≺`r and Lemma 51 with u = [iλ..jλ], uqu′ = [iλ..j], and a = T̂ [j + 1].

Example 8. Consider string T = babbabbababbabbabc and assume a ≺0 b ≺0 c and c ≺1

b ≺1 a. For run r4 = (4, 14, 5), ≺r4 is ≺1 because T [15] = b ≺1 a = T [10], and its L-root

with respect to ≺1 is bbaba, which is also the longest Lyndon word with respect to ≺1 that

starts at position 6. Note that although runs r1 = (1, 9, 3) and r7 = (9, 17, 3) correspond to the

same string babbabbab, ≺`r1 is ≺0 while ≺`r7 is ≺1, since the runs are followed by different

characters (see Figure 7.1).

From Lemmas 52 and 53, we can show that for any two runs, their L-roots with respect

to the orders specified in Lemma 53, i.e., L-roots which correspond to the longest Lyndon

word starting at that position, cannot start at the same position except possibly at the begin-

ning of the run. More precisely, for any run r = (i, j, p) of T , let Br = {λ = [iλ..jλ] |
λ is an L-root of r with respect to ≺`r , iλ 6= i}, where `r ∈ {0, 1} is such that T̂ [j + 1] ≺`r
T̂ [j + 1 − p], i.e., Br is the set of all L-roots [iλ..jλ] of r with respect to ≺`r such that

[iλ..jλ] = l`r(iλ), except for the one that starts from i if it exists. The following lemma holds.

Lemma 54. For any two distinct runs r and r′ of string T , Beg(Br) ∩ Beg(Br′) is empty.

Proof. Suppose that there exist i ∈ Beg(Br) ∩ Beg(Br′), and λ = [i..jλ] ∈ Br and λ′ =

[i..jλ′ ] ∈ Br′ . Let `r ∈ {0, 1} be such that λ = l`r(i) from the definition of Br and Lemma 53.
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1! 2! 3! 4! 5! 6! 7! 8! 9! 10! 11! 12! 13! 14! 15! 16! 17! 18!

b a b b a b b a b a b b a b b a b c $!

r3!

r1!

r7!

r2!

r6!

r4!

r5! r8! r9!

Figure 7.1: Figure showing all runs ri (1 ≤ i ≤ 9) in the string T = babbabbababbabbabc,
where the curved lines indicate the period, as well as the start and end positions of each run.
Assuming a ≺0 b ≺0 c and c ≺1 b ≺1 a, the intervals indicate the L-roots of each run with
respect to the lexicographic order ≺`ri as defined in the statement of Lemma 53, and thus each
of them correspond to the longest Lyndon word with respect to ≺`ri that starts at that position.
Here, `ri = 0 for the runs depicted above the string, and `ri = 1 for the runs depicted below
the string. The black circles show the positions which are contained in Beg(Bri), which can be
seen to be disjoint for all runs, as claimed by Lemma 54. Notice that although runs r1 and r7

correspond to the same string babbabbab, the lexicographic orders ≺`r1 and ≺`r7 which define
Br1 and Br7 are different, since they are followed by different characters.

Since λ 6= λ′, λ′ = l`r(i). By Lemma 52, either λ or λ′ is [i..i]. Assume w.l.o.g. that λ = [i..i]

and jλ′ > i. Since T [i..jλ′ ] is a Lyndon word, T [i] 6= T [jλ′ ]. By the definition ofBr andBr′ , the

beginning positions of runs r and r′ are both less than i, which implies T [i− 1] = T [i] (due to

r) and T [i−1] = T [jλ′ ] (due to r′). Hence we get T [i] = T [i−1] = T [jλ′ ], a contradiction.

Lemma 54 shows that each run r can be associated with a disjoint set of positions Beg(Br)

(see Figure 7.1). Note that |Beg(Br)| = |Br| ≥ ber−1c ≥ 1, since the exponent er of any run is

at least 2. Also, since 1 6∈ Beg(Br) for any run r,
∑

r∈Runs(T ) |Br| =
∑

r∈Runs(T ) |Beg(Br)| ≤
|T | − 1 holds. Therefore, we obtain the following results.

Theorem 11. ρ(N) < N .

Proof. Consider string T of length N . Since |Br| ≥ 1 for any r ∈ Runs(T ), it follows from

Lemma 54 that |Runs(T )| ≤
∑

r∈Runs(T ) |Br| ≤ N − 1.
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Theorem 12. σ(N) < 3N − 3.

Proof. Consider string T of length N . Since |Br| ≥ ber − 1c > er − 2 for any r ∈ Runs(T ), it

follows from Lemma 54 that
∑

r∈Runs(T )(er − 2) <
∑

r∈Runs(T )ber − 1c ≤
∑

r∈Runs(T ) |Br| ≤
N − 1. Using |Runs(T )| ≤ N − 1 from Theorem 11, we get σ(N) =

∑
r∈Runs(T ) er <

N + 2|Runs(T )| − 1 ≤ 3N − 3.

7.2.1 Higher exponent runs

Let Runsk(T ) denote the set of runs of string T with exponent at least k, ρk(N) the maximum

number of runs with exponent at least k in a string of length N , and σk(N) the maximum sum

of exponents of runs with exponent at least k in a string of length N . Crochemore et al. [24]

have shown a bound of 2.5N for σ3(N). Below, we prove a tighter bound, and show bounds for

general integer k as well.

Theorem 13. For any integer k ≥ 2, ρk(N) < N/(k − 1), σk(N) < N(k + 1)/(k − 1).

Proof. Notice that for any run r with exponent at least k, |Br| ≥ ber − 1c ≥ k − 1, since k is

an integer and er ≥ k. Therefore, |Runsk(T )| ≤
∑

r∈Runsk(T ) |Br|/(k− 1) < N/(k− 1). Also,∑
r∈Runsk(T ) er =

∑
r∈Runsk(T )(er − 2) + 2|Runsk(T )| <

∑
r∈Runsk(T ) |Br| + 2N/(k − 1) <

N + 2N/(k − 1) = N(k + 1)/(k − 1).

7.2.2 Runs with d distinct symbols

Let ρ(N, d) denote the maximum number of runs in a string of length N that contains exactly d

distinct symbols. We prove the following bounds conjectured in [28].

Theorem 14. ρ(N, d) ≤ N − d. Furthermore, if N > 2d, then ρ(N, d) ≤ N − d− 1.

Proof. Let Σ = {c1, . . . , cd}. First, we show ρ(N, d) ≤ N − d. For any character ck ∈ Σ,

let ik denote its last occurrence, i.e. ik = max{i | T [i] = ck, 1 ≤ i ≤ N}. Choose the

pair of total orders ≺0,≺1 on Σ, so that for any 1 ≤ k, k′ ≤ d, ck′ ≺0 ck ⇔ ck ≺1 ck′ ⇔
ik < ik′ . Also, let i′k = min{i ≤ ik | T [i..ik] = cik−i+1

k }. Then, for any 1 ≤ k ≤ d, since

ck = T [i′k] = · · · = T [ik] is smaller than any character in T̂ [ik + 1..N + 1] with respect to ≺1,

we have that l1(i′k) = [i′k..N + 1], and from Lemma 52, l0(i′k) = [i′k..i
′
k]. Since T̂ [i′k..N + 1]

includes the symbol $ which does not occur elsewhere in T̂ , [i′k..N + 1] cannot be an L-root
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of a run. On the other hand, if [i′k..i
′
k] is an L-root of some run, then by definition of i′k, the

run must start at i′k. Therefore, neither l0(i′k) nor l1(i′k) can be included in ∪r∈Runs(T )Br and

thus, i′k 6∈ ∪r∈Runs(T )Beg(Br). Noticing that T [i′k] = ck, we have that i′k is different for each

1 ≤ k ≤ d, and therefore, ρ(N, d) ≤ N − d.

Next, we prove ρ(N, d) ≤ N − d− 1 for N > 2d. Since 1 6∈ ∪r∈Runs(T )Beg(Br), if i′k > 1

for all k, then Runs(T ) ≤ N − d − 1. Therefore, we can assume i′1 = 1, which means that

T [1..i1] = ci11 , and T [i1 + 1..N ] does not contain an occurrence of c1. Thus, any position in

T [1..i1] can only be part of a single run (1, i1, 1) if i1 > 1, or of none if i1 = 1. If i1 > 1, we

have from the first statement that Runs(T ) ≤ 1 + ρ(N − i1, d− 1) ≤ 1 + (N − i1)− (d− 1) =

N −d− (i1−2). Since Runs(T ) ≤ N −d−1 for i1 ≥ 3, we assume that i1 ≤ 2. We prove the

statement by induction on d. For d = 1, we have that ρ(N, 1) ≤ 1, and thus ρ(N, 1) ≤ N−d−1

for any N > 2, and the statement holds. Suppose the statement holds for any d′ < d, i.e., for

any d′ < d, ifN > 2d′ then ρ(N, d′) ≤ N−d′−1. If i1 = 1, then, since (N−1) > 2(d−1), we

have Runs(T ) ≤ ρ(N−1, d−1) ≤ (N−1)−(d−1)−1 ≤ N−d−1. If i1 = 2, then, again since

(N−2) > 2(d−1), we have Runs(T ) ≤ 1+ρ(N−2, d−1) ≤ (N−2)−(d−1) ≤ N−d−1.

Thus, the statement holds.

This leads to a slightly better bound of ρ(N) compared to Theorem 11, i.e., ρ(N) ≤ N − 3

for N > 4, since ρ(N, 1) ≤ 1.

7.3 New Linear-Time Algorithm for Computing All Runs

In this section, we describe our new linear-time algorithm for computing all runs in a given

string T of length N . Note that an Ω(N logN) time lower bound exists for general unordered

alphabets, i.e., any algorithm that is based on character equality comparisons [74]. It is an open

problem whether all runs can be computed in linear time for general ordered alphabets [8, 69].

Here, we assume an integer alphabet, i.e. Σ = {1, ..., N c} for some constant c. Let L = {l`(i) |
` ∈ {0, 1}, 1 ≤ i ≤ N}. From Lemma 53, we know that for any run r, L contains an L-root of

r. Our new algorithm (1) computes the set L in linear time, and (2) for each element l`(i) ∈ L,

checks if it is equal to arg[i..j]∈Br min i for some run, and if so determine the run, in constant

time, therefore achieving linear time. Below are the algorithmic tools used in our algorithm.

Definition 14 (Suffix Array/Inverse Suffix Array [75]). The suffix array SAT [1..N ] of a string

T of length N , is an array of integers such that SAT [i] = j indicates that T [j..N ] is the
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lexicographically ith smallest suffix of T . The inverse suffix array ISAT [1..N ] is an array of

integers such that ISAT [SAT [i]] = i.

Theorem 15 (Suffix Array/Inverse Suffix Array [63, 65, 62]). The suffix array and inverse suffix

array of a string over an integer alphabet can be computed in linear time.

Theorem 16 (Longest Common Extension (LCE) Query (e.g., [36])). A string T over an

integer alphabet can be preprocessed in linear time, so that for any 1 ≤ i ≤ j ≤ |T |,
|lcp(T [i..|T |], T [j..|T |])| can be answered in constant time.

7.3.1 Linear-time computation of l`(i)

For a string T of length N and ` ∈ {0, 1}, Algorithm 5 shows a pseudo-code of a linear-time

algorithm that computes l`(i) for all 1 ≤ i ≤ N in decreasing order of i by a right-to-left scan

on T .

For each i, the algorithm computes the value E`[i]. From Lemma 1, it is easy to see that at

the end of each loop for i in the algorithm, E`[i..N ] encodes a lexicographically non-increasing

list of Lyndon words that decomposes T̂ [i..N + 1], i.e., the Lyndon factorization of T̂ [i..N + 1];

the first element is T̂ [i..E`[i]], and the remaining elements are recursively defined for the suffix

T̂ [E`[i] + 1..N + 1]. From Lemma 2, it is clear that for any i, T̂ [i..E`[i]] is l`(i), i.e., the longest

Lyndon word that starts at position i.

The lexicographic comparison of Line 5 can be performed in constant time by an LCE query

and a single character comparison. We also note that it can be performed in constant time by

utilizing ISAT̂ , i.e., the lexicographic order of the suffix of T̂ starting at the same position.

Consider a Lyndon word λ0 starting at position i, and the decomposed Lyndon factorization

λ1 · · ·λm of T̂ [iv..N + 1] s.t. λi � λi+1 for any i, where iv = i + |λ0|. If λ0 ≺ λ1, then,

λ = λ0λ1 is a Lyndon word from Lemma 1. Therefore, λ[1..|λ1|] ≺ λ1 and thus λ0 · · ·λm ≺
λ1 · · ·λm (ISAT̂ [i] < ISAT̂ [iv]). If λ1 � λ0, then λ0 · · ·λm is a Lyndon factorization of

T̂ [i..N + 1]. It follows from Lemma 51 that λ1 · · ·λm ≺ λ0 · · ·λm (ISAT̂ [iv] < ISAT̂ [i]), since

λ0 must be the longest Lyndon prefix of T̂ [i..N+1]. Therefore λ0 ≺ λ1 ⇐⇒ ISA[i] < ISA[iv].

We note that the intervals [i..E`[i]] with each update of E`[i] on line 6 during the algorithm

correspond to internal nodes of what is called the Lyndon tree [4], described in Section 7.4.

Hohlweg and Reutenauer [53] showed that the Lyndon tree can be constructed in linear time

given ISA, by showing that the Cartesian tree [90, 40] of the subarray ISA[2..N ] coincides with
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Algorithm 5: Computing l`(i) = [i..E`[i]] in linear time for all 1 ≤ i ≤ N .
Input: String T of length N

1 for i = 1 to N + 1 do E`[i]← i; // End positions of l`(i)
2 for i = N downto 1 do
3 while E`[i] < N + 1 do
4 j ← E`[i] + 1;
5 if not T̂ [i..E`[i]] ≺` T̂ [j..E`[j]] then exit while loop ; // O(1) from

ISAT̂ [i], ISAT̂ [j]

6 E`[i]← E`[j] ; // T̂ [i..E`[i]]T̂ [j..E`[j]] = T̂ [i..E`[j]] is Lyndon
w.r.t.≺`

7 l`(i)← [i..E`[i]];

the internal nodes of the Lyndon tree. Algorithm 5 is, in essence, an implementation of the

same idea.

7.3.2 Computing all runs of T from l`(i)

Consider a candidate interval l`(i) = [i..j] ∈ L. Let T [i′..i − 1] be the longest common suffix

of T [1..i − 1] and T [1..j], and let T [j + 1..j′] be the longest common prefix of T [i..N ] and

T [j + 1..N ]. It is easy to see that [i..j] = arg[i′′..j′′]∈Br min i′′ of run r = (i′, j′, p), if and only

if p = j − i + 1, |T [i′..j′]| ≥ 2p, and i′ < i ≤ i′ + p. Using Theorem 16, we can compute

j′ in constant time per query and linear-time preprocessing. If we consider LCE queries on the

reverse string, we can query the length of the longest common suffix between two prefixes of

T . Thus, i′ can also be computed in constant time per query and linear-time preprocessing.

7.4 Runs and Lyndon Trees

In this section, we characterize runs in strings using Lyndon trees.

Definition 15 (Standard Factorization [14, 72]). The standard factorization of a Lyndon word

T with |T | ≥ 2 is an ordered pair (u, v) of Lyndon words u, v such that T = uv and v is the

lexicographically smallest proper suffix of T .

It can be shown that for any Lyndon word T longer than 1, the standard factorization (u, v)

of T always exists. The Lyndon tree of a Lyndon word T , defined below, is the full binary tree

defined by recursive standard factorization of T .
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Definition 16 (Lyndon Tree [4]). The Lyndon tree of a Lyndon word T , denoted LTree(T ), is

an ordered full binary tree defined recursively as follows:

• if |T | = 1, then LTree(T ) consists of a single node labeled by T ;

• if |T | ≥ 2, then the root of LTree(T ), labeled by T , has left child LTree(u) and right

child LTree(v), where (u, v) is the standard factorization of T .

Each node α in LTree(T ) can be represented by an interval [i..j] (1 ≤ i ≤ j ≤ |T |) of T ,

and we say that the interval [i..j] corresponds to a node in LTree(T ). Let lca([i..j]) denote the

lowest node in LTree(T ) containing all leaves corresponding to positions in [i..j] in its subtree,

or equivalently, the lowest common ancestor of leaves at position i and j. Note that an interval

[i..j] corresponds to a node in the Lyndon tree, iff lca([i..j]) = [i..j]. Figure 7.2 shows an

example of a Lyndon tree for the Lyndon word aababaababb.

a!a! a!b!a!a! b!a!b! b! b!

Figure 7.2: The Lyndon tree for the Lyndon word aababaababb with respect to order a ≺ b.

We first show a simple yet powerful lemma characterizing Lyndon substrings of a Lyndon

word, in terms of the Lyndon tree.

Lemma 55. Let T be a Lyndon word. For any interval [i..j], if T [i..j] is a Lyndon word, then

the node α = lca([i..j]) = [iα..jα] in LTree(T ) satisfies iα = i ≤ j ≤ jα.

Proof. If i = j, then α is a leaf node and corresponds to [i..i]. If i < j, α is an internal node. Let

β = [iα...j
′] and γ = [j′ + 1...jα] respectively be the left and right children of α. By definition

of lca, we have that iα ≤ i ≤ j′ ≤ j′ + 1 ≤ j ≤ jα, and for some strings u, v ∈ Σ∗ and

x, y ∈ Σ+, we have that T [i..j] = xy, T [iα..j
′] = ux, T [j′ + 1..jα] = yv, and (ux, yv) is the

standard factorization of T [iα..jα] = uxyv. Since xy is a Lyndon word, xy ≺ y, and therefore

xyv ≺ yv. However, if u 6= ε, this contradicts that yv is the lexicographically smallest proper

suffix of uxyv. Thus, u must be empty, and iα = i.
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A node is called a left node (resp. right node) if it is the left (resp. right) child of its

parent. The next lemma is a simple consequence of Lemma 55 yet also gives an important

characterization.

Lemma 56. Let T be a Lyndon word. For any interval [i..j] except for [1..|T |], [i..j] corresponds

to a right node of the Lyndon tree iff T [i..j] is the longest Lyndon word that starts from i.

Proof. Suppose T [i..j] is the longest Lyndon word that starts from i. For any j′ > j, T [i..j′]

is not a Lyndon word and thus [i..j′] cannot be a node in LTree(T ). Hence, it is clear from

Lemma 55 that lca([i..j]) = [i..j] and it is a right node. On the other hand, suppose T [i..j] is

not the longest Lyndon word that starts from i. Then, there exists a Lyndon word T [i..j′] for

some j′ > j. Since there is a node lca([i..j′]) = [i..j′′] with j′′ ≥ j′ > j due to Lemma 55, it is

easy to see that [i..j] cannot be a right node. Note that [i..j] may not correspond to a node, but

if it does, it must be a left node.

Now consider again the two total orders ≺0, ≺1 on Σ. Let T be an arbitrary string of length

N and let T0 = #0T$ and T1 = #1T$ where #0,#1 6∈ Σ ∪ {$} are special characters that are

respectively lexicographically smaller than any other character in Σ ∪ {$}, with respect to ≺0

and ≺1. Thus, #0 ≺0 $ ≺0 a and #1 ≺1 a ≺1 $ for any a ∈ Σ. For technical reasons, we

assume that positions in T0 and T1 will start from 0 rather than 1, in order to keep in sync with

positions in T , i.e., so that for any 1 ≤ i ≤ |T |, T [i] = T0[i] = T1[i]. Note that T` (` ∈ {0, 1}) is

a Lyndon word with respect to≺`, and let LTree`(T ) denote the Lyndon tree of T`, with respect

to ≺`. Also, lca`([i..j]) will denote lca([i..j]) in LTree`(T ).

Lemma 57. Given a string T of length N , LTree0(T ) and LTree1(T ) can be constructed in

O(N) time and space.

The next lemma immediately follows from Lemmas 53 and 56.

Lemma 58. Let r = (i, j, p) be an arbitrary run in string T of length N , and let `r ∈ {0, 1} be

such that T`r [j + 1] ≺`r T`r [j + 1− p]. Then, any L-root of r with respect to ≺`r is a right node

of LTree`r(T ).

In light of Lemma 58, we have a structural view of the runs in a string T by two trees

LTree0(T ) and LTree1(T ). This can be a powerful tool for algorithms and data structures

employing subrepetitions in a string. In the next subsection, we exhibit an application to a data

structure for 2-Period Queries.
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7.4.1 Application to 2-period queries

The 2-Period Query problem is to preprocess a string T to support the following queries ef-

ficiently: Given any interval [i..j] of T , return the smallest period p of T [i..j] with p ≤
(j− i+ 1)/2, if such exists. The 2-Period Query problem is tightly related to the runs in T : Let

exrun([i..j]) denote a run (i′, j′, p′) such that i′ ≤ i, j ≤ j′ and p′ ≤ (j− i+1)/2 if such exists.

Note that due to the periodicity lemma [35], such a run uniquely exists iff p ≤ (j− i+1)/2 and

p′ = p. Therefore, a 2-Period Query with interval [i..j] reduces to searching for exrun(i, j).

An optimal solution to the 2-Period Query problem was recently proposed in [67] as a by-

product of their algorithm for internal pattern matching. Their solution introduces a notion of

k-runs in which a run is distributed to one or more sets of runs satisfying some conditions. We

propose another optimal yet simpler solution using Lyndon trees.

Theorem 17. For any string T of length N , there is a data structure of O(N) space that

supports 2-Period Queries in O(1) time. The data structure can be built in O(N) time.

Proof. We construct LTree0(T ) and LTree1(T ) in O(N) time and space using Lemma 57. At

the same time, we compute the runs in T and label every right node that corresponds to an L-root

of a run with the information of the run. This can be done in O(N) total time by using a similar

procedure as described in Section 7.3.1, by simply omitting the condition i′ < i ≤ i′ + p. We

also augment these trees with data structures in O(N) time and space so that lowest common

ancestor (LCA) queries can be answered in O(1) time [6]. Given a query with interval [i..j],

our algorithm computes α0 = lca0([i..d(i + j)/2e]) and α1 = lca1([i..d(i + j)/2e]), and check

their right children. See Algorithm 6 for a pseudo-code.

We show the correctness of our solution below. Suppose that r = exrun([i..j]) = (i′, j′, p)

exists. Let ` ∈ {0, 1} with T`[j′ + 1] ≺` T`[j′ + 1 − p]. Since the period p of r is at most

b(j − i + 1)/2c, we have that i ≤ d(i + j)/2e − p < d(i + j)/2e + p − 1 ≤ j. Thus, there

exists an L-root λ of r with respect to ≺` that contains position d(i + j)/2e. By Lemma 58,

λ is a right node. Moreover, α` is an ancestor of λ since λ does not contain position i while

both contain position d(i + j)/2e. We claim that the right child of α` is λ. Assume to the

contrary that the right child β = [iβ..jβ] of α` is not λ = [iλ..jλ]. By definition of α`, β and λ,

we have that β must be an ancestor of λ and i′ ≤ i < iβ < iλ since λ is a right node. Also,

it must be that j ≤ j′ < jβ since otherwise, T [iβ..jβ] would have period p < |[iβ..jβ]| due

to run r, contradicting that it is a Lyndon word. However, by the definition of `, this implies

that T [iλ..iβ] ≺` T [iβ..jβ], still contradicting that T [iβ..jβ] is a Lyndon word. Therefore, if
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Algorithm 6: O(N) time preprocessing and O(1) time query for 2-Period Queries
Preprocessing Input: String T of length N

1 foreach ` ∈ {0, 1} do
2 Compute LTree`(T ) and preprocess for lca` queries;
3 foreach right node α in LTree`(T ) do
4 If α is an L-root of some run r = (i′, j′, p), label α with r;

Query Input: Interval [i..j]
5 foreach ` ∈ {0, 1} do
6 α` ← lca`([i..d(i+ j)/2e]); β` ← right child of α`;
7 if β` is labeled with run r = (i′, j′, p) and i′ ≤ i ≤ j ≤ j′ and p ≤ (j− i+ 1)/2 then
8 return p

9 return nil

exrun([i..j]) exists, at least one of the right children of α0 and α1 is an L-root of exrun([i..j]),

and can be found in constant time.

7.5 Conclusion

We showed a remarkably simple proof to the 15 year-old runs conjecture, by discovering a

beautiful connection between the L-roots of runs and the longest Lyndon word starting at each

position of the string. We also showed a bound of σ(N) < 3N for the maximum sum of expo-

nents of runs in a string of lengthN , improving on the previous best bound of 4.1N [24], as well

as improved analyses on related problems. We also proposed a simple linear-time algorithm for

computing all the runs in a string. Furthermore, realizing that the longest Lyndon word starting

at each position of the string corresponds to a right node in the Lyndon tree, we showed a simple

optimal solution to the 2-Period Query problem.

The characterizations of runs in terms of Lyndon words as shown in this paper significantly

improves our understanding of how runs can occur in strings. A remaining question is the exact

value of limN→∞ ρ(N)/N for general strings, which is known to exist but is never reached [49].

We note that this has been solved exactly only for a specific class of strings, namely, it has been

shown that the maximum number of runs in standard Sturmian words is at most 0.8N , and that

there exists an infinite sequence of standard Sturmian words with strictly increasing lengths

such that the limit of the ratio between the number of runs in it and its length equals 0.8 [5].
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Conclusions

In this thesis, we studied combinatorial properties on Lyndon words and developed algorithms

on Lyndon words.

In Chapter 3, we considered the reverse-engineering problems on Lyndon factorizations.

We then presented a linear time algorithm to compute a string T such that a given sequence of

pairs of positive integers corresponds to the Lyndon factorization of T . We also presented an

algorithm to solve the same problem in compact representation. Moreover, we showed a linear

time algorithm to compute only the smallest size of alphabet. For an enumeration problem, we

proposed a compact representation of all valid strings and an efficient algorithm to compute the

representation.

In Chapter 4, we developed a Lyndon factorization algorithm for a grammar compressed

string. The algorithm presented in the chapter computes the smallest suffix of a string. If we

want the Lyndon factorization of a string, we only have to use the algorithm recursively. Our

algorithm is faster than Duval’s algorithm (for an uncompressed string) when the input string is

highly compressed.

In Chapter 5, we developed Lyndon factorization algorithms for compressed strings again.

Firstly, we presented an algorithm to compute the Lyndon factorization of a grammar com-

pressed string. This algorithm is faster than the algorithm presented in Chapter 4. Secondly,

we presented an algorithm to compute the Lyndon factorization of an LZ78 compressed string.

This algorithm works in O(s log s) time where s is the size of the LZ78 factorization. In this

chapter, we showed an independent result that the size of the Lyndon factorization, for any

string, is a lower bound of the size of the smallest grammar. This result led to the problem

which was considered in Chapter 6.

In Chapter 6, we studied relations between Lyndon factorizations and non-overlapping LZ77
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factorizations. We showed that the number of Lyndon factors cannot be more than 2t where t is

the number of LZ77 phrases. This result is the first direct connection of these two factorizations.

The result improves significantly a previous, indirect bound given in Chapter 5. We also showed

that there are strings with t+ Θ(
√
t) Lyndon factors.

In Chapter 7, we showed the runs theorem and proposed a new linear time algorithm to

compute all runs in a string. We discovered and established a connection between the L-roots

of runs and the longest Lyndon word starting at each position of the string. Based on this

novel observation, we gave an affirmative answer to the runs conjecture. We also proved some

new bounds for related problems about runs. We gave a novel, conceptually simple linear-time

algorithm for computing all runs contained in a string, based on the proof of ρ(N) < N . Our

algorithm is the first linear-time algorithm which does not rely on the Lempel-Ziv parsing of

the string.
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