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Abstract 

Background:  Grayscale medical image segmentation is the key step in clinical computer-aided diagnosis. Model-
driven and data-driven image segmentation methods are widely used for their less computational complexity and 
more accurate feature extraction. However, model-driven methods like thresholding usually suffer from wrong 
segmentation and noises regions because different grayscale images have distinct intensity distribution property thus 
pre-processing is always demanded. While data-driven methods with deep learning like encoder-decoder networks 
always are always accompanied by complex architectures which require amounts of training data.

Methods:  Combining thresholding method and deep learning, this paper presents a novel method by using 2D&3D 
object detection technologies. First, interest regions contain segmented object are determined with fine-tuning 2D 
object detection network. Then, pixels in cropped images are turned as point cloud according to their positions and 
grayscale values. Finally, 3D object detection network is applied to obtain bounding boxes with target points and 
boxes’ bottoms and tops represent thresholding values for segmentation. After projecting to 2D images, these target 
points could composite the segmented object.

Results:  Three groups of grayscale medical images are used to evaluate the proposed image segmentation method. 
We obtain the IoU (DSC) scores of 0.92 (0.96), 0.88 (0.94) and 0.94 (0.94) for segmentation accuracy on different data-
sets respectively. Also, compared with five state of the arts and clinically performed well models, our method achieves 
higher scores and better performance.

Conclusions:  The prominent segmentation results demonstrate that the built method based on 2D&3D object 
detection with deep learning is workable and promising for segmentation task of grayscale medical images.
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Background
Medical imaging plays the key role in diagnosis or disease 
treatment by revealing internal structures with technolo-
gies mainly of computer tomography (CT), magnetic res-
onance imaging (MRI), ultrasound, and especially X-ray 
radiography [1]. Due to different absorption capability 

of various organs or tissues for radiations, waves, and 
etc., pixels belong to various object in grayscale medical 
images have diverse grayscale values usually from 0 to 
255 [2] and meanwhile values of pixels of the same object 
always gather within a range.

Medical image segmentation has been widely applied 
to make images clearer with anatomical or pathologi-
cal structures changes [3], such as bone segmentation 
[4], lung segmentation [5, 6], heart fat segmentation [7], 
liver or liver-tumor segmentation [8, 9] and Intracranial 
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hemorrhage segmentation [10, 11], etc. They could 
be considered to divide origin images into several sub 
regions for picking up some crucial objects and extract-
ing interesting features which improve the computer 
aided diagnostic efficiency. There has raised enormous 
approaches and they could be classified into two cat-
egories: model-driven techniques and data-driven tech-
niques [5, 12].

Many model-driven methods for medical image seg-
mentation, including thresholding, clustering, and region 
growing, were presented in particular before the wide-
spread application of deep learning [12]. Thresholding 
was one of the most common used method in practice 
due to its efficiency [13]. The basic working of threshold-
ing was to determine specific threshold values and each 
pixel in the image could be classified as the foreground or 
background depending on the comparison between their 
intensity values and threshold values [14–16]. Traditional 
thresholding methods always relied on single models for 
universal segmentation tasks which could lead to incor-
rect results. Also, segmentation objects often occupied 
only parts of whole images and pixels of different objects 
may share same intensity values, so noises could appear if 
image segmentation was applied overall.

With the era of big data coming, emerging data-driven 
technologies with deep learning have remarkably dem-
onstrated in variety medical image segmentation task. 
Supervised learning methods and especially some con-
volutional neural network (CNN) based encoder-decoder 
structures such as fully convolutional networks (FCN) 
[17], U-Net [18], DeepLab [19] has practically proved [5]. 
Compared with traditional methods, deep learning could 
help analyze medical images more effectively and extract 
more detailed features.

Although these end-to-end structures was pragmatic 
for medical images semantic segmentation, the seg-
mentation accuracy always relied on a large amount of 
training dataset. But medical image annotation could 
be time-consuming and quite expensive, thus trans-
fer learning was used to solve the problem of limited 
labeled data and pre-trained networks on natural images 
as ImageNet [20] were often adopted for image seg-
mentation [21, 22]. However, considering these datasets 
were mainly designed to train models for object detec-
tion or classification, they may be more suitable to pre-
train networks for object detection. This inspired us 
to segment images with object detection. We find that 
grayscale images could be segmented according to the 
comparison of thresholding values with values of pixels 
in images and these pixels could be turned into 3D point 
cloud according to their positions and grayscale values. 
Thus, by applying 3D object detection in the point cloud, 
we could achieve groups of points within 3D bounding 

boxes. The top and the bottom of boxes represent the 
thresholding values for segmentation and after mapping 
these points into 2D images, corresponding pixels could 
compose segmented results. Besides, 2D object detection 
could determinate regions of interest (ROI) in grayscale 
medical images to reduce noises. Therefore, according to 
above strategy, we propose the grayscale medical image 
segmentation method based on 2D&3D object detection.

The remainder of this paper is organized as following: 
second section  introduces the applied medical Image 
datasets and describes details of proposed technologies, 
while in third section the obtained results are displayed 
and the discussion is provided. Finally, forth section pre-
sents the conclusions as well as future work suggestions.

Methods
Image datasets
Since bone and chest X-ray images are the most com-
mon grayscale medical images in clinical, two typical 
sets of available datasets are prepared including muscu-
loskeletal radiographs, and chest radiographs. Muscu-
loskeletal radiographs about upper and lower extremity 
includes musculoskeletal radiographs (MURA) [23], 
lower extremity radiographs (LERA) [24] and prepared 
phalanx and forearm X-ray images. Chest radiographs 
mainly come from chest radiography (CheXpert) [25, 
26]. MURA and LERA are large datasets of bone radio-
graphs from Stanford University and they contain X-ray 
images about the upper and lower extremity respectively. 
CheXpert is a large dataset of chest radiographs and it is 
also from Stanford University. Besides, phalanx and fore-
arm X-ray images are obtained with the portable X-ray 
machine as Fig.  1 Shown. Totally, 2509 cases among 
MURA and LERA, 3100 cases of CheXpert and 500 pha-
lanx and forearm X-ray images are adopted for models 
training and validation.

The proposed grayscale medical image segmentation 
method is based on the supervised artificial intelligence 

Fig. 1  The portable X-ray machine
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techniques, and labels are performed manually in two 
types medical images for model training. Figure 2 shows 
origin images, and their respective Ground Truth (GT) 
images in different datasets.

Grayscale image segmentation framework
The proposed image segmentation method maps each 
pixel in the medical grayscale image to 3D coordinates 
as the pixel-features point cloud, according to their posi-
tions and gray values. By acquisition of foreground points 
and their corresponding bounding box using 3D object 
detection method, we could achieve threshold values 
and the segmentation result of the corresponding gray-
scale image. The whole pipeline and the implementation 
flow of this method are shown in Figs.  3 and 4 respec-
tively. Given a grayscale medical image, after (1) obtain-
ing interest regions of associated segmentation objects in 
the image, (2) generating 3D bounding box proposals in 
point cloud and (3) the regression of their locations and 
scales, the refined boxes could be achieved. The projec-
tion of points in refined bounding box into the 2D image 
is the segmentation result.

Related work
According to the proposed strategy and above pipeline, 
object detections play the central roles at each block 
of our method. Many researches about 2D&3D object 
detection has raised ever and they could perform well 
especially those with deep learning.

The current mainstream 2D object detection methods 
based on deep learning could be generally classified into 
two-stage and one-stage methods [27]. With two-stage 
methods, proposal bounding boxes are generated firstly 
and the further refinement of proposals and confidences 
is obtained in the second stage [28]. While using the one-
stage methods [29, 30], the location and the classifica-
tion of object bounding boxes could be estimated directly 
without refinement which means one-stage methods are 
usually faster than two-stage ones but have lower object 
detection accuracy [31].

The widespread application of 3D geometric data spurs 
the development of 3D object detection and it could be 
categorized into monocular/stereo image-based, point 
cloud-based and multimodal fusion-based methods in 
terms of the modality of input data [32]. Due to point 
clouds are the most regular data which could be achieved 

Fig. 2  Examples of medical images in two datasets and manual segmentation results
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with different sensors, enormous researches of point 
cloud-based methods have raised [33–35]. Among these 
method, different data format like raw point clouds or 
3D voxel grids transformed from points could be feed 
into deep net architectures to find targets with bounding 
boxes and their classes [36].

Achievement of interest regions in image
In a medical grayscale image, pixels of the segmentation 
object always just take up a part of the entire image and 
there may exists noisy pixels with the same gray values 
in irrelevant regions. Therefore, 2D object detection 

is adopted as the pre-processing procedure to identify 
the specially interest regions with segmentation objects 
and reduce noisy pixels as shown in Fig. 5.

Compared with the accuracy, the proposed pre-
processing procedure cares more about the detection 
speed, so we adopt the one-stage method YOLOv3 
[37, 38] as the backbone network. And considering the 
scarcity of labeled medical grayscale images, we apply 
the fine tuning—a transfer learning method [31] to 
migrate most layers of the backbone model which was 
pretrained on ImageNet, Pascal VOC (Pattern analysis, 
statistical modeling and computational learning visual 
object classes) and MS COCO (Microsoft common 
objects in context) datasets [39, 40]. As Fig.  6. shown, 
with fine tuning method, we could freeze N–M layers 
of pre-trained model and only train the last M layers 
on local dataset. In order to retain the detection ability 
of pre-trained model as much as possible, and ensure 
the stability of the loss change during the training pro-
cess, the proposed image segmentation pre-processing 
method only unfreeze the last 3 layers of pre-trained 
network for training.

Fig. 3  The pipeline of the proposed grayscale medical image segmentation method

Fig. 4  The implementation flow of the proposed method
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Generation of proposal bounding box in pixel‑features point 
cloud
The grayscale value of each pixel in interest regions rep-
resents their brightness [41]. Pixels compose the same 
tissues in particular image always share the grayscale 
value ranges and we could recognize them manually. All 
values range from 0 to 255 (Typically zero is taken to be 
black, and 255 is taken to be white). Darker pixels rep-
resent structures like soft tissues having less attenuation 
to the beam, while light ones represent structures like 
bones having high attenuation. Due to the lack of detailed 

gray values of pixels displayed on 2D images, it is hard to 
determinate their specific grayscale value ranges.

Thus, we turn pixels in 2D interest regions into the 
3D representations as Fig.  7 shown. In Fig.  7. the first 
two dimensions represent pixels locations and the third 
dimension represents their grayscale values. The 3D 
data could be considered as the pixel-features point 
cloud and it is distinct and intuitive to obtain points 
which represent pixels belong to the same tissues. This 
helps us translate the 2D image segmentation task into 
the 3D object detection with point cloud. We only 
need to determine locations and widths of 3D bound-
ing boxes which contain the foreground points during 

Fig. 5  Achievement of interest regions in 2D images

Fig. 6  The proposed 2D object detection network with fine-tuning method
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the object detection. Then bottoms and tops of bound-
ing boxes could represent the segmentation required 
threshold values for 2D images.

Inspired by two-stage 2D object detection meth-
ods, we present a novel two-stage 3D object detec-
tion method, which is operated on pixel-features point 
cloud. In the first stage of existing popular two-stage 
2D object detection method, the proposal bounding 
boxes with its classification scores are generated with 
convolutional neural network and the refinements of 
those boxes are obtained in the following stage after the 

Non-Maximum Suppression (NMS). While in our pro-
posed 3D object detection method, based on two-stage 
strategy, the proposal 3D bounding boxes with the clas-
sification scores of points inside them are estimated 
firstly and these proposals are refined with regression 
in second stage.

The generation of proposal bounding boxes in pixel-
features point cloud has three modules. As shown in 
Fig.  8, These modules include localization of anchor 
boxes, classification of points inside boxes utilizing 
PointNet [36] as backbone network and Non-Maximum 
Suppression with 3D Intersection-over-Union (IoU).

Fig. 7  Turning pixels in interest regions into the pixel-features point cloud
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Anchor boxes  Proposal bounding boxes generation 
takes the lx × ly × 255 point cloud representation as 
input where lx and ly respectively indicate the length and 
width of 2D interest region. In order to avoid high over-
lap rate of predict boxes and the low search efficiency 
using selective search as Region Convolutional Neural 
Network (RCNN) method, inspired by the Region Pro-
posal Networks (RPN) in Faster RCNN, we apply the 
anchor boxes method for electing predict boxes.

To generate proposals, we slide a small network over 
the input by a shared 3D convolutional layer referred to 
RPN and Single Shot MultiBox Detector (SSD) method 
as Fig. 8 shown. At each sliding-box location, we could 
predict multiple proposals simultaneously, and we 
denote the maximum number of possible proposals 
as k . These proposals are parameterized relative to k 
3D anchor boxes. Each anchor is centered at its cor-
responding sliding box and is associated with a scale. 
Each anchor is defined with coordinates (lh, lw) where 
lh and lw represent its location and scale. We apply 3 
scales by default, deciding k = 3 anchors at each sliding 
box and n× k anchors in total.

Classification of point cloud  Anchor boxes with differ-
ent scales share the same box-length lx and box-width ly , 
and they are distinguished by their center locations and 
box-heights. In order to determine the proposal bound-
ing box from numerous anchor boxes, we utilize the 
PointNet as our backbone network and apply the fine-
tuning method for training our classification module.

The classification network in Fig. 8 indicates that raw 
point clouds are directly taken as the input and each 
point is processed independently at the initial stage. 
Due to point clouds could be easily applied rigid or 
affine transformations, input points are sorted into a 
canonical order with the first affine transformation by 
a mini-net (T-net) and moreover, after points features 
extraction with multi-layer perceptron (mlp), fea-
tures from different points could also be aligned using 
another alignment network by feature transforma-
tion matrix. Then, the max pooling layer aggregates all 
points features extracted from the second mlp and out-
puts the global features. The final fully connected layers 
set the global feature as input and outputs k scores for 
all the k candidate classes.

Fig. 8  The generation of proposal bounding boxes in pixel-features point cloud
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It should be noted that models-based point clouds 
datasets which mapped from grayscale medical images 
is scarce, thus we apply the fine-tuning method again. 
With the migration of PointNet model pretrained on 
ModelNet40 [42], we freeze most layers of the net-
work except the final fully connected layers as shown 
in Fig. 9.

NMS with  3D IoU  After the above module, the classi-
fication results of point cloud in each anchor box could 
be achieved with scores. But as many 2D object detec-
tion method, there exists some repeated proposals of 
one object. They belong to the same candidate class and 
overlap with the local highest-score box. For reducing the 
redundancy, we adopt the non-maximum NMS on these 
proposals with 3D intersection over union (3D IoU). Dif-
ferent from the IoU computation for 2D based on the rela-
tionships of areas between box A and B [43], like Fig. 10 

shows, volumes of two boxes are applied for 3D IoU cal-
culation [44] which could be formulated as:

Through the setting of 3D IoU threshold for NMS and 
ranking with classification scores, it remains only one 
box for each candidate class which could be considered 
as the proposal bounding box.

Refinement of proposal bounding box
Even though high classification scores of the proposal 
bounding boxes, the location and scale errors between 

(1)

3D IoU(A,B) =
Av ∩ Bv

Av ∪ Bv
=

Av ∩ Bv

|Av| + |Bv| − Av ∩ Bv

Fig. 9  The proposed point cloud classification network with fine-tuning method

Fig. 10  IoU computation for 3D. The intersection volume is 
highlighted in gray

Fig. 11  Refinement of proposal bounding box
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them and ground truth exist. We train and implement a 
class-specific bounding box linear regression model to 
reduce errors and improve detection performance.

On the assumption that we achieve one proposal 
bounding box Pi and its nearby ground-truth box Gi as 
shown in Fig. 11, where Pi = (Pi

lh
,Pi

lw
) specifies height lh 

of the center of proposal bounding box together with its 
width lw . Meanwhile, the ground-truth bounding box Gi 
is specified in the same way: Gi = (Gi

lh
,Gi

lw
) . The goal of 

the bounding box regressor is to learn a transformation 
which could map each proposal bounding box P to the 
ground-truth box G.

The transformation could be parameterized in terms of 
two functions dlh(P) and dlw (P) . The first function speci-
fies the translation of bounding box P ’s center which is 
scale-invariant, while the second specifies the log-space 
translation of its width. By applying the transformation as 
following equations, an input proposal bounding box P 
could be transformed into a predicted ground-truth box 
Ĝ.

where exp is the natural exponential function.
Inspired by the 2D object detection, the bounding 

box regression of our method is performed on global 
features which is max pooled from PointNet model. 
Above two functions dlh(P) and dlw (P) could be mod-
eled as linear functions of the global features of proposal 
bounding box P , denoted as fmp(P) . Therefore, we have 
d∗(P) = T∗ × fmp(P) , where ∗ represents lh or lw , and T∗ 
is a vector composed of learnable model parameters.

The transformation targets t∗ between proposal bound-
ing box P and the real ground-truth box G could be 
defined as:

Thus, after setting the loss function and by optimizing 
the regularized least squares objective as following, we 
could learn T∗ and achieve the transformation to refine 
the proposal bounding box.

(2)Ĝlh = Plw × dlh(P)+ Plh

(3)Ĝlw = Plw × exp
(
dlw (P)

)

(4)tlh =
Glh − Plh

Plw

(5)tlw = log

(
Glw

Plw

)

(6)Loss =

N∑

i

(
ti∗ − T̂∗ × fmp

(
Pi
))2

where argmin means T∗ depends on the minimum of 
Loss.

Obtaining segmentation results
As shown in Fig.  3, 3D bounding boxes in space could 
represent 3D positions range of pixel-feature points 
among them. Since 3D point cloud is mapped from pixels 
in 2D images according to positions and grayscale values, 
3D bounding boxes could also present positions range 
and grayscale values range of 2D pixels correspond-
ing to 3D points among boxes. After the refinement, 3D 
bounding boxes with accurate height and weight could be 
achieved. The top and the bottom of refined boxes repre-
sent the thresholding values for segmentation, while the 
front, back, left and right of boxes describe regions for 
segmentation. By remapping points among refined 3D 
bounding boxes to pixels in 2D images, these 2D pixels 
could compose segmentation results.

Training strategy
The proposed grayscale medical image segmentation 
method is based on 2D and 3D object detection models. 
Transfer learning and piecewise learning rate are applied 
for object detection models training. In the training of 
2D object detection model, YOLOv3 which is trained 
on datasets including ImageNet, Pascal VOC and MS 
COCO is selected as the pretrained model. In the first 
stage, all but last 3 layers are frozen and the model is 
trained with prepared datasets including musculoskeletal 
and chest radiographs in the learning rate as 0.001 for 
25 epochs. In the second stage, all layers of the network 
are unfrozen and they are trained in the learning rate 
as 0.0001 for 25 epochs. It takes 1.75  h to train the 2D 
object detection model. 3D object detection is composed 
of point cloud classifier and 3D bounding box regressor. 
In the training of point cloud classifier, PointNet which 
is trained on ModelNet40 is chosen as the pretrained 
model. In the first stage, all layers except last mlp module 
are frozen and the model is trained with point could data-
sets of bone and chest in the learning rate as 0.001 for 
100 epochs. Then, all layers are unfrozen and the model 
is trained in the learning rate as 0.0001 for 100 epochs in 
the second stage. It takes 2.25 h to train the point cloud 
classifier; In the training of 3D bounding box regressor, 
due to the simple model and the requirement of bound-
ing box refinement, the model is trained with one-stage 
strategy in a small learning rate as 0.0001 for 200 epochs 
and the training takes 0.25 h. Besides, Adam is selected as 
the optimizer for training of 2D object detection model 
and point cloud classifier, while Stochastic Gradient 

(7)T∗ = argmin
T̂∗
Loss + �T̂

2

∗
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Descent is chosen as the optimizer for 3D bounding box 
regressor training.

Performance assessment
In this study, we evaluate the segmentation performance 
by following four metrics: Dice similarity coefficient 
(DSC) scores [6], intersection over union (IoU), False 
negative (FN) and False positive (FP) [7]. Ranges of DSC 
and IoU are between 0 and 1, higher values of them and 
lower values of FN and FP indicate the higher accuracy. 
The calculation formula of DSC is defined as:

where T  is the detected region and G is the ground truth 
region.

Results
Our model is implemented with Pytorch [45] and its 
entire training process is performed on a computer with 
Windows 10 operating system, Intel Core i7 processor 
with 3.0 GHz, 64 GB of RAM and a single NVIDIA GPU 
(Quadro RTX 4000).

After training process, by applying the proposed 
method with the given grayscale medical images input 
and following the method pipeline as Fig.  3. shown, 
regions of target issues could be segmented. Each block 
in Fig. 12. presents several examples of segmentation per-
formance from different kinds of datasets, as well as pro-
cessing results after each stage, where white represents 

(8)DSC =
2|T ∩ G|

|T | + |G|

true positive pixels and black is for true negatives pixels. 
Moreover, according to evaluation criteria, Table 1 shows 
four metrics including IoU, DSC, FN and FP to assess 
the segmentation performance of images in different 
datasets.

As shown in Fig. 12 and Table 1, we could obtain high 
IoU and DSC scores with satisficed segmentation results 
on different datasets. This indicates that based on the 
proposed method, 2D interest regions and 3D bounding 
boxes containing target pixel-features point cloud during 
the processing could be successfully achieved.

Discussion
In this section, we compare the image segmentation per-
formance of the proposed method with multiple famous 
and clinically performed well models. As well known, 
CNN based models are among the most successful and 
widely used for medical image processing. Besides the 
milestone FCN model, UNet built on top of the fully 
convolutional networks with a U-shaped architecture to 
capture context information, and based on it, Res-UNet 
[46] improved the segmentation results using residual 
blocks as the building block and UNet++ [47] enhanced 
segmentation quality of varying-size objects. Also, Atten-
tiom UNet [48] achieved the better performance with the 
attention gate. We train these models in the same dataset 
as our proposed method and Table 2 presents the com-
parison results. Meanwhile, Fig. 13. shows results of each 
case in Fig. 12. with different methods by visualization. It 
indicates that compared with other models, our proposed 

Fig. 12  Segmentation results from different kinds of datasets. From the first to the last column are origin images, ground truth, achievements 
of interest regions, representations of pixel-feature point cloud, local segmentation results, and segmentation results in original image size, 
respectively
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Fig. 12  continued
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approach improves the segmentation performance and 
it obtains the highest IoU scores of 0.92, 0.88 and 0.94 
with three datasets respectively. In our approach, 2D and 
3D object detection models could be both trained with 
transfer learning method which makes it possible to 
achieve a quite accurate image segmentation model with 
small training datasets. While other sematic segmenta-
tion methods may be sensitive to the scale of datasets 
because the pre-trained model could only help simplify 
the downsample training procedure, and the training of 
upsample still requires a number of datasets. This indi-
cates that it is impossible to adapt them for every appli-
cation task well because training data is scare especially 

in medical image field. Moreover, in grayscale images, 
grayscale values of pixels are important features to distin-
guish different objects, and the intuitive logic of grayscale 
image segmentation could be considered as the collection 
of pixels with similar grayscale values. So, the proposed 
image segmentation model which obtains the purpose 
ranges of grayscale values with 3D object detection have 
better explicability and segmentation effect.

Under different medical imaging devices and environ-
ment in clinical, ranges of grayscale values of pixels which 
compose the same segmentation target in different medi-
cal images are always different. But our proposed method 
could settle this and we could obtain thresholding values 
(top and bottom of 3D bounding boxes) by mapping pix-
els in 2D images into 3D point clouds and adopting 3D 
object detection with features of pixels.

Conclusions
In this paper, we present a new grayscale medical image 
segmentation method with object detection models. 
In this method, 2D object detection model is applied to 
achieve interest regions of segmentation objects. After 
mapping 2D pixels in interest regions to 3D point cloud 

Table 1  The values of evaluative metrics from experiments in 
different datasets

Datasets IoU DSC FN FP

Musculoskeletal radiographs 0.92 0.96 0.05 0.02

Chest radiographs 0.88 0.93 0.11 0.15

Images from X-ray machine 0.94 0.94 0.06 0.08

Table 2  Comparison between segmentation performance (IoU) of the proposed approach with other methods

Datasets Proposed FCN UNet UNet++ Res-UNet Attention Unet

Musculoskeletal radiographs 0.92 0.82 0.85 0.84 0.91 0.90

Chest radiographs 0.88 0.76 0.81 0.83 0.88 0.86

Images from X-ray machine 0.94 0.72 0.82 0.87 0.85 0.91

Fig. 13  Comparisons of segmentation performance on each case in Fig. 12. with different methods
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according to their positions and grayscale values, 3D 
object detection model is adopted to obtain bounding 
boxes containing target pixels-feature points. After pro-
jecting these points to 2D images, they could composite 
segmentation results. Experiments results prove the bet-
ter effectiveness and accuracy of our method than the 
other compared models. In clinical applications, more 
than improving segmenting performance with bone and 
chest X-ray images, the proposed segmentation method 
could also be carried over for other kinds of grayscale 
medical images in diagnosis efficiently and conveni-
ently. This is because two object detection models could 
be trained separately with little labeling cost based on 
transfer learning method. Besides, pretrained models for 
both 2D and 3D object detection in our method could be 
changed and upgraded flexibly for further accurate seg-
mentation results.
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