“Amir is a fantastic and innovative researcher and collaborator. He has done outstanding work on a broad range of areas including membrane separation, nanocomposites, and sensors. ”
About
Having over 15 years of passion to create innovations for a sustainable future, I have…
Activity
-
Wonderful to have had the opportunity to chair Membrane Society of Australasia (MSA) Society MSA-AMC 2024 alongside Leonard Tijing, Chi (David)…
Wonderful to have had the opportunity to chair Membrane Society of Australasia (MSA) Society MSA-AMC 2024 alongside Leonard Tijing, Chi (David)…
Liked by Amir Razmjou
-
A collaboration with Fraunhofer IAO and Edith Cowan University is bringing to Australian Industry a high quality course on R&D Leadership…
A collaboration with Fraunhofer IAO and Edith Cowan University is bringing to Australian Industry a high quality course on R&D Leadership…
Liked by Amir Razmjou
-
Today, we gathered at beautiful Point Walter for our Christmas party, soaking up the sun, sharing laughs, and celebrating the incredible year that…
Today, we gathered at beautiful Point Walter for our Christmas party, soaking up the sun, sharing laughs, and celebrating the incredible year that…
Liked by Amir Razmjou
Experience
Education
Publications
-
Is lithium brine water?
Elsevier
With the development of light and rechargeable batteries for electric vehicles, global demand for lithium has increased considerably in recent years. This has drawn more attention to how lithium is produced, especially on primary extraction operations such as those at the Salar de Atacama in Northern Chile. There are concerns that brine extraction at the Atacama could irreversibly damage the basin's complex hydrological system. However, differing opinions over the definition of water have…
With the development of light and rechargeable batteries for electric vehicles, global demand for lithium has increased considerably in recent years. This has drawn more attention to how lithium is produced, especially on primary extraction operations such as those at the Salar de Atacama in Northern Chile. There are concerns that brine extraction at the Atacama could irreversibly damage the basin's complex hydrological system. However, differing opinions over the definition of water have frustrated basic action measures for minimizing impacts of operations like these. Some lithium industry stakeholders have historically described brine as a mineral, while others emphasize that brine is also a type of water in a complex network of different water resources. In this communication, we show that brines are undeniably a type of water. We support this position by investigating brine's water molecular structure using molecular dynamics simulations and comparing Gibbs formation energy of the brine using thermodynamic principles. Molecular dynamics show that the structure of water molecules in brine is similar to the structure of molecules in pure water at a pressure of 1.2 atm. The analysis of Gibbs formation energy shows that more than 99% of the brine's formation energy is directly from water, not dissolved minerals.
-
Highly stable Li+ selective electrode with Metal-Organic Framework as ion-to-electron transducer
Elsevier
Detection of Li+ ions is vital due to their applications as therapeutic drugs in medicine. In addition, finding Li+ in geothermal brines is gaining interest because of its application in energy storage systems. Monitoring Li+ levels in an aqueous environment can be achieved using chemical sensors. Solid-contact sensors (SCS) have attracted significant attention because of their portability, high sensitivity and lack of requirement of calibration. However, most solid-contact sensors suffer from…
Detection of Li+ ions is vital due to their applications as therapeutic drugs in medicine. In addition, finding Li+ in geothermal brines is gaining interest because of its application in energy storage systems. Monitoring Li+ levels in an aqueous environment can be achieved using chemical sensors. Solid-contact sensors (SCS) have attracted significant attention because of their portability, high sensitivity and lack of requirement of calibration. However, most solid-contact sensors suffer from low stability, especially in the long term. As a result, ion-to-electron transducers have been utilized to mitigate this problem. Recently Metal-Organic Frameworks (MOFs) have proven to be excellent candidates for use as ion-to-electron transducers in SCSs. In this study, we have used Ni-HAB MOF to produce a highly stable Li+ selective electrode. Increasing the thickness of the MOF to 3.28 µm enhanced the sensor's capacitance 100-fold leading to the lowest drift in Li+ SCSs reported in the literature, mV/h with a low limit of detection (LOD) of and a 57.6 mV/dec sensitivity. The sensor exhibited a linear output and a fast response time of less than 1 second. In addition, the sensor developed was used in a real brine to detect the concentration of Li+ ions, where the obtained results were in good agreement with the actual concentration of Li+ ions. This paper offers a solution for the persistent issues of solid-contact sensors such as drift, response time, and limit of detection and paves the way for the miniaturization of sensors to be used in real-life applications.
-
An Evolving Insight into the Progress of Material Design for Membrane-Based Electrochemical Lithium Ion Detection
Wiley
The global shift of energy resources from fossil fuel to renewable energy sources has already begun. The critical energy element of lithium (Li) plays an important role in this energy transition, which is demonstrated by the fast increase in its demand. Rapid and continuous detection of Li has become an important field, as the overexploitation of Li sites, mainly brines, could compromise the nearby aqueous resources that are less salty or contain freshwater. Spent Li-ion batteries also pose…
The global shift of energy resources from fossil fuel to renewable energy sources has already begun. The critical energy element of lithium (Li) plays an important role in this energy transition, which is demonstrated by the fast increase in its demand. Rapid and continuous detection of Li has become an important field, as the overexploitation of Li sites, mainly brines, could compromise the nearby aqueous resources that are less salty or contain freshwater. Spent Li-ion batteries also pose deleterious effects on the environment and aqueous resources. Monitoring of lithium in blood during treating major depressive disorders is also crucial for decreasing the risk of potential lithium toxicity. Li selectivity and stability of membranes as an essential part of any Li sensor is the key to fabricate a high-performance Li ion-selective electrode (ISE). Here, the latest progress in Li-ISEs is covered along with the advanced nanostructured materials that have been recently used for the preparation of Li ion-selective membranes. The new concepts and technologies that have been created for the purpose of Li mining to be used for Li sensing development are also critically reviewed and highlighted.
-
The effect of D-spacing on the ion selectivity performance of MXene membrane
Elsevire
2-D materials with nanofluidic channels have gained significant attention for their potential as an ion separation membrane. However, the fundamental understanding of the interactions between nanochannel sizes and ion selectivity and conductivity remains complex as experimentally controlling the free interlayer spacing in sub-nanometer scales is challenging. Herein, we utilize molecular dynamic (MD) simulations to tailor the free interlayer spacing between a model 2-D MXene membrane to…
2-D materials with nanofluidic channels have gained significant attention for their potential as an ion separation membrane. However, the fundamental understanding of the interactions between nanochannel sizes and ion selectivity and conductivity remains complex as experimentally controlling the free interlayer spacing in sub-nanometer scales is challenging. Herein, we utilize molecular dynamic (MD) simulations to tailor the free interlayer spacing between a model 2-D MXene membrane to understand their effects on ion transport behaviour. As a validation, the free interlayer spacing of the MXene nanosheets was altered by impregnating different type of ions, which is then used in an electrically driven ion separation system. The simulation result shows that as the free interlayer spacing increases from below to above 6 Å, the selectivity of monovalent Li+ and K+ compared to Mg2+ decreases due to the reduced entrance energy barrier for Mg2+; however, higher overall ionic conductivity can be achieved. The experimental data using a membrane with free interlayer spacing between 6 and 7 Å agrees well with the simulation study. The difference in the ion permeation of H+, K+, Na+, Li+, Ca2+, and Mg2+ was not only attributed to the nanochannel size but also considering the degree of ion dehydration and ions interactions to the –O binding site of the membrane. Further investigations demonstrated that ion transport mechanism through MXene nanochannels followed the surface-charge-governed behaviour in HCl and KCl solutions at different concentrations, as evident from significantly higher ionic and proton conductivity at low concentrations (<10−3 M) compared to the bulk solutions. This work leads to a better understanding of 2-D nanochannel design in ion transport applications.
-
Lithium ion-selective membrane with 2D subnanometer channels
Elsevire
In the last two years, the rapidly rising demand for lithium has exceeded supply, resulting in a sharp increase in the price of the metal. Conventional electric driven membrane processes can separate Li+ from divalent cations, but there is virtually no commercial membrane that can efficiently and selectively extract Li+ from a solution containing chemically similar ions such as Na+ and K+. Here, we show that the different movement behavior of Li+ ion within the sub-nanometre channel leads to…
In the last two years, the rapidly rising demand for lithium has exceeded supply, resulting in a sharp increase in the price of the metal. Conventional electric driven membrane processes can separate Li+ from divalent cations, but there is virtually no commercial membrane that can efficiently and selectively extract Li+ from a solution containing chemically similar ions such as Na+ and K+. Here, we show that the different movement behavior of Li+ ion within the sub-nanometre channel leads to Li+ ion-selectivity and high transport rate. Using inexpensive negatively charged 2D subnanometer hydrous phyllosilicate channels with interlayer space of 0.43 nm in a membrane-like morphology, we observed that for an interlayer spacing of below 1 nm, Li+ ions move along the length of the channel by jumping between its two walls. However, for above 1 nm spacing, the ions used only one channel wall to jump and travel. Molecular dynamic (MD) simulation also revealed that ions within the nanochannel exhibit acceleration-deceleration behavior. Experimental results showed that the nanochannels could selectively transport monovalent ions of Li+> Na+> and K+ while excluding other ions such as Cl− and Ca2+, with the selectivity ratios of 1.26, 1.59 and 1.36 for Li+/Na+, Li+/K+, and Na+/K+ respectively, which far exceed the mobility ratios in traditional porous ion exchange membranes. The findings of this work provide researchers with not only a new understanding of ions movement behavior within subnanometer confined areas but also make a platform for the future design of ion-selective membranes.
-
Concentrating brine for lithium recovery using GO composite pervaporation membranes
Esevire
The extraction process of highly demanded lithium from brine normally starts with a solar evaporation pond to increase the lithium concentration, which takes more than a year and is weather-dependent. This work evaluated the enrichment of lithium from salt lake brine using graphene oxide (GO) composite pervaporation membrane with the crystallizer unit. The deposition of stacked GO layer on the commercially available hydrophobic membranes can tackle the membrane wetting and salt crystallization…
The extraction process of highly demanded lithium from brine normally starts with a solar evaporation pond to increase the lithium concentration, which takes more than a year and is weather-dependent. This work evaluated the enrichment of lithium from salt lake brine using graphene oxide (GO) composite pervaporation membrane with the crystallizer unit. The deposition of stacked GO layer on the commercially available hydrophobic membranes can tackle the membrane wetting and salt crystallization issues. The initial water flux was 11 L/m2 h at 70 °C, which was 20 times higher than that of solar evaporation pond (~0.5 L/m2 h) and 10 times lower footprint. With high initial feed concentration (>200 g/L of salt) the GO composite pervaporation membrane increased lithium concentration from 0.3 to 1.27 g/L (73% feed volume reduction). Assuming 10 m3/day capacity of the proposed solar pervaporation system, an economic analysis showed that the technique is not economically sustainable when solely aiming at the lithium extraction, while it becomes competitive with the traditional method when aiming at simultaneously producing deionized water and lithium. A payback time of 3.6–27 years is achievable with the sale price of water and LiOH at US$ 0.3–1 per 20 L and US$ 20 per kg, respectively. A continuous process is also possible with backup gas heater and waste heat.
-
Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries
Elsevier
The rapidly growing demand for lithium has resulted in a sharp increase in its price. This is due to the ubiquitous use of lithium-ion batteries (LIBs) in large-scale energy and transportation sectors as well as portable devices. Recycling of the LIBs for being the supply of critical metals hence becomes environmentally and economically viable. The presently used approaches for the recovery of spent LIBs like pyrometallurgical process can effectively recover nickel, cobalt, and copper, while…
The rapidly growing demand for lithium has resulted in a sharp increase in its price. This is due to the ubiquitous use of lithium-ion batteries (LIBs) in large-scale energy and transportation sectors as well as portable devices. Recycling of the LIBs for being the supply of critical metals hence becomes environmentally and economically viable. The presently used approaches for the recovery of spent LIBs like pyrometallurgical process can effectively recover nickel, cobalt, and copper, while lithium is usually lost in slag. Bioleaching process as an alternative method of extraction and recovery of valuable metals from the primary and secondary resources has been attracting a large pool of attraction. This method can provide higher recovery yield even for low concentration of metals which makes it viable among conventional methods. The bioleaching process can work with lower operating cost and consumed water and energy along with a simple condition, which produces less hazardous by-products ultimately. Here, we comprehensively review the biological and chemical mechanisms of the bioleaching process with a conclusive discussion to help how to extend the use of bioleaching for lithium extraction and recovery from the spent LIBs with a focus on recovery yields improvement. We elaborate on the three main types of the reported bioleaching with considering effective parameters including temperature, initial pH, pulp density, aeration, and medium and cell nutrients to sustain microorganism activity. Finally, practical challenges and future opportunities of lithium are discussed to inspire future research trends and pilot studies to realize the full potential of lithium recovery using sustainable bioleaching processes to extend a clean energy future.
-
Effect of chemistry and geometry of GO nanochannels on the Li ion selectivity and recovery
Eslevire
The continually increasing demand for lithium (Li) is predicted to soon exceed its availability, rendering it a geopolitically significant resource. Although seawater is considered one of the largest Li resources, the coexistence of Li ion (Li+) with chemically similar ions such as Na+ and K+ in seawater and its low concentration makes the Li+ extraction from this resource very challenging. Here, the chemical and morphological characterization of graphene traps for maximum lithium-ion capture…
The continually increasing demand for lithium (Li) is predicted to soon exceed its availability, rendering it a geopolitically significant resource. Although seawater is considered one of the largest Li resources, the coexistence of Li ion (Li+) with chemically similar ions such as Na+ and K+ in seawater and its low concentration makes the Li+ extraction from this resource very challenging. Here, the chemical and morphological characterization of graphene traps for maximum lithium-ion capture was introduced by using a theoretical approach. The results illustrate the effect of the key parameters including interlayer spacing and length, surface charge, and functional group, and nanochannel morphology on Li+ selectivity, which results in the cavities with innovative intrinsic traps. These cavities benefit from cation-π interactions, the ability to control interlayer spacing based on the functional group, and a variable energy barrier. The improvements in Li+ selectivity in functionalized asymmetrical graphene nanochannels has been demonstrated, providing new insights for Li+ selective material design.
-
Metal-Phenolic network and metal-organic framework composite membrane for lithium ion extraction
Eslevire
To tackle the increased demand of lithium production, the separation of monovalent and divalent cations is crucial for lithium recovery from brine. Recently, metal-organic framework (MOF) has shown great potential in such application due to its tuneable pore size and pore channel chemistry in the sub-atomic scale. Commercialization of ion-selective MOF-based membrane requires the fabrication of MOF thin film on a polymeric support that enables scale-up procedure. Herein, we specifically design…
To tackle the increased demand of lithium production, the separation of monovalent and divalent cations is crucial for lithium recovery from brine. Recently, metal-organic framework (MOF) has shown great potential in such application due to its tuneable pore size and pore channel chemistry in the sub-atomic scale. Commercialization of ion-selective MOF-based membrane requires the fabrication of MOF thin film on a polymeric support that enables scale-up procedure. Herein, we specifically design a facile method of fabricating zeolitic imidazolate framework (ZIF-8) on a flexible polymeric membrane, using versatile tannic acid and iron complexes (TA-FeIII) as an intermediate layer to promote heterogenous MOF nucleation and growth. The TA-FeIII/ZIF-8 film demonstrated ion selectivity ratio of K+/ Mg2+ (4.49), followed by Na+/ Mg2+ (4.0) and Li+/ Mg2+ (3.87); while the selectivity ratio of Ca2+/ Mg2+ is 1.1. Further investigation suggests that partial dehydration-hydration process plays a role for ion transport mechanism across the TA-FeIII/ZIF-8. However, the separation between monovalent ions remains a difficult challenge due to the trade-off between low dehydration energy of K+ and fast ion transport of dehydrated Li+. This study provides an insight in utilizing the versatile TA-FeIII coating for scale-up growth of MOF thin film for molecular separations.
-
Incorporation of Natural Lithium‐Ion Trappers into Graphene Oxide Nanosheets
Wiley
Lithium consumption is estimated to face a considerable rise in the next decade; thus, finding new reproducible lithium resources such as brine deposits and seawater has become a fast-growing research topic. However, Li+ extraction from these resources is challenging due to its low concentration and presence of other monovalent cations exhibiting identical chemical properties. Here, it is discovered that tannic acid (TA) inside graphene oxide (GO) nanochannel acts as natural ion trapper, which…
Lithium consumption is estimated to face a considerable rise in the next decade; thus, finding new reproducible lithium resources such as brine deposits and seawater has become a fast-growing research topic. However, Li+ extraction from these resources is challenging due to its low concentration and presence of other monovalent cations exhibiting identical chemical properties. Here, it is discovered that tannic acid (TA) inside graphene oxide (GO) nanochannel acts as natural ion trapper, which possesses lithiophilic elements. The lithium-rich feed is achieved by using the potential-driven TA-GO membrane by excluding lithium ions from other monovalent cations. The results showed that the ion trapping capability of inexpensive TA-GO membrane is Li+ > Na+ > K+ with Li trapping energy of −593 KJ mol−1, respectively, where its trapping efficiency goes into a top rank among their expensive synthetic counterparts. Evaluating the combined effect of three key parameters, including barrier energy, hydration energy, and binding energy illustrates that required energy to transport Li-ion through the membrane is higher than that for other monovalent. This proof-of-concept work opens up an avenue of research for designing a new class of ion-selective membranes, based on the incorporation of naturally low cost available lithiophilic guest molecules into 2D membranes.
-
Design principles of ion selective nanostructured membranes for the extraction of lithium ions
Nature
The present work critically reviews recent reports on Li+ selective membranes. Particular emphasis has been placed on the basic principles of the materials’ design for the development of membranes with nanochannels and nanopores with Li+ selectivity. Fundamental and practical challenges, as well as prospects for the targeted design of Li+ ion-selective membranes are also presented, with the goal of inspiring future critical research efforts in this scientifically and strategically important…
The present work critically reviews recent reports on Li+ selective membranes. Particular emphasis has been placed on the basic principles of the materials’ design for the development of membranes with nanochannels and nanopores with Li+ selectivity. Fundamental and practical challenges, as well as prospects for the targeted design of Li+ ion-selective membranes are also presented, with the goal of inspiring future critical research efforts in this scientifically and strategically important field.
Recommendations received
-
LinkedIn User
2 people have recommended Amir
Join now to viewMore activity by Amir
-
This is with mixed feelings but a lot of hope that I can now announce my resignation from Khalifa University at the end of December 2024. After 4.5…
This is with mixed feelings but a lot of hope that I can now announce my resignation from Khalifa University at the end of December 2024. After 4.5…
Liked by Amir Razmjou
-
Fantastic advances to establish the real value of Graphene Membranes.
Fantastic advances to establish the real value of Graphene Membranes.
Liked by Amir Razmjou
-
Super happy to have my old friend Prof Nicholas (Ze-Xian) Low from Nanjing Tech (China) visiting us at KU this week, to further develop our joint…
Super happy to have my old friend Prof Nicholas (Ze-Xian) Low from Nanjing Tech (China) visiting us at KU this week, to further develop our joint…
Liked by Amir Razmjou
-
It was a pleasure to host our friends just down the road at Barwon Water for a tour of our Victoria University Werribee Campus testing and research…
It was a pleasure to host our friends just down the road at Barwon Water for a tour of our Victoria University Werribee Campus testing and research…
Liked by Amir Razmjou
-
What happens in Vegas...is that you meet wonderful people from across the world. We're all world #travelers and I believe in #sustainable solutions…
What happens in Vegas...is that you meet wonderful people from across the world. We're all world #travelers and I believe in #sustainable solutions…
Liked by Amir Razmjou
-
I am super proud of my son Liam Whittle who is a member of the team building Australia's first moon rover - just announced by Ed Husic MP, Minister…
I am super proud of my son Liam Whittle who is a member of the team building Australia's first moon rover - just announced by Ed Husic MP, Minister…
Liked by Amir Razmjou
Other similar profiles
Explore collaborative articles
We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.
Explore MoreOthers named Amir Razmjou
2 others named Amir Razmjou are on LinkedIn
See others named Amir Razmjou