
Acknowledgements
Many thanks are owed to my research adviser Benjamin Delaware for his guidance and

reviews. Additionally, I’m thankful to Simon Peyton Jones for fruitful discussions.

-20

-10

0

10

20

30
Runtime Change % Relative to GHC (-O3)

Tailored Termination Tag Bag Termination

0

200

400

600

800 Compile Time Change % Relative to GHC (-O3)

Tailored Termination Tag Bag Termination

Ammar Askar
aaskar@purdue.edu

Tailored Termination for
Improved Supercompilation

Introduction

Supercompilation is a powerful program specialization technique that can produce
programs that are significantly more efficient than the original. This is done by performing
as many reductions at compile time as possible that would usually be deffered to run-time.
Through this, it can automatically perform many optimizations that are implemented
manually in modern compilers such as deforestation/fusion, function specialization and
constructor specialization. For example, here’s what supercompilation can achieve:

Underspecialization

Underspecialization is when the termination criterion stops the supercompilation
process too soon. Consider this program for example:

let longId = λn. λx. if n == 0
 then x
 else longId (n - 1) x
in longId 100 y

the optimal supercompiled version of this program would simply be “y” but if the
termination algorithm detects that the supercompilation process is diverging and
prematurely signals a stop, it could be left in an incomplete intermediate state as shown
below.

let longId = ...
in longId 100 y

let longId = ...
in if 100 == 0
 then y
 else longId (100 - 1) y

let longId = ...
in longId (100 - 1) y

let longId = ...
in y

β reduction

Case analysis

...

Overspecialization

On the opposite end of the spectrum to underspecialization, overspecialization is when
a program becomes bloated and specialized to no benefit. A small program can grow to
become several megabytes, programs involving recursive list functions will generate
specialized versions for every possible list length. This is demonstrated below using the
supercompilation for a program involving fold called with some constant arguments.

let fold = ...
in λxs. fold (+) 0 ([1, 2] ++ xs)

β reduction

case [1, 2] ++ xs of
 [] 0
 (x: xs) fold (+) (0 + x) xs

Case analysis

λxs. fold (+) (0 + 1) ([2] ++ xs)

case [2] ++ xs of
 [] 0 + 1
 (x: xs) fold (+) (0 + 1 + x) xs

Case analysis

λxs. fold (+) (0 + 1 + 2) xs
Simplification

λxs. fold (+) 3 xs

β reduction

β reduction

case xs of [] 3
 (x: xs) fold (+) (3 + x) xs

3
xs = []

fold (+) (3 + y) ys

xs = (y : ys)

β reduction

case ys of
 [] 3 + y
 (x: xs) fold (+) (3+y+x) xs

3+y
ys = [] ys = (z : zs)

...

Methodology

Our work is based on the previous state of the art Haskell supercompiler created by
Max Bolingbroke et al [1] which used a tag bag based termination criterion. Instead of
using previous approaches of a one-size fits all termination criteria, we customized the
termination criteria on a per-program basis.

This was achieved by tagging each state as shown in the previous supercompilation
trees and using a termination criterion that would terminate the process given a set of
tags. A wide variety of benchmarks were used to evaluate performance given the new
termination criterion. Supercompilation trees as shown above were generated every
100 steps or so and then termination tags were selected to be fed back into the process.

[1] Maximilian Bolingbroke and Simon Peyton Jones. 2010. Supercompilation by evaluation. In ACM Sigplan Notices, Vol. 45.

Results

map (+ 3)
 (map (- 2) xs))

let f xs = case xs of
 [] []
 (y:ys) y + 1 : f ys

A key part of any supercompiler is the termination check: an algorithm that decides
when the supercompilation process should stop. Strict termination crtieria that stops the
process too soon can lead to missed optimization oppritunities. Conversly, a termination
criterion that is overly permissive can result in a bloated and over-specialized program.
In this project we investigated the effects of tailoring the termination criterion on a per
program basis to measure its effects on supercompilation.

Initial results on a varying suite of benchmarks are fairly promising.
We managed to obtain an average of 8% runtime reduction compared
to GHC in -O3 (95% compared to -O0). Memory usage was reduced by
18% on average and compile times increased by 100%.

Future Work
By hand crafting the termination, we have shown there is potential
improvements and gains to be made by using supercompilation.
However, tweaking the termination by hand is quite laborsome and
thus avenues for automation must be looked into. We believe that
machine learning on the supercompilation trees or profile guided
optimization is likely the best bet.

