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Abstract
Learning to follow instructions is of funda-

mental importance to autonomous agents for

vision-and-language navigation (VLN). In this

paper, we study how an agent can navigate

long paths when learning from a corpus that

consists of shorter ones. We show that existing

state-of-the-art agents do not generalize well.

To this end, we propose BabyWalk, a new

VLN agent that is learned to navigate by de-

composing long instructions into shorter ones

(BabySteps) and completing them sequentially.

A special design memory buffer is used by

the agent to turn its past experiences into con-

texts for future steps. The learning process is

composed of two phases. In the first phase,

the agent uses imitation learning from demon-

stration to accomplish BabySteps. In the sec-

ond phase, the agent uses curriculum-based

reinforcement learning to maximize rewards

on navigation tasks with increasingly longer

instructions. We create two new benchmark

datasets (of long navigation tasks) and use

them in conjunction with existing ones to ex-

amine BabyWalk’s generalization ability. Em-

pirical results show that BabyWalk achieves

state-of-the-art results on several metrics, in

particular, is able to follow long instructions

better. The codes and the datasets are released

on our project page https://github.com/

Sha-Lab/babywalk.

1 Introduction

Autonomous agents such as household robots need

to interact with the physical world in multiple

modalities. As an example, in vision-and-language

navigation (VLN) (Anderson et al., 2018), the

agent moves around in a photo-realistic simulated

environment (Chang et al., 2017) by following a

sequence of natural language instructions. To in-

fer its whereabouts so as to decide its moves, the
∗Author contributed equally
†On leave from University of Southern California

agent infuses its visual perception, its trajectory

and the instructions (Fried et al., 2018; Anderson

et al., 2018; Wang et al., 2019; Ma et al., 2019a,b).

Arguably, the ability to understand and follow

the instructions is one of the most crucial skills

to acquire by VLN agents. Jain et al. (2019)

shows that the VLN agents trained on the orig-

inally proposed dataset ROOM2ROOM (i.e. R2R

thereafter) do not follow the instructions, despite

having achieved high success rates of reaching the

navigation goals. They proposed two remedies: a

new dataset ROOM4ROOM (or R4R) that doubles

the path lengths in the R2R, and a new evaluation

metric Coverage weighted by Length Score (CLS)

that measures more closely whether the ground-

truth paths are followed. They showed optimizing

the fidelity of following instructions leads to agents

with desirable behavior. Moreover, the long lengths

in R4R are informative in identifying agents who

score higher in such fidelity measure.

In this paper, we investigate another crucial as-

pect of following the instructions: can a VLN agent
generalize to following longer instructions by learn-
ing from shorter ones? This aspect has important

implication to real-world applications as collect-

ing annotated long sequences of instructions and

training on them can be costly. Thus, it is highly de-

sirable to have this generalization ability. After all,

it seems that humans can achieve this effortlessly1.

To this end, we have created several datasets

of longer navigation tasks, inspired by R4R (Jain

et al., 2019). We trained VLN agents on R4R and

use the agents to navigate in ROOM6ROOM (i.e.,

R6R) and ROOM8ROOM (i.e., R8R). We contrast to

the performance of the agents which are trained on

those datasets directly (“in-domain”). The results

1Anecdotally, we do not have to learn from long navigation
experiences. Instead, we extrapolate from our experiences of
learning to navigate in shorter distances or smaller spaces
(perhaps a skill we learn when we were babies or kids).
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Figure 1: Performance of various VLN agents on gen-

eralizing from shorter navigation tasks to longer ones.

The vertical axis is the newly proposed path-following

metric SDTW (Magalhaes et al., 2019), the higher the

better. BABYWALK generalizes better than other ap-

proaches across different lengths of navigation tasks.

Meanwhile, it get very close to the performances of the

in-domain agents (the dashed line). Please refer to the

texts for details.

are shown in Fig. 1.

Our findings are that the agents trained on R4R

(denoted by the purple and the pink solid lines) per-

form significantly worse than the in-domain agents

(denoted the light blue dashed line). Also inter-

estingly, when such out-of-domain agents are ap-

plied to the dataset R2R with shorter navigation

tasks, they also perform significantly worse than

the corresponding in-domain agent despite R4R

containing many navigation paths from R2R. Note

that the agent trained to optimize the aforemen-

tioned fidelity measure (RCM(fidelity)) performs

better than the agent trained to reach the goal only

(RCM(goal)), supporting the claim by Jain et al.

(2019) that following instructions is a more mean-

ingful objective than merely goal-reaching. Yet,

the fidelity measure itself is not enough to enable

the agent to transfer well to longer navigation tasks.

To address these deficiencies, we propose a new

approach for VLN. The agent follows a long navi-

gation instruction by decomposing the instruction

into shorter ones (“micro-instructions”, i.e., BABY-

STEPs), each of which corresponds to an interme-

diate goal/task to be executed sequentially. To

this end, the agent has three components: (a) a

memory buffer that summarizes the agent’s expe-

riences so that the agent can use them to provide

the context for executing the next BABY-STEP. (b)

the agent first learns from human experts in “bite-

size”. Instead of trying to imitate to achieve the

ground-truth paths as a whole, the agent is given

the pairs of a BABY-STEP and the corresponding

human expert path so that it can learn policies of

actions from shorter instructions. (c) In the second

stage of learning, the agent refines the policies by

curriculum-based reinforcement learning, where

the agent is given increasingly longer navigation

tasks to achieve. In particular, this curriculum de-

sign reflects our desiderata that the agent optimized

on shorter tasks should generalize well to slightly

longer tasks and then much longer ones.

While we do not claim that our approach faith-

fully simulates human learning of navigation, the

design is loosely inspired by it. We name our ap-

proach BABYWALK and refer to the intermediate

navigation goals in (b) as BABY-STEPs. Fig. 1

shows that BABYWALK (the red solid line) signif-

icantly outperforms other approaches and despite

being out-of-domain, it even reach the performance

of in-domain agents on R6R and R8R.

The effectiveness of BABYWALK also leads to

an interesting twist. As mentioned before, one

of the most important observations by Jain et al.

(2019) is that the original VLN dataset R2R fails

to reveal the difference between optimizing goal-

reaching (thus ignoring the instructions) and op-

timizing the fidelity (thus adhering to the instruc-

tions). Yet, leaving details to section 5, we have

also shown that applying BABYWALK to R2R can

lead to equally strong performance on generalizing

from shorter instructions (i.e., R2R) to longer ones.

In summary, in this paper, we have demonstrated

empirically that the current VLN agents are inef-

fective in generalizing from learning on shorter

navigation tasks to longer ones. We propose a new

approach in addressing this important problem. We

validate the approach with extensive benchmarks,

including ablation studies to identify the effective-

ness of various components in our approach.

2 Related Work

Vision-and-Language Navigation (VLN) Re-

cent works (Anderson et al., 2018; Thomason

et al., 2019; Jain et al., 2019; Chen et al., 2019;

Nguyen and Daumé III, 2019) extend the early

works of instruction based navigation (Chen and

Mooney, 2011; Kim and Mooney, 2013; Mei et al.,

2016) to photo-realistic simulated environments.

For instance, Anderson et al. (2018) proposed to

learn a multi-modal Sequence-to-Sequence agent

(Seq2Seq) by imitating expert demonstration. Fried

et al. (2018) developed a method that augments the
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paired instruction and demonstration data using

a learned speaker model, to teach the navigation

agent to better understand instructions. Wang et al.

(2019) further applies reinforcement learning (RL)

and self-imitation learning to improve navigation

agents. Ma et al. (2019a,b) designed models that

track the execution progress for a sequence of in-

structions using soft-attention.

Different from them, we focus on transferring

an agent’s performances on shorter tasks to longer

ones. This leads to designs and learning schemes

that improve generalization across datasets. We use

a memory buffer to prevent mistakes in the distant

past from exerting strong influence on the present.

In imitation learning stage, we solve fine-grained

subtasks (BABY-STEPs) instead of asking the agent

to learn the navigation trajectory as a whole. We

then use curriculum-based reinforcement learning

by asking the agent to follow increasingly longer

instructions.

Transfer and Cross-domain Adaptation There

have been a large body of works in transfer learn-

ing and generalization across tasks and environ-

ments in both computer vision and reinforcement

learning (Andreas et al., 2017; Oh et al., 2017;

Zhu et al., 2017a,b; Sohn et al., 2018; Hu et al.,

2018). Of particular relevance is the recent work

on adapting VLN agents to changes in visual en-

vironments (Huang et al., 2019; Tan et al., 2019).

To our best knowledge, this work is the first to

focus on adapting to a simple aspect of language

variability — the length of the instructions.

Curriculum Learning Since proposed in (Ben-

gio et al., 2009), curriculum learning was success-

fully used in a range of tasks: training robots for

goal reaching (Florensa et al., 2017), visual ques-

tion answering (Mao et al., 2019), image genera-

tion (Karras et al., 2018). To our best knowledge,

this work is the first to apply the idea to learning in

VLN.

3 Notation and the Setup of VLN

In the VLN task, the agent receives a natural lan-

guage instruction X composed of a sequence of

sentences. We model the agent with an Markov De-
cision Process (MDP) which is defined as a tuple

of a state space S , an action space A, an initial state

s1, a stationary transition dynamics ρ : S×A → S ,

a reward function r : S×A → R, and the discount

factor γ for weighting future rewards. The agent

acts according to a policy π : S × A → 0 ∪ R+.

The state and action spaces are defined the same as

in (Fried et al., 2018) (cf. § 4.4 for details).

For each X, the sequence of the pairs (s,a) is

called a trajectory Y =
{
s1,a1, . . . , s|Y|,a|Y|

}
where |·| denotes the length of the sequence or the

size of a set. We use â to denote an action taken by

the agent according to its policy. Hence, Ŷ denotes

the agent’s trajectory, while Y (or a) denotes the

human expert’s trajectory (or action). The agent is

given training examples of (X,Y) to optimize its

policy to maximize its expected rewards.

In our work, we introduce additional notations

in the following. We will segment a (long) in-

struction X into multiple shorter sequences of sen-

tences {xm,m = 1, 2, · · · ,M}, to which we refer

as BABY-STEPs. Each xm is interpreted as a micro-

instruction that corresponds to a trajectory by the

agent ŷm and is aligned with a part of the human

expert’s trajectory, denoted as ym. While the align-

ment is not available in existing datasets for VLN,

we will describe how to obtain them in a later sec-

tion (§ 4.3). Throughout the paper, we also freely

interexchange the term “following the mth micro-

instruction”, “executing the BABY-STEP xm”, or

“complete the mth subtask”.

We use t ∈ [1, |Y|] to denote the (discrete) time

steps the agent takes actions. Additionally, when

the agent follows xm, for convenience, we some-

times use tm ∈ [1, |ŷm|] to index the time steps,

instead of the “global time” t = tm +
∑m−1

i=1 |ŷi|.

4 Approach

We describe in detail the 3 key elements in the de-

sign of our navigation agent: (i) a memory buffer

for storing and recalling past experiences to pro-

vide contexts for the current navigation instruction

(§ 4.1); (ii) an imitation-learning stage of navigat-

ing with short instructions to accomplish a single

BABY-STEP (§ 4.2.1); (iii) a curriculum-based re-

inforcement learning phase where the agent learns

with increasingly longer instructions (i.e. multiple

BABY-STEPs) (§ 4.2.2). We describe new bench-

marks created for learning and evaluation and key

implementation details in § 4.3 and § 4.4 (with

more details in the Appendix).

4.1 The BABYWALK Agent

The basic operating model of our navigation agent

BABYWALK is to follow a “micro instruction” xm

(i.e., a short sequence of instructions, to which we
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Figure 2: The BABYWALK agent has a memory buffer

storing its past experiences of instructions xm, and its

trajectory ŷm. When a new BABY-STEP xm is pre-

sented, the agent retrieves from the memory a summary

of its experiences as the history context. It takes actions

conditioning on the context (as well as its state st and

the previous action ât). Upon finishing following the

instruction. the trajectory ŷm is then sent to the mem-

ory to be remembered.

also refer as BABY-STEP), conditioning on the con-

text ẑm and to output a trajectory ŷm. A schematic

diagram is shown in Fig. 2. Of particularly differ-

ent from previous approaches is the introduction

of a novel memory module. We assume the BABY-

STEPs are given in the training and inference time

– § 4.3 explains how to obtain them if not given a
prior (Readers can directly move to that section

and return to this part afterwards). The left of the

Fig. 3 gives an example of those micro-instructions.

Context The context is a summary of the past

experiences of the agent, namely the previous (m−
1) mini-instructions and trajectories:

ẑm = g
(
fSUMMARY(x1, · · · ,xm−1),

fSUMMARY(ŷ1, · · · , ŷm−1)
)

(1)

where the function g is implemented with a multi-

layer perceptron. The summary function fSUMMARY

is explained in below.

Summary To map variable-length sequences

(such as the trajectory and the instructions) to a

single vector, we can use various mechanisms such

as LSTM. We reported an ablation study on this in

§ 5.3. In the following, we describe the “forgetting”

one that weighs more heavily towards the most re-

cent experiences and performs the best empirically.

fSUMMARY(x1, · · · ,xm−1) =

m−1∑
i=1

αi · u(xi) (2)

fSUMMARY(ŷ1, · · · , ŷm−1) =

m−1∑
i=1

αi · v(ŷi) (3)

where the weights are normalized to 1 and inverse

proportional to how far i is from m,

αi ∝ exp
(− γ · ω(m− 1− i)

)
(4)

γ is a hyper-parameter (we set to 1/2) and ω(·) is

a monotonically nondecreasing function and we

simply choose the identity function.

Note that, we summarize over representations

of “micro-instructions” (xm) and experiences of

executing those micro-instructions ŷm. The two

encoders u(·) and v(·) are described in § 4.4. They

are essentially the summaries of “low-level” details,

i.e., representations of a sequence of words, or

a sequence of states and actions. While existing

work often directly summarizes all the low-level

details, we have found that the current form of

“hierarchical” summarizing (i.e., first summarizing

each BABY-STEP, then summarizing all previous

BABY-STEPs) performs better.

Policy The agent takes actions, conditioning on

the context ẑm, and the current instruction xm:

ât ∼ π (·|st, ât−1;u(xm), ẑm) (5)

where the policy is implemented with a LSTM

with the same cross-modal attention between visual

states and languages as in (Fried et al., 2018).

4.2 Learning of the BABYWALK Agent
The agent learns in two phases. In the first one,

imitation learning is used where the agent learns

to execute BABY-STEPs accurately. In the second

one, the agent learns to execute successively longer

tasks from a designed curriculum.

4.2.1 Imitation Learning
BABY-STEPs are shorter navigation tasks. With the

mth instruction xm, the agent is asked to follow the

instruction so that its trajectory matches the human

expert’s ym. To assist the learning, the context

is computed from the human expert trajectory up

to the mth BABY-STEP (i.e., in eq. (1), ŷs are

replaced with ys). We maximize the objective

� =

M∑
m=1

|ym|∑
tm=1

logπ (atm |stm ,atm−1;u(xm), zm)

We emphasize here each BABY-STEP is treated in-

dependently of the others in this learning regime.

Each time a BABY-STEP is to be executed, we

“preset” the agent in the human expert’s context
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Figure 3: Two-phase learning by BABYWALK. (Left) An example instruction-trajectory pair from the R4R

dataset is shown. The long instruction is segmented into four BABY-STEP instructions. We use those BABY-

STEPs for imitation learning (§ 4.2.1) (Right) Curriculum-based RL. The BABYWALK agent warm-starts from the

imitation learning policy, and incrementally learns to handle longer tasks by executing consecutive BABY-STEPs

and getting feedback from external rewards (c.f . § 4.2.2). We illustrate two initial RL lectures using the left

example.

and the last visited state. We follow existing lit-

erature (Anderson et al., 2018; Fried et al., 2018)

and use student-forcing based imitation learning,

which uses agent’s predicted action instead of the

expert action for the trajectory rollout.

4.2.2 Curriculum Reinforcement Learning
We want the agent to be able to execute multiple

consecutive BABY-STEPs and optimize its perfor-

mance on following longer navigation instructions

(instead of the cross-entropy losses from the imita-

tion learning). However, there is a discrepancy be-

tween our goal of training the agent to cope with the

uncertainty in a long instruction and the imitation

learning agent’s ability in accomplishing shorter

tasks given the human annotated history. Thus it

is challenging to directly optimize the agent with a

typical RL learning procedure, even the imitation

learning might have provided a good initialization

for the policy, see our ablation study in § 5.3.

Inspired by the curriculum learning strat-

egy (Bengio et al., 2009), we design an incremen-

tal learning process that the agent is presented

with a curriculum of increasingly longer naviga-

tion tasks. Fig. 3 illustrates this idea with two “lec-

tures”. Given a long navigation instruction X with

M BABY-STEPs, for the kth lecture, the agent is

given all the human expert’s trajectory up to but not

including the (M− k + 1)th BABY-STEP, as well

as the history context zM−k+1. The agent is then

asked to execute the kth micro-instructions from

xM−k+1 to xM using reinforcement learning to

produce its trajectory that optimizes a task related

R2R R4R R6R R8R

Train seen instr. 14,039 233,532 89,632 94,731
Val unseen instr. 2,349 45,234 35,777 43,273
Avg instr. length 29.4 58.4 91.2 121.6

Avg # BABY-STEPs 1.8 3.6 5.6 7.4

Table 1: Datasets used for VLN learning and evaluation

Figure 4: The distribution of lengths of instructions and
ground-truth trajectories in our datasets.

metric, for instance the fidelity metric measuring

how faithful the agent follows the instructions.

As we increase k from 1 to M, the agent faces

the challenge of navigating longer and longer tasks

with reinforcement learning. However, the agent

only needs to improve its skills from its prior expo-

sure to shorter ones. Our ablation studies show this

is indeed a highly effective strategy.

4.3 New Datasets for Evaluation & Learning

To our best knowledge, this is the first work study-

ing how well VLN agents generalize to long navi-

gation tasks. To this end, we create the following

datasets in the same style as in (Jain et al., 2019).
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ROOM6ROOM and ROOM8ROOM We con-

catenate the trajectories in the training as well as

the validation unseen split of the ROOM2ROOM

dataset for 3 times and 4 times respectively, thus

extending the lengths of navigation tasks to 6 rooms

and 8 rooms. To join, the end of the former trajec-

tory must be within 0.5 meter with the beginning

of the later trajectory. Table 1 and Fig. 4 contrast

the different datasets in the # of instructions, the

average length (in words) of instructions and how

the distributions vary.

Table 1 summarizes the descriptive statistics of

BABY-STEPs across all datasets used in this paper.

The datasets and the segmentation/alignments are

made publically available2.

4.4 Key Implementation Details
In the following, we describe key information for

research reproducibility, while the complete details

are in the Appendix.

States and Actions We follow (Fried et al.,

2018) to set up the states as the visual features

(i.e. ResNet-152 features (He et al., 2016)) from

the agent-centric panoramic views in 12 headings

× 3 elevations with 30 degree intervals. Likewise,

we use the same panoramic action space.

Identifying BABY-STEPs Our learning ap-

proach requires an agent to follow micro-

instructions (i.e., the BABY-STEPs). Existing

datasets (Anderson et al., 2018; Jain et al., 2019;

Chen et al., 2019) do not provide fine-grained seg-

mentations of long instructions. Therefore, we use

a template matching approach to aggregate consec-

utive sentences into BABY-STEPs. First, we extract

the noun phrase using POS tagging. Then, we em-

ploys heuristic rules to chunk a long instruction

into shorter segments according to punctuation and

landmark phrase (i.e., words for concrete objects).

We document the details in the Appendix.

Aligning BABY-STEPs with Expert Trajectory
Without extra annotation, we propose a method

to approximately chunk original expert trajecto-

ries into sub-trajectories that align with the BABY-

STEPs. This is important for imitation learning at

the micro-instruction level (§ 4.2.1). Specifically,

we learn a multi-label visual landmark classifier

to identify concrete objects from the states along

expert trajectories by using the landmark phrases

2Available at https://github.com/Sha-Lab/
babywalk

extracted from the their instructions as weak su-

pervision. For each trajectory-instruction pair, we

then extract the visual landmarks of every state

as well as the landmark phrases in BABY-STEP

instructions. Next, we perform a dynamic pro-

gramming procedure to segment the expert trajec-

tories by aligning the visual landmarks and land-

mark phrases, using the confidence scores of the

multi-label visual landmark classifier to form the

function.

Encoders and Embeddings The encoder u(·)
for the (micro)instructions is a LSTM. The en-

coder for the trajectory y contains two separate

Bi-LSTMs, one for the state st and the other for

the action at. The outputs of the two Bi-LSTMs are

then concatenated to form the embedding function

v(·). The details of the neural network architec-

tures (i.e. configurations as well as an illustrative

figure), optimization hyper-parameters, etc. are in-

cluded in the Appendix.

Learning Policy with Reinforcement Learning
In the second phase of learning, BABYWALK

uses RL to learn a policy that maximizes the

fidelity-oriented rewards (CLS) proposed by Jain

et al. (2019). We use policy gradient as the opti-

mizer (Sutton et al., 2000). Meanwhile, we set the

maximum number of lectures in curriculum RL to

be 4, which is studied in Section 5.3.

5 Experiments

We describe the experimental setup (§ 5.1),fol-

lowed by the main results in § 5.2 where we show

the proposed BABYWALK agent attains competi-

tive results on both the in-domain dataset but also

generalizing to out-of-the-domain datasets with

varying lengths of navigation tasks. We report re-

sults from various ablation studies in § 5.3. While

we primarily focus on the ROOM4ROOM dataset,

we re-analyze the original ROOM2ROOM dataset

in § 5.4 and were surprised to find out the agents

trained on it can generalize.

5.1 Experimental Setups.

Datasets We conduct empirical studies on the ex-

isting datasets ROOM2ROOM and ROOM4ROOM

(Anderson et al., 2018; Jain et al., 2019),

and the two newly created benchmark datasets

ROOM6ROOM and ROOM8ROOM, described in

§ 4.3. Table 1 and Fig. 4 contrast their differences.
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In-domain Generalization to other datasets
Setting R4R → R4R R4R → R2R R4R → R6R R4R → R8R Average

Metrics SR↑ CLS↑ SDTW↑ SR↑ CLS↑ SDTW↑ SR↑ CLS↑ SDTW↑ SR↑ CLS↑ SDTW↑ SR↑ CLS↑ SDTW↑
SEQ2SEQ 25.7 20.7 9.0 16.3 27.1 10.6 14.4 17.7 4.6 20.7 15.0 4.7 17.1 19.9 6.6

SF
+ 24.9 23.6 9.2 22.5 29.5 14.8 15.5 20.4 5.2 21.6 17.2 5.0 19.9 22.4 8.3

RCM(GOAL)+ 28.7 36.3 13.2 25.9 44.2 20.2 19.3 31.8 7.3 22.8 27.6 5.1 22.7 34.5 10.9

RCM(FIDELITY)+ 24.7 39.2 13.7 29.1 34.3 18.3 20.5 38.3 7.9 20.9 34.6 6.1 23.5 35.7 10.8

REGRETFUL
+� 30.1 34.1 13.5 22.8 32.6 13.4 18.0 31.7 7.5 18.7 29.3 5.6 19.8 31.2 8.8

FAST
+� 36.2 34.0 15.5 25.1 33.9 14.2 22.1 31.5 7.7 27.7 29.6 6.3 25.0 31.7 9.4

BABYWALK 29.6 47.8 18.1 35.2 48.5 27.2 26.4 44.9 13.1 26.3 44.7 11.5 29.3 46.0 17.3

BABYWALK
+ 27.3 49.4 17.3 34.1 50.4 27.8 25.5 47.2 13.6 23.1 46.0 11.1 27.6 47.9 17.5

Table 2: VLN agents trained on the R4R dataset and evaluated on the unseen portion of the R4R (in-domain) and

the other 3 out-of-the-domain datasets: R2R, R6R and R8R with different distributions in instruction length. The

Appendix has more comparisons. (+: pre-trained with data augmentation. �: reimplemented or adapted from the

original authors’ public codes).

Evaluation Metrics We adopt the following met-

rics: Success Rate (SR) that measures the average

rate of the agent stopping within a specified dis-

tance near the goal location (Anderson et al., 2018),

Coverage weighted by Length Score (CLS) (Jain

et al., 2019) that measures the fidelity of the agent’s

path to the reference, weighted by the length score,

and the newly proposed Success rate weighted
normalized Dynamic Time Warping (SDTW) that

measures in more fine-grained details, the spatio-

temporal similarity of the paths by the agent and the

human expert, weighted by the success rate (Maga-

lhaes et al., 2019). Both CLS and SDTW measure

explicitly the agent’s ability to follow instructions

and in particular, it was shown that SDTW corre-

sponds to human preferences the most. We report

results in other metrics in the Appendix.

Agents to Compare to Whenever possible, for

all agents we compare to, we either re-run, reimple-

ment or adapt publicly available codes from their

corresponding authors with their provided instruc-

tions to ensure a fair comparison. We also “sanity

check” by ensuring the results from our implemen-

tation and adaptation replicate and are comparable

to the reported ones in the literature.

We compare our BABYWALK to the following:

(1) the SEQ2SEQ agent (Anderson et al., 2018),

being adapted to the panoramic state and action

space used in this work; (2) the Speaker Follower

(SF) agent (Fried et al., 2018); (3) the Reinforced

Cross-Modal Agent (RCM) (Wang et al., 2019) that

refines the SF agent using reinforcement learning

with either goal-oriented reward (RCM(GOAL)) or

fidelity-oriented reward (RCM(FIDELITY)); (4) the

Regretful Agent (REGRETFUL) (Ma et al., 2019b)

that uses a progress monitor that records visited

path and a regret module that performs backtrack-

ing; (5) the Frontier Aware Search with Backtrack-

ing agent (FAST) (Ke et al., 2019) that incorporates

global and local knowledge to compare partial tra-

jectories in different lengths.

The last 3 agents are reported having state-of-

the art results on the benchmark datasets. Except

the SEQ2SEQ agent, all other agents depend on

an additional pre-training stage with data augmen-

tation (Fried et al., 2018), which improves cross-

board. Thus, we train two BABYWALK agents: one

with and the other without the data augmentation.

5.2 Main results

In-domain Generalization This is the standard

evaluation scenario where a trained agent is as-

sessed on the unseen split from the same dataset as

the training data. The leftmost columns in Table 2

reports the results where the training data is from

R4R. The BABYWALK agents outperform all other

agents when evaluated on CLS and SDTW.

When evaluated on SR, FAST performs the best

and the BABYWALK agents do not stand out. This

is expected: agents which are trained to reach

goal do not necessarily lead to better instruction-

following. Note that RCM(FIDELITY) performs

well in path-following.

Out-of-domain Generalization While our pri-

mary goal is to train agents to generalize well to

longer navigation tasks, we are also curious how

the agents perform on shorter navigation tasks too.

The right columns in Table 2 report the compari-

son. The BABYWALK agents outperform all other

agents in all metrics except SR. In particular, on
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Figure 5: Performance by various agents on navigation

tasks in different lengths. See texts for details.

Setting R4R → R4R R4R → others
Metrics SR↑ CLS↑ SDTW ↑ SR↑ CLS↑ SDTW ↑
fSUMMARY =
NULL 18.9 43.1 9.9 17.1 42.3 9.6
LSTM(·) 25.8 44.0 14.4 25.7 42.1 14.3

fSUMMARY =
∑m−1

i=1 αi · (·), i.e., eqs. (2,3)

γ = 5 27.5 46.8 15.8 26.7 44.4 14.9
γ = 0.5 27.3 49.4 17.3 27.6 47.9 17.5
γ = 0.05 27.5 47.7 16.2 26.0 45.5 15.2
γ = 0 26.1 46.6 15.1 25.1 44.3 14.4

Table 3: The memory buffer is beneficial to generaliz-

ing to different tasks from on which the agent is trained.

SDTW, the generalization to R6R and R8R is espe-

cially encouraging, resulting almost twice those of

the second-best agent FAST. Moreover, recalling

from Fig. 1, BABYWALK’s generalization to R6R

and R8R attain even better performance than the

RCM agents that are trained in-domain.

Fig. 5 provides additional evidence on the suc-

cess of BABYWALK, where we have contrasted

to its performance to other agents’ on following

instructions in different lengths across all datasets.

Clearly, the BABYWALK agent is able to improve

very noticeably on longer instructions.

Qualitative Results Fig. 6 contrasts visually sev-

eral agents in executing two (long) navigation tasks.

BABYWALK’s trajectories are similar to what hu-

man experts provide, while other agents’ are not.

5.3 Analysis

Memory Buffer is Beneficial Table 3 illustrates

the importance of having a memory buffer to sum-

marize the agent’s past experiences. Without the

memory (NULL), generalization to longer tasks

is significantly worse. Using LSTM to summa-

rize is worse than using forgetting to summarize

(eqs. (2,3)). Meanwhile, ablating γ of the forgetting

Setting R4R → R4R R4R → others
Metrics SR↑ CLS↑ SDTW ↑ SR↑ CLS↑ SDTW ↑
IL 24.7 27.9 11.1 24.2 25.8 10.2
IL+RL 25.0 45.5 13.6 25.0 43.8 14.1

IL+ CRL w/ LECTURE #
1st 24.1 44.8 13.5 24.1 43.1 13.6
2nd 26.7 45.9 15.2 26.2 43.7 14.8
3rd 27.9 47.4 17.0 26.7 45.4 16.3
4th 27.3 49.4 17.3 27.6 47.9 17.5

Table 4: BABYWALK’s performances with curriculum-

based reinforcement learning (CRL), which improves

imitation learning without or with reinforcement learn-

ing (IL+RL).

Eval → R6R → R8R

Training SR↑ CLS↑ SDTW↑ SR↑ CLS↑ SDTW↑
R2R 21.7 49.0 11.2 20.7 48.7 9.8
R4R 25.5 47.2 13.6 23.1 46.0 11.1

Eval → R2R → R4R

Training SR↑ CLS↑ SDTW↑ SR↑ CLS↑ SDTW↑
R2R 43.8 54.4 36.9 21.4 51.0 13.8
R4R 34.1 50.4 27.8 27.3 49.4 17.3

Table 5: (Top) BABYWALK trained on R2R is nearly

as effective as the agent trained on R4R when general-

izing to longer tasks. (Bottom) BABYWALK trained on

R2R adapts to R4R better than the agent trained in the

reverse direction.

mechanism concludes that γ = 0.5 is the optimal to

our hyperparameter search. Note that when γ = 0,

this mechanism degenerates to taking average of

the memory buffer, and leads to inferior results.

Curriculum-based RL (CRL) is Important
Table 4 establishes the value of CRL. While im-

itation learning (IL) provides a good warm-up for

SR, significant improvement on other two metrics

come from the subsequent RL (IL+RL). Further-

more, CRL (with 4 “lectures”) provides clear im-

provements over direct RL on the entire instruction

(i.e., learning to execute all BABY-STEPs at once).

Each lecture improves over the previous one, espe-

cially in terms of the SDTW metric.

5.4 Revisiting ROOM2ROOM

Our experimental study has been focusing on using

R4R as the training dataset as it was established

that as opposed to R2R, R4R distinguishes well an

agent who just learns to reach the goal from an

agent who learns to follow instructions.

Given the encouraging results of generalizing to

longer tasks, a natural question to ask, how well



2547

HUMAN BABYWALK RCM SF SEQ2SEQ

Figure 6: Trajectories by human experts and VLN agents on two navigation tasks. More are in the Appendix.

can an agent trained on R2R generalize?
Results in Table 5 are interesting. Shown in

the top panel, the difference in the averaged per-

formance of generalizing to R6R and R8R is not

significant. The agent trained on R4R has a small

win on R6R presumably because R4R is closer to

R6R than R2R does. But for even longer tasks in

R8R, the win is similar.

In the bottom panel, however, it seems that R2R

→ R4R is stronger (incurring less loss in perfor-

mance when compared to the in-domain setting

R4R → R4R) than the reverse direction (i.e., com-

paring R4R → R2R to the in-domain R2R → R2R).

This might have been caused by the noisier seg-

mentation of long instructions into BABY-STEPs in

R4R. (While R4R is composed of two navigation

paths in R2R, the segmentation algorithm is not

aware of the “natural” boundaries between the two

paths.)

6 Discussion

There are a few future directions to pursue. First,

despite the significant improvement, the gap be-

tween short and long tasks is still large and needs

to be further reduced. Secondly, richer and more

complicated variations between the learning set-

ting and the real physical world need to be tackled.

For instance, developing agents that are robust to

variations in both visual appearance and instruction

descriptions is an important next step.
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Appendix
In this supplementary material, we provide details

omitted in the main text. The content is organized

as what follows:

• Section A. Details on identifying BABY-STEP

instructions and aligning BABY-STEPs with ex-

pert trajectories. (§ 4.3 and § 4.4 of the main

text)

• Section B. Implementation details of the navi-

gation agent, reward function used in RL and

optimization hyper-parameters. (§ 4.4 of the

main text)

• Section C. Additional experimental results, in-

cluding in-domain & transfer results of different

dataset trained models, sanity check of our reim-

plementation, and extra analysis of BABYWALK.

(§ 5.1 and § 5.2 of the main text)

A Details on BABY-STEP Identification
and Trajectory Alignments

In this section, we describe the details of how

BABY-STEPs are identified in the annotated nat-

ural language instructions and how expert trajec-

tory data are segmented to align with BABY-STEP

instructions.

A.1 Identify BABY-STEPs
We identify the navigable BABY-STEPs from the

natural language instructions of R2R, R4R, R6R

and R8R, based on the following 6 steps:

1. Split sentence and chunk phrases. We split

the instructions by periods. For each sentence,

we perform POS tagging using the SpaCy (Hon-

nibal and Montani, 2017) package to locate

and chunk all plausible noun phrases and verb

phrases.

2. Curate noun phrases. We curate noun phrases

by removing the stop words (i.e., the, for, from

etc.) and isolated punctuations among them and

lemmatizing each word of them. The purpose is

to collect a concentrated set of semantic noun

phrases that contain potential visual objects.

3. Identify “landmark words”. Next, given the

set of candidate visual object words, we filter

out a blacklist of words that either do not cor-

respond to any visual counterpart or are mis-

classified by the SpaCy package. The word

blacklist includes:

end, 18 inch, head, inside,
forward, position, ground,
home, face, walk, feet, way,
walking, bit, veer, ’ve,
next, stop, towards, right,
direction, thing, facing,
side, turn, middle, one, out,
piece, left, destination,
straight, enter, wait, don’t,
stand, back, round

We use the remaining noun phrases as the “land-

mark words” of the sentences. Note that this

step identifies the “landmark words” for the later

procedure which aligns BABY-STEPs and expert

trajectories.

4. Identifying verb phrases. Similarly, we use a

verb blacklist to filter out verbs that require no

navigational actions of the agent. The blacklist

includes: make, turn, face, facing,
veer.

5. Merge non-actionable sentences. We merge

the sentence without landmarks and verbs into

the next sentence, as it is likely not actionable.

6. Merge stop sentences. There are sentences that

only describe the stop condition of a navigation

action, which include verb-noun compositions

indicating the stop condition. We detect the sen-

tences starting with wait, stop, there,
remain, you will see as the sentences

that only describe the stop condition and merge

them to the previous sentence. Similarly, we de-

tect sentences starting with with, facing
and merge them to the next sentence.

After applying the above 6 heuristic rules to

the language instruction, we obtain chunks of sen-

tences that describes the navigable BABY-STEPs

of the whole task (i.e., a sequence of navigational

sub-goals.).

A.2 Align Expert Trajectories with identified
BABY-STEPs

In the previous section, we describe the algorithm

for identifying BABY-STEP instructions from the

original natural language instructions of the dataset.

Now we are going to describe the procedure of

aligning BABY-STEPs with the expert trajectories,

which segments the expert trajectories according to

the BABY-STEPs to create the training data for the

learning pipeline of our BABYWALK agent. Note
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that during the training, our BABYWALK does not
rely on the existence of ground-truth alignments
between the (micro)instructions and BABY-STEPs

trajectories.

Main Idea The main idea here is to: 1) perform

visual landmark classification to produce confi-

dence scores of landmarks for each visual state s
along expert trajectories; 2) use the predicted land-

mark scores and the “landmark words” in BABY-

STEPs to guide the alignment between the expert

trajectory and BABY-STEPs. To achieve this, we

train a visual landmark classifier with weak super-

vision — trajectory-wise existence of landmark

objects. Next, based on the predicted landmark

confidence scores, we use dynamic programming

(DP) to chunk the expert trajectory into segments

and assign the segments to the BABY-STEPs.

Weakly Supervised Learning of the Landmark
Classifier Given the pairs of aligned instruction

and trajectories (X,Y) from the original dataset,

we train a landmark classifier to detect landmarks

mentioned in the instructions. We formulate it as a

multi-label classification problem that asks a classi-

fier f LDMK (st;O) to predict all the landmarks OX

of the instruction X given the corresponding trajec-

tory Y. Here, we denotes all possible landmarks

from the entire dataset to be O, and the landmarks

of a specific instruction X to be OX. Concretely, we

first train a convolutional neural network (CNN)

based on the visual state features st to indepen-

dently predict the existence of landmarks at every

time step, then we aggregate the predictions across

all time steps to get trajectory-wise logits ψ via

max-pooling over all states of the trajectory.

ψ = max {f LDMK (st;O) | t = 1, . . . , |Y|}

Here f LDMK denotes the independent state-wise

landmark classifier, and ψ is the logits before nor-

malization for computing the landmark probability.

For the specific details of f LDMK, we input the 6×6
panorama visual feature (i.e. ResNet-152 feature)

into a two-layer CNN (with kernel size of 3, hid-

den dimension of 128 and ReLU as non-linearity

layer) to produce feature activation with spatial ex-

tents, followed by a global averaging operator over

spatial dimensions and a multi-layer perceptron

(2-layer with hidden dimension of 512 and ReLU

as non-linearity layer) that outputs the state-wise

logits for all visual landmarks O. We then max

pool all the state-wise logits along the trajectory

and compute the loss using a trajectory-wise binary

cross-entropy between the ground-truth landmark

label (of existence) and the prediction.

Aligning BABY-STEPs and Trajectories with
Visual Landmarks Now, sppose we have a

sequence of BABY-STEP instructions X =
{xm, m = 1, . . . ,M}, and its expert trajectory

Y = {st, t = 1, . . . , |Y|}, we can compute the

averaged landmark score for the landmarks Oxm

that exists in this sub-task instruction xm on a sin-

gle state st:

Ψ(t,m) =
1 [om ∈ Oxm ]

� f LDMK (st;O)

|Oxm |

Here 1 [om ∈ O] represents the one-hot encoding

of the landmarks that exists in the BABY-STEP xm,

and |Oxm | is the total number of existed landmarks.

We then apply dynamic programming (DP) to solve

the trajectory segmentation specified by the follow-

ing Bellman equation (in a recursive form).

Φ (t,m) =

⎧⎪⎨
⎪⎩

Ψ(t,m), if t = 1

Ψ(t,m) +

max
i∈{1,...,t−1}

{
Φ(i, m− 1)

}
, otherwise

Here, Φ (t,m) represents the maximum potential

of choosing the state st as the end point of the

BABY-STEP instruction xm. Solving this DP leads

to a set of correspondingly segmented trajectories

Y = {ym, m = 1, . . . ,M}, with ym being the m-

th BABY-STEP sub-trajectory.

B Implementation details

B.1 Navigation Agent Configurations

Figure 7 gives an overview of the unrolled version

of our full navigation agent.

Panoramic State-Action Space (Fried et al.,
2018) We set up the states st as the stacked vi-

sual feature of agent-centric panoramic views in

12 headings × 3 elevations with 30 degree inter-

vals. The visual feature of each view is a con-

catenation of the ResNet-152 feature vector of

size 2048 and the orientation feature vector of

size 128 (The 4-dimensional orientation feature

[sin(φ); cos(φ); sin(ω); cos(ω)] are tiled 32 times).

We use similar single-view visual feature of size

2176 as our action embeddings.
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Figure 7: Our network architecture at the m-th BABY-STEP sub-task. Red line represents the procedure of en-

coding context variable zm via summarizing the BABY-STEP trajectory fSUMMARY(v(ŷ1), . . . , v(ŷm−1)) and the

corresponding (micro)instruction fSUMMARY(u(x1), . . . , u(xm−1)) in the memory buffer. Blue line represents the

procedure of encoding the (micro)instruction u(xm) of the current BABY-STEP. Purple line represents the de-

tailed decision making process of our BABYWALK policy (Ast is denoted as the set of navigable directions at st
as defined by Fried et al. (2018))

Encoders Instruction encoder u(·) for the in-

structions is a single directional LSTM with hidden

size 512 and a word embedding layer of size 300

(initialized with GloVE embedding (Pennington

et al., 2014)). We use the same encoder for encod-

ing the past experienced and the current executing

instruction. Trajectory encoder v(·) contains two

separate bidirectional LSTMs (Bi-LSTM), both

with hidden size 512. The first Bi-LSTM encodes

ati and outputs a hidden state for each time step ti.
Then we attends the hidden state to the panoramic

view sti to get a state feature of size 2176 for each

time step. The second Bi-LSTM encoders the state

feature. We use the trajectory encoder just for en-

coding the past experienced trajectories.

BABYWALK Policy The BABYWALK policy

network consists of one LSTM with two attention

layers and an action predictor. First we attend the

hidden state to the panoramic view st to get state

feature of size 2176. The state feature is concate-

nated with the previous action embedding as a vari-

able to update the hidden state using a LSTM with

hidden size 512. The updated hidden state is then

attended to the context variables (output of u(·)).
For the action predictor module, we concatenate the

output of text attention layer with the summarized

past context ẑm in order to get an action prediction

variable. We then get the action prediction variable

through a 2-layer MLP and make a dot product

with the navigable action embeddings to retrieve

the probability of the next action.

Model Inference During the inference time, the

BABYWALK policy only requires running the

heuristic BABY-STEP identification on the test-time

instruction. No need for oracle BABY-STEP trajec-

tory during this time as the BABYWALK agent is

going to roll out for each BABY-STEP by itself.

B.2 Details of Reward Shaping for RL

As mentioned in the main text, we learn policy via

optimizing the Fidelity-oriented reward (Jain et al.,

2019). Now we give the complete details of this

reward function. Suppose the total number of roll

out steps is T =
∑M

i=1 |ŷi|, we would have the

following form of reward function:

r(st,at) =

{
0, if t < T

SR(Y, Ŷ) + CLS(Y, Ŷ), if t = T

Here, Ŷ = ŷ1 ⊕ . . .⊕ ŷM represents the concate-

nation of BABY-STEP trajectories produced by the

navigation agent (and we note ⊕ as the concatena-

tion operation).

B.3 Optimization Hyper-parameters

For each BABY-STEP task, we set the maximal

number of steps to be 10, and truncate the cor-

responding BABY-STEP instruction length to be

100. During both the imitation learning and the

curriculum reinforcement learning procedures, we

fix the learning rate to be 1e-4. In the imitation
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learning, the mini-batch size is set to be 100. In

the curriculum learning, we reduce the mini-batch

size as curriculum increases to save memory con-

sumption. For the 1st, 2nd, 3rd and 4th curriculum,

the mini-batch size is set to be 50, 32, 20, and 20

respectively. During the learning, we pre-train our

BABYWALK model for 50000 iterations using the

imitation learning as a warm-up stage. Next, in

each lecture (up to 4) of the reinforcement learn-

ing (RL), we train the BABYWALK agent for an

additional 10000 iterations, and select the best per-

forming model in terms of SDTW to resume the

next lecture. For executing each instruction dur-

ing the RL, we sample 8 navigation episodes be-

fore performing any back-propagation. For each

learning stage, we use separate Adam optimizers

to optimize for all the parameters. Meanwhile, we

use the L2 weight decay as the regularizer with its

coefficient set to be 0.0005. In the reinforcement

learning, the discounted factor γ is set to be 0.95.

C Additional Experimental Results

In this section, we describe a comprehensive set of

evaluation metrics and then show transfer results

of models trained on each dataset, with all met-

rics. We provide additional analysis studying the

effectiveness of template based BABY-STEP identi-

fication. Finally we present additional qualitative

results.

Complete set of Evaluation Metrics. We adopt

the following set of metrics:

• Path Length (PL) is the length of the agent’s

navigation path.

• Navigation Error (NE) measures the distance

between the goal location and final location of

the agent’s path.

• Success Rate (SR) that measures the average rate

of the agent stopping within a specified distance

near the goal location (Anderson et al., 2018)

• Success weighted by Path Length (SPL) (An-

derson et al., 2018) measures the success rate

weighted by the inverse trajectory length, to pe-

nalize very long successful trajectory.

• Coverage weighted by Length Score (CLS) (Jain

et al., 2019) that measures the fidelity of the

agent’s path to the reference, weighted by the

length score, and the newly proposed

• Normalized Dynamic Time Warping (NDTW) that

measures in more fine-grained details, the spatio-

temporal similarity of the paths by the agent and

the human expert (Magalhaes et al., 2019).

• Success rate weighted normalized Dynamic Time
Warping (SDTW) that further measures the spatio-

temporal similarity of the paths weighted by

the success rate (Magalhaes et al., 2019). CLS,

NDTW and SDTW measure explicitly the agent’s

ability to follow instructions and in particular,

it was shown that SDTW corresponds to human

preferences the most.

C.1 Sanity Check between Prior Methods
and Our Re-implementation

Data Splits R2R Validation Unseen
Perf. Measures PL NE↓ SR↑ SPL

Reported Results
SEQ2SEQ (Fried et al., 2018) - 7.07 31.2 -

SF
+ (Fried et al., 2018) - 6.62 35.5 -

RCM
+ (Wang et al., 2019) 14.84 5.88 42.5 -

REGRETFUL
+� (Ma et al., 2019b) - 5.32 50.0 41.0

FAST
+� (Ke et al., 2019) 21.17 4.97 56.0 43.0

Re-implemented Version
SEQ2SEQ 15.76 6.71 33.6 25.5

SF
+ 15.55 6.52 35.8 27.6

RCM
+ 11.15 6.18 42.4 38.6

REGRETFUL
+� 13.74 5.38 48.7 39.7

FAST
+� 20.45 4.97 56.6 43.7

Table 6: Sanity check of model trained on R2R and

evaluated on its validation unseen split (+: pre-trained

with data augmentation; �:reimplemented or readapted

from the original authors’ released code).

As mentioned in the main text, we compare our

re-implementation and originally reported results

of baseline methods on the R2R datasets, as Table 6.

We found that the results are mostly very similar,

indicating that our re-implementation are reliable.

C.2 Complete Curriculum Learning Results
We present the curriculum learning results with all

evaluation metrics in Table 7.

C.3 Results of BABY-STEP Identification
We present an additional analysis comparing differ-

ent BABY-STEP identification methods. We com-

pare our template-based BABY-STEP identification

with a simple method that treat each sentence as

an BABY-STEP (referred as sentence-wise), both

using the complete BABYWALK model with the

same training routine. The results are shown in the



2553

IL+ CRL w/ LECTURE #

D
at

as
et

s

M
et

ri
cs

IL

IL
+

R
L

1
st

2
nd 3
rd 4
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R
2

R

PL 22.4 12.0 11.6 13.2 10.6 9.6

NE↓ 6.8 7.1 6.8 6.8 6.7 6.6
SR↑ 28.1 29.8 29.9 33.2 32.2 34.1
SPL↑ 15.7 24.3 24.9 26.6 27.5 30.2
CLS↑ 28.9 46.2 46.6 47.2 48.1 50.4
NDTW↑ 30.6 43.8 42.5 41.0 47.7 50.0
SDTW↑ 16.5 23.2 23.1 24.3 25.7 27.8

R
4

R

PL 43.4 22.8 23.9 25.5 21.4 19.0

NE↓ 8.4 8.6 8.5 8.4 8.0 8.2

SR↑ 24.7 25.0 24.1 26.7 27.9 27.3

SPL↑ 8.2 11.2 11.0 12.3 13.7 14.7
CLS↑ 27.9 45.5 44.8 45.9 47.4 49.4
NDTW↑ 24.3 34.4 32.8 33.7 38.4 39.6
SDTW↑ 11.1 13.6 13.5 15.2 17.0 17.3

R
6

R

PL 68.8 35.3 37.0 40.6 33.2 28.7

NE↓ 9.4 9.5 9.4 9.4 8.9 9.2

SR↑ 22.7 23.7 21.9 23.4 24.7 25.5
SPL↑ 4.2 7.2 6.4 6.8 8.1 9.2
CLS↑ 24.4 43.0 41.8 42.3 44.2 47.2
NDTW↑ 17.8 28.1 26.0 26.9 30.9 32.7
SDTW↑ 7.7 10.8 9.7 11.0 12.7 13.6

R
8

R

PL 93.1 47.5 50.0 55.3 45.2 39.9

NE↓ 10.0 10.2 10.2 10.1 9.3 10.1

SR↑ 21.9 21.4 20.4 22.1 23.1 23.1

SPL↑ 4.3 6.1 5.5 6.1 6.8 7.4
CLS↑ 24.1 42.1 41.0 41.5 43.9 46.0
NDTW↑ 15.5 24.6 22.9 23.8 27.7 28.2
SDTW↑ 6.4 8.3 7.9 9.2 10.5 11.1

A
ve

ra
g
e

PL 51.8 26.8 27.9 30.6 25.1 22.1

NE↓ 8.5 8.7 8.5 8.5 8.1 8.3

SR↑ 24.7 25.5 24.6 27.0 27.5 28.1
SPL↑ 8.6 13.1 12.9 13.9 15.1 16.5
CLS↑ 26.6 44.5 43.9 44.6 46.2 48.6
NDTW↑ 23.0 33.9 32.2 32.4 37.4 39.0
SDTW↑ 11.0 14.8 14.4 15.7 17.3 18.4

Table 7: Ablation on BABYWALK after each learning

stage (trained on R4R).

Table 8. Generally speaking, the template based

BABY-STEP identification provides a better perfor-

mance.

C.4 In-domain Results of Models Trained on
Instructions with Different lengths

As mentioned in the main text, we display all the in-

domain results of navigation agents trained on R2R,

R4R, R6R, R8R, respectively. The complete results

of all different metrics are included in the Table 9.

We note that our BABYWALK agent consistently

outperforms baseline methods on each dataset. It

is worth noting that on R4R, R6R and R8R datasets,

RCM(GOAL)+ achieves better results in SPL. This

is due to the aforementioned fact that they often

Datasets Metrics Sentence-wise Template based

R2R

PL 10.3 9.6

NE↓ 6.8 6.6
SR↑ 28.7 34.1
SPL↑ 24.9 30.2
CLS↑ 48.3 50.4
NDTW↑ 43.6 50.0
SDTW↑ 22.4 27.8

R4R

PL 20.9 19.0

NE↓ 8.2 8.2

SR↑ 26.3 27.3
SPL↑ 12.7 14.7
CLS↑ 46.4 49.4
NDTW↑ 35.5 39.6
SDTW↑ 15.9 17.3

R6R

PL 32.1 28.7

NE↓ 9.0 9.2

SR↑ 22.5 25.5
SPL↑ 7.5 9.2
CLS↑ 44.2 47.2
NDTW↑ 29.3 32.7
SDTW↑ 11.1 13.6

R8R

PL 42.9 39.9

NE↓ 9.8 10.1

SR↑ 21.2 23.1
SPL↑ 6.3 7.4
CLS↑ 43.2 46.0
NDTW↑ 25.5 28.2
SDTW↑ 9.3 11.1

Average

PL 24.2 22.1

NE↓ 8.3 8.3

SR↑ 25.2 28.1
SPL↑ 13.8 16.5
CLS↑ 45.9 48.6
NDTW↑ 34.6 39.0
SDTW↑ 15.4 18.4

Table 8: BABYWALK Agent performances between dif-

ferent segmentation rules (trained on R4R). Refer to

text for more details.

take short-cuts to directly reach the goal, with a

significantly short trajectory. As a consequence,

the success rate weighted by inverse path length is

high.

C.5 Transfer Results of Models Trained on
Instructions with Different lengths

For completeness, we also include all the transfer

results of navigation agents trained on R2R, R4R,

R6R, R8R, respectfully. The complete results of all

different metrics are included in the Table 10. Ac-

cording to this table, we note that models trained on

R8R can achieve the best overall transfer learning

performances. This could because of the fact that

R8R trained model only needs to deal with interpo-
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R
→

R
2

R

PL 15.8 15.6 11.1 10.2 10.7 10.2

NE↓ 6.7 6.5 6.2 6.2 6.2 5.9
SR↑ 33.6 35.8 42.4 42.1 42.6 43.8
SPL↑ 25.5 27.6 38.6 38.6 38.3 39.6
CLS↑ 38.5 39.8 52.7 52.6 52.9 54.4
NDTW↑ 39.2 41.0 51.0 50.8 53.4 55.3
SDTW↑ 24.9 27.2 33.5 34.4 35.7 36.9

R
4

R
→

R
4

R

PL 28.5 26.1 12.3 26.4 23.8 19.0

NE↓ 8.5 8.3 7.9 8.4 7.9 8.2

SR↑ 25.7 24.9 28.7 24.7 29.6 27.3

SPL↑ 14.1 16.0 22.1 11.6 14.0 14.7

CLS↑ 20.7 23.6 36.3 39.2 47.8 49.4
NDTW↑ 20.6 22.7 31.3 31.3 38.1 39.6
SDTW↑ 9.0 9.2 13.2 13.7 18.1 17.3

R
6

R
→

R
6

R

PL 34.1 43.4 11.8 28.0 28.4 27.2

NE↓ 9.5 9.6 9.2 9.4 9.4 9.3

SR↑ 18.1 17.8 18.2 20.5 21.7 22.0
SPL↑ 9.6 7.9 14.8 7.4 7.8 8.1

CLS↑ 23.4 20.3 31.6 39.0 47.1 47.4
NDTW↑ 19.3 17.8 25.9 25.8 32.6 33.4
SDTW↑ 6.5 5.9 7.6 9.5 11.5 11.8

R
8

R
→

R
8

R

PL 40.0 53.0 12.4 42.3 35.6 39.1

NE↓ 9.9 10.1 10.2 10.7 9.6 9.9

SR↑ 20.2 18.6 19.7 18.2 22.3 22.0

SPL↑ 12.4 9.8 15.4 5.3 7.3 7.0

CLS↑ 19.8 16.3 25.7 37.2 46.4 46.4
NDTW↑ 15.8 13.5 19.4 21.6 29.6 28.3

SDTW↑ 5.1 4.4 5.8 7.6 10.4 10.1

Table 9: Indomain results. Each model is trained on

the training set of R2R, R4R, R6R and R8R datasets,

and evaluated on the corresponding unseen validation

set (+: pre-trained with data augmentation).

lating to shorter ones, rather than extrapolating to

longer instructions, which is intuitively an easier

direction.

C.6 Additional Qualitative Results
We present more qualitative result of various VLN

agents as Fig 8. It seems that BABYWALK can pro-

duce trajectories that align better with the human

expert trajectories.
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R

PL 28.6 28.9 13.2 14.1 15.5 29.7 19.5 17.9

NE↓ 9.1 9.0 9.2 9.3 8.4 9.1 8.9 8.9

SR↑ 18.3 16.7 14.7 15.2 19.2 13.3 22.5 21.4

SPL↑ 7.9 7.4 8.9 8.9 10.1 7.7 12.6 11.9

CLS↑ 29.8 30.0 42.5 41.2 46.4 41.8 50.3 51.0
NDTW↑ 25.1 25.3 33.3 32.4 31.6 33.5 38.9 40.3
SDTW↑ 7.1 6.7 7.3 7.2 9.8 7.2 14.5 13.8

R
2

R
→

R
6

R

PL 39.4 41.4 14.2 15.7 15.9 32.0 29.1 25.9

NE↓ 9.6 9.8 9.7 9.8 8.8 9.0 10.1 9.8

SR↑ 20.7 17.9 22.4 22.7 24.2 26.0 21.4 21.7

SPL↑ 11.0 9.1 17.7 18.3 16.6 16.5 7.9 8.8

CLS↑ 25.9 26.2 37.1 36.4 40.9 37.7 48.4 49.0
NDTW↑ 20.5 20.8 26.6 26.1 16.2 21.9 30.8 32.6
SDTW↑ 7.7 7.2 8.2 8.4 6.8 8.5 11.2 11.2

R
2

R
→

R
8

R

PL 52.3 52.2 15.3 16.9 16.6 34.9 38.3 34.0

NE↓ 10.5 10.5 11.0 11.1 10.0 10.6 11.1 10.5

SR↑ 16.9 13.8 12.4 12.6 16.3 11.1 19.6 20.7
SPL↑ 6.1 5.6 7.4 7.5 7.7 6.2 6.9 7.8
CLS↑ 22.5 24.1 32.4 30.9 35.3 33.7 48.1 48.7
NDTW↑ 17.1 18.2 23.9 23.3 8.1 14.5 26.7 29.1
SDTW↑ 4.1 3.8 4.3 4.3 2.4 2.4 9.4 9.8

A
ve

ra
g
e

PL 40.1 40.8 14.2 15.6 16.0 32.2 29.0 25.9

NE↓ 9.7 9.8 10.0 10.1 9.1 9.6 10.0 9.7

SR↑ 18.6 16.1 16.5 16.8 19.9 16.8 21.2 21.3
SPL↑ 8.3 7.4 11.3 11.6 11.5 10.1 9.1 9.5

CLS↑ 26.1 26.8 37.3 36.2 40.9 37.7 48.9 49.6
NDTW↑ 20.9 21.4 27.9 27.3 18.6 23.3 32.1 34.0
SDTW↑ 6.3 5.9 6.6 6.6 6.3 6.0 11.7 11.6
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→
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R

PL 16.2 17.4 10.2 17.7 20.0 26.5 12.1 9.6

NE↓ 7.8 7.3 7.1 6.7 7.5 7.2 6.6 6.6

SR↑ 16.3 22.5 25.9 29.1 22.8 25.1 35.2 34.1

SPL↑ 9.9 14.1 22.5 18.2 14.0 16.3 28.3 30.2
CLS↑ 27.1 29.5 44.2 34.3 32.6 33.9 48.5 50.4
NDTW↑ 29.3 31.8 41.1 33.5 28.5 27.9 46.5 50.0
SDTW↑ 10.6 14.8 20.2 18.3 13.4 14.2 27.2 27.8

R
4

R
→

R
6

R

PL 40.8 38.5 12.8 33.0 19.9 26.6 37.0 28.7

NE↓ 9.9 9.5 9.2 9.3 9.5 8.9 8.8 9.2

SR↑ 14.4 15.5 19.3 20.5 18.0 22.1 26.4 25.5

SPL↑ 6.8 8.4 15.2 8.5 10.6 13.7 8.1 9.2

CLS↑ 17.7 20.4 31.8 38.3 31.7 31.5 44.9 47.2
NDTW↑ 16.4 18.3 23.5 23.7 23.5 23.0 30.1 32.7
SDTW↑ 4.6 5.2 7.3 7.9 7.5 7.7 13.1 13.6

R
4

R
→

R
8

R

PL 56.4 50.8 13.9 38.7 20.7 28.2 50.0 39.9

NE↓ 10.1 9.5 9.5 9.9 9.5 9.1 9.3 10.1

SR↑ 20.7 21.6 22.8 20.9 18.7 27.7 26.3 23.1

SPL↑ 10.4 11.8 16.9 9.0 9.2 13.7 7.2 7.4

CLS↑ 15.0 17.2 27.6 34.6 29.3 29.6 44.7 46.0
NDTW↑ 13.4 15.1 19.5 21.7 19.0 17.7 27.1 28.2
SDTW↑ 4.7 5.0 5.1 6.1 5.6 6.9 11.5 11.1

A
ve
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g
e

PL 37.8 35.6 12.3 29.8 20.2 27.1 33.0 26.1

NE↓ 9.3 8.8 8.6 8.6 8.8 8.4 8.2 8.6

SR↑ 17.1 19.9 22.7 23.5 19.8 25.0 29.3 27.6

SPL↑ 9.0 11.4 18.2 11.9 11.3 14.6 14.5 15.6

CLS↑ 19.9 22.4 34.5 35.7 31.2 31.7 46.0 47.9
NDTW↑ 19.7 21.7 28.0 26.3 23.7 22.9 34.6 37.0
SDTW↑ 6.6 8.3 10.9 10.8 8.8 9.6 17.3 17.5

(a) R2R trained model (b) R4R trained model
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PL 14.5 19.4 8.1 15.5 9.4 9.2

NE↓ 7.7 7.1 7.6 7.5 6.8 6.8
SR↑ 19.3 21.9 19.6 22.6 31.3 30.6

SPL↑ 13.3 11.6 17.2 14.1 28.3 27.8

CLS↑ 32.1 26.2 43.2 34.3 49.9 50.0
NDTW↑ 31.9 30.8 39.7 32.4 49.5 49.4

SDTW↑ 13.1 13.3 15.3 14.3 25.9 25.4

R
6

R
→

R
4

R

PL 25.2 33.0 11.6 25.7 18.1 17.7

NE↓ 8.7 8.6 8.5 8.4 8.4 8.2
SR↑ 24.2 22.4 23.6 25.4 24.3 24.3

SPL↑ 13.7 9.3 17.5 10.6 12.8 12.9

CLS↑ 25.8 21.4 35.8 34.8 48.6 48.6
NDTW↑ 22.9 20.6 29.8 26.5 39.0 39.4
SDTW↑ 9.3 7.5 10.8 11.1 15.1 15.1

R
6

R
→

R
8

R

PL 43.0 52.8 14.2 29.9 38.3 36.8

NE↓ 9.9 9.9 9.6 9.7 10.2 10.0

SR↑ 20.1 20.3 20.3 22.4 20.8 21.0

SPL↑ 11.2 9.4 14.9 8.1 6.6 6.8

CLS↑ 20.6 18.3 27.7 38.9 45.9 46.3
NDTW↑ 16.3 15.2 21.9 22.2 28.4 29.3
SDTW↑ 5.6 5.0 6.4 6.8 9.6 9.9
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e

PL 27.6 35.1 11.3 23.7 21.9 21.2

NE↓ 8.8 8.5 8.6 8.5 8.5 8.3
SR↑ 21.2 21.5 21.2 23.5 25.5 25.3

SPL↑ 12.7 10.1 16.5 10.9 15.9 15.8

CLS↑ 26.2 22.0 35.6 36.0 48.1 48.3
NDTW↑ 23.7 22.2 30.5 27.0 39.0 39.4
SDTW↑ 9.3 8.6 10.8 10.7 16.9 16.8
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PL 13.7 19.3 7.8 17.8 9.1 9.8

NE↓ 7.6 7.3 8.0 8.2 6.8 6.7
SR↑ 18.7 23.4 14.8 19.2 30.0 32.1
SPL↑ 13.3 12.9 12.9 10.6 27.0 28.2
CLS↑ 32.7 26.6 37.9 28.9 49.5 49.3

NDTW↑ 32.4 29.9 34.9 25.9 48.9 48.9
SDTW↑ 12.7 14.5 11.1 10.5 24.6 26.2

R
8

R
→

R
4

R

PL 23.1 31.7 11.1 32.5 17.4 19.0

NE↓ 8.7 8.8 8.7 9.2 8.2 8.5

SR↑ 23.6 21.8 23.2 21.7 24.4 24.4
SPL↑ 15.1 10.5 18.2 7.4 12.6 12.5

CLS↑ 24.9 20.8 32.3 29.4 48.1 48.5
NDTW↑ 22.3 19.7 26.4 20.6 39.1 38.5

SDTW↑ 8.8 7.7 9.3 8.4 14.9 15.2

R
8

R
→

R
6

R

PL 30.9 42.2 11.9 39.9 26.6 29.2

NE↓ 9.7 9.9 9.9 10.1 9.0 9.3

SR↑ 15.4 14.7 14.8 20.0 22.9 22.9

SPL↑ 8.6 6.7 11.6 5.3 8.4 7.9

CLS↑ 22.2 18.5 29.1 33.5 46.9 46.6

NDTW↑ 18.5 15.9 22.5 20.1 33.3 31.8

SDTW↑ 5.5 4.7 6.0 7.8 12.1 11.8

A
ve

ra
g
e

PL 22.6 31.1 10.3 30.1 17.7 19.3

NE↓ 8.7 8.7 8.9 9.2 8.0 8.2

SR↑ 19.2 20.0 17.6 20.3 25.8 26.5
SPL↑ 12.3 10.0 14.2 7.8 16.0 16.2
CLS↑ 26.6 22.0 33.1 30.6 48.2 48.1

NDTW↑ 24.4 21.8 27.9 22.2 40.4 39.7

SDTW↑ 9.0 9.0 8.8 8.9 17.2 17.7

(c) R6R trained model (d) R8R trained model

Table 10: Transfer results of R2R, R4R, R6R, R8R trained model evaluated on their complementary unseen vali-

dation datasets (+: pre-trained with data augmentation; �: reimplemented or readapted from the original authors’

released code).
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Figure 8: Additional trajectories by human experts and VLN agents on two navigation tasks.


