
Goal-Oriented Web-site Navigation for On-line Shoppers ∗

Daniel Deutch Tova Milo Tom Yam

Tel Aviv University
{danielde,milo,tomyam}@cs.tau.ac.il

ABSTRACT
Web-sites for on-line shopping typically offer a vast number of
product options and combinations thereof. While this is very use-
ful, it often makes the navigation in the site and the identification of
the “ideal” purchase (where the notion of ideal differs among users)
a confusing, non-trivial experience. This demonstration presents
ShopIT (ShoppIng assitanT), a system that assists on-line shoppers
by suggesting the most effective navigation paths for their specified
criteria and preferences. The suggestions are continually adapted
to choices/decisions taken by the users while navigating. ShopITis
based on a set of novel, adaptive, provably optimal algorithms for
TOP-K query evaluation.

1. INTRODUCTION
On-line shopping is extremely popular nowadays, with millions

of users purchasing products in shops that provide a Web interface.
It is common for on-line shops to offer a vast number of product
options and combinations thereof [14, 8]. This is very useful but, at
the same time, makes shopping rather confusing. Indeed, it is often
very difficult to find the specific navigation path in the site (i.e. a
flow of user clicks / choices / actions) that will lead to an “optimal”
result, best suiting the needs and preferences of the given user.

Consider for example an on-line store that allows users to assem-
ble computers from a variety of component parts. The store offers
various processors, motherboards, screens etc. Consider a user that
is interested in buying a cheap computer with Intel processor in-
side. Suppose that the user can get a good price by first registering
to the store’s customers club, then passing through some advertise-
ment page that provides such members with discount coupons, and
finally buying a certain set of components (including a certain Intel
processor) that, when purchased together with the above coupons,
yields the cheapest overall price. Clearly, the user might be inter-
ested in knowing this information if she is after the deal with the
best price. Alternatively, the user may prefer combinations where
the delivery time is minimal, or may want to use the experience of
others and view the most popular navigation paths (and purchases
∗This research has been partially supported by the European
Project MANCOOSI and the Israel Science Foundation.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

thereof), assembling an Intel-based computer. If, for instance, the
above proposed cheap deal is not among them, the user would more
carefully check the quality of the deal’s components.

We present here ShopIT (ShoppIng assitanT), a system that as-
sists on-line shoppers by suggesting the most effective navigation
paths for their specified criteria (e.g. “Intel processor inside”) and
preferences (e.g. low price, delivery time, popularity). When the
user starts her navigation in the site, she may specify her constraints
and her ranking function of interest, and have the system compute
and propose (an initial set of) top-k ranked navigation flows, out of
these conforming to the constraints. The user then continues her
navigation taking into account the presented recommendations, but
may also make choices different than those proposed by the sys-
tem. For instance, ShopIT might have proposed the purchase of a
DDR motherboard and a Pentium 4 processor, but the user might
have nevertheless chosen an RDRAM motherboard. In this case,
new recommendations, consistent with the actual choices made by
the user, are automatically computed. Namely, the system dynam-
ically proposes new top-k continuations that are up to date with
the user’s current navigation. The user may similarly modify her
selection criteria or preferred ranking.

Several challenges arise in the development of such a system.
First, the number of possible navigation flows in a given web-site
is not only large but infinite, as users may navigate back and forth
between pages. Hence, enumerating and ranking all relevant flows
is clearly not an option. Second, it is critical to maintain a fast re-
sponse time in order to provide a pleasant user experience. Finally,
as explained above, the computation must be flexible and adap-
tive, to account for run-time user choices. To address these needs,
ShopIT uses a novel, dynamic and adaptive top-k query evaluation
algorithm. Our algorithm can be formally proved to be optimal [6]
and our experiments show that it is very efficient in practice.

Demonstration Scenario. We demonstrate the operation of ShopIT
on a Web shop that simulates the on-line computers store of Yahoo!
Shopping [14]. The shop is based on real-life data obtained from
Yahoo! Shopping and the only reason that we use a simulated ver-
sion is technical: avoiding to commit actual purchases in the site.

First, we shall present to the audience the original “stripped-
down” version of the Yahoo! Shopping-like store (without the
ShopIT recommendations component) and ask them to shop for
component products of their likings. Then, we shall turn on ShopIT
and demonstrate how it simplifies and improves the shopping ex-
perience. We will show how users specify their interests and their
preferences for ranking, and how corresponding proposals for best
navigation flows in the store’s web-site are presented. Given these
initial recommendations, we will illustrate different possible inter-
actions with the system. Specifically, we will consider users that
follow the recommended flows and, in contrast, users that make



choices different than those recommended by ShopIT or dynami-
cally change their search criteria or ranking preferences. We will il-
lustrate how the system’s recommendations are continually adapted
to the concrete choices made by users and to changes in their in-
terests/preferences. We will also compare the overall deal price
obtained by ShopITto the initial one obtained by the users without
it (and emphasize also the saving in the time invested in searching
for deals).

As a last part of the demonstration, we allow users to look “under-
the-hood” of our system. Specifically, we will show graphical rep-
resentations of the queries constructed out of the user requests and
of possible matching navigation flows, and illustrate main features
of our adaptive top-k query evaluation algorithm.

2. TECHNICAL BACKGROUND
We provide in this section some background on our model for

Web applications and for queries over such applications. The de-
scribed model serves as the basis for the ShopIT application.

Web-based Applications. Our model for Web applications, intro-
duced in [2, 5], abstractly models applications as a set of (nested)
DAGs - Directed Acyclic Graphs - each intuitively corresponding
to a specific function or service [2, 4, 7]. The graphs consist of
activities (nodes), and links (edges) between them, that detail the
execution order of activities. Each activity is represented by a pair
of nodes, the first standing as the activity’s activation point and the
second as its completion point. Activities may be either atomic,
or compound. In the latter case their possible internal structures
(called implementations) are also detailed as DAGs, leading to the
nested structure. A compound activity may have different possi-
ble implementations, corresponding to different user choices, link
traversals, variable values, etc. These are captured by logical for-
mulas (over the user choices, variable values, etc.) that guard each
of the possible implementations. A Web-based application may be
recursive, where an (indirect) implementation of some activity a
contains another occurrence of a.

For example, a schematic (partial) description of the model of
our on-line computers store is depicted in Fig. 1. The possible
implementations of each activity are depicted here as bubbles, at-
tached to the activity node. A customer starts by logging into the
system, authenticating and giving her credit card details. Then, she
may choose a product (e.g. Motherboard, CPU, etc.) out of a list.
In parallel (i.e. by opening a new tab) she may review suggestions
for hot deals or buy discount coupons. Upon a choice of product
type, she is directed to a page where the different brands that the
store offers for this product type are listed, and the corresponding
products can be selected. The user can next choose to cancel her
selection, to search for more products, or alternatively to exit and
pay. Note the recursive nature of this application: users can re-start
the search (i.e. call S1) an unbounded number of times, each time
purchasing another item.

Navigation Flow. A navigation flow (in a given application) cor-
responds to concrete choices of implementations for compound ac-
tivities. For instance, a possible navigation flow in our computer
store is one where the user first reviews the possible deals, then
chooses to purchase an Intel Motherboard, subsequently cancels
her choice, buys a discount coupon and selects a CPU by HP, etc.
Note that the number of possible navigation flows may be exten-
sively large even for relatively small-scaled applications. In fact,
for recursive applications such as the one depicted in our example,
the number of possible flows may be infinite (as there is no bound
on the number of times that a user may go through S1.)

Figure 1: Web-Based Application (Schematic Representation)

Ranking. The rank of navigation flows is derived using two func-
tions, namely, cWeight and fWeight . Function cWeight assigns
a weight to each single (implementation) choice within a flow, de-
pending on the course of the flow thus far and the objective that the
user wishes to optimize, e.g., monetary cost or likelihood. Function
fWeight aggregates the per-choice weights in a single score for the
entire flow. As an example, it can sum up the individual monetary
costs to compute the total cost of the flow, or it may multiply the
per-choice likelihoods to derive an overall likelihood. Notions such
as discounts and combined deals are factored within the cWeight
function, which is aware of flow history. We do not place any re-
strictions on fWeight except that it satisfies the standard notion of
monotonicity.

Top-k query results. The users’ search criteria are modeled by
queries. These use navigation patterns, an adaptation of the tree-
patterns, found in existing query languages for XML, to nested ap-
plication DAGs [2]. Our top-k query evaluation algorithm gets as
input the schematic representation of the application, the user query
and the chosen ranking metric, and efficiently retrieves the qualify-
ing navigation flows with the highest rank. The algorithm operates
in two steps. First, it generates a refined version of the original
application representation, describing only flows that are relevant
to the user request. Then it greedily analyzes the refined repre-
sentation to obtain the best-ranked flows. (The reader is referred
to [6] for details.) The choices made by the user throughout the
navigation are modeled as additional constraints/relaxations to the
original query, and an efficient adaptive evaluation technique is em-
ployed to update the query result.

Related Work. We end this section with a short review of related
work. We have already mentioned popular shopping web-sites such
as [14, 8]. Unlike ShopIT, their ranking mechanism ranks, sepa-
rately, items in each distinct category, based on built-in specific
ranking metric. The global effect of a full navigation flow that may
include, e.g., registration to customers clubs, collection of coupon
discounts, specific user choices, is not accounted for.

A variety of Recommender Systems (e.g. [12, 13]) appear in the
literature. However, as mentioned in [1], they provide rather low
flexibility, with a recommendation method that is hard-wired and
not configurable to fit user needs1. These works also typically do

1An exception are OLAP-based approaches that are still considered
an open research problem.



Figure 2: System Architecture

not support recommendations on multiple items. Successful com-
mercial tools such as [11, 10] share similar characteristics and of-
ten specialize in specific domains, e.g. movies, music, restaurants.
In contrast, we propose here a flexible generic approach that ad-
dresses the common, multi-item, shopping scenario and identifies
navigation flows that best match the users criteria and preferences.
The importance of customizable recommendation systems was re-
cently recognized in [9], where such a flexible system was intro-
duced in the context of relational data. The (possibly recursive)
semi-structured shape of Web-applications introduces unique chal-
lenges for top-k computation, that are not found in a relational en-
vironment [6].

We stress that while the demonstration scenario considers a spe-
cific example of an on-line computer store, the underlying recom-
mendation system presented here is generic, and an adaptation to
other settings will only require the replacement of our Front-End
that retrieves application and products data from Yahoo! Shopping,
by a different Front-End.

3. SYSTEM OVERVIEW
ShopIT is implemented in C++, uses the SQLLite database and

php GUI, and runs on Windows XP. Figure 2 depicts the system
architecture. We give here a brief overview of the main components
and their interaction.

Store Model. The abstract model of the on-line store application
and its cWeight information are stored in the ShopIT database.

The first component, namely the application abstract model, was
manually configured following the logical flow structure of Yahoo!
Shopping application. We note however that, in general, many
Web-based applications are specified in declarative languages such
BPEL [3] (the standard for Web-based business processes) and then
an automated extraction of their abstract model structure is possi-
ble [2]. The products information, including compatibility relation
in-between products, as well as additional parameters such as prod-
ucts cost, discount deals, shipment time etc. were automatically re-
trieved via a standard Web interface provided by the Yahoo! web-
site. The cWeight function was automatically derived to reflect
this data.

Query Engine. The query engine is composed of two compo-
nents. The first is the Top-k queries evaluator that receives, as in-
put, from the user, her search criteria and chosen ranking metric,
and computes the initial suggestion of top-k qualifying navigation
paths. shopIT supplies a Graphical User Interface that allows
users to specify their criteria for search (we will see an example of
such query GUI in Section 4). The specified criteria are compiled
into a navigation pattern, which in turn is evaluated over the Web
Application model.

The second component is the adaptive recommendation engine,

Figure 3: The original Web-store application

that is continuously informed about the user actual navigation choices
(or changes to her search criteria and ranking choice) and adapts the
offered top-k suggestions accordingly.

We have designed the query engine so that it is accessible through
an API that allows the placement of user queries and preferences,
and the retrieval of the corresponding recommendations. This gen-
eral API can be used to incorporate ShopIT within a given web-
site.

The ShopIT virtual store. Users interact with a virtual store that
wraps the original store. User actions are passed, through the API,
to the ShopIT engine and to the (original) store application. The
obtained recommendations are then presented to the user alongside
with the resulting store screens (see Fig. 5). Each recommendation
consists of a sequence of proposed actions, such as “click on button
X”, “choose option Y at box Z”, etc., and is accompanied by its cor-
responding weight (e.g. total price, likelihood, etc.). For “in house”
applications that allow interference with their graphical interface
(like our simulated Yahoo! Shopping store), ShopIT further re-
orders the items on the screen to reflect their relative “precedence”
(i.e. the rank of the best navigation flow in which they participate).

4. DEMONSTRATION
As explained above, we illustrate the system operation by con-

sidering a specific on-line store that simulates the computers store
of Yahoo! Shopping [14]. The shop is based on real-life products
data obtained from Yahoo! Shopping through their public Web in-
terface. The store allows users to assemble computers based on a
variety of components, divided into categories (e.g. motherboards,
CPUs, memories). In each category, products can be filtered based
on some selection criteria (e.g. vendor name) and may be sorted
based on certain attributes (e.g. price). Figure 3 shows a sample
screen of the original store describing the available motherboards
(MBs), sorted by price. The first three are fairly old, cheap, MBs
while the following are newer, hence more expensive, MBs.

The assembly of a reasonably priced, functional computer is a
non-trivial task: not all components are compatible, and some se-
lections of cheap components force the selection of other highly
priced or error-prone compatible components. For instance, the
first three old MBs in the above example support only RDRAM
memory modules, which are very expensive, while the newer MBs
also support cheap DDR memory. Furthermore, even for a specific
combination of components, there may be several ways of purchas-
ing them (with or without a customers club membership, a certain
discount package, etc.). Finding the best deal is not easy.

In this demonstration we will show how ShopITsimplifies this
challenging task. We demonstrate the user’s interaction with the
system, as well as what happens “under the hood”. The demonstra-
tion is structured as follows.



Figure 4: User Query

The Store. First we will show the original computer store, the
many possible navigation paths in its Web-site, and the variety of
purchase options, in order to demonstrate the information overload
experienced by typical users when faced with such an enormous
number of possibilities. Specifically, we shall allow users to navi-
gate freely through the web store, using its standard search mech-
anism, and to assemble a computer of their likings. Then we will
turn to ShopIT and demonstrate how it simplifies and improves the
shopping experience by analyzing the various options, in view of
users’ search criteria and preferences, and identifying those that are
most appropriate.

ShopIT. We will first illustrate how the store is represented in
our abstract model. For that we will show a graphical view of the
(weighted) nested DAG representation. We will proceed to demon-
strate the system’s operation. First we show how the user speci-
fies her search criteria (e.g. a specific items set, or a request for
a full compatible computer, possibly with certain components in-
side), and how she selects her preferred ranking (e.g. price, popu-
larity, delivery time, or some combination). The search criteria may
place a requirement over a specific product (e.g. Intel CPU), or over
the entire flow (e.g. show only deals with total cost cheaper than
100$). Figure 4 depicts an example for such search criteria, with
the user seeking for a deal that comprises of a full computer, con-
taining an intel motherboard with DDR2 RAM technology, with all
components supplied overnight. The user further requests the deals
to be ordered by their overall price.

Given the user requirements, the system computes the top-k nav-
igation recommendations and presents them to the users alongside
the (refined) original shop screen, with the items now ordered ac-
cording to their current precedence. Two such results are depicted
in Figs. 5 and 6 respectively. In Fig. 5 the user asks for ranking
based on the overall price. Fig. 6 shows a ranking of the same
products, based on popularity of overall deals. We can see that the
old, cheap, MBs from Fig. 3 no longer appear here since they both
entail a high overall price and are unpopular.

Flexibility and adaptivity. Next we will demonstrate the flexibil-
ity of the system and the adaptivity to the actual decisions taken by
the user. The ShopIT recommendations consist of a sequence of
navigation steps that would lead to the “ideal” outcome. The user
can either accept the full recommendation by one click (we will
first demonstrate how this is done), or start following the proposed
navigation sequence step by step (we will demonstrate this next).
While navigating, the user may either follow the recommendations
or take choices different than those proposed. As an example, we
will illustrate a scenario where ShopIT recommended the assembly
of a computer with a DDR motherboard, but the user nevertheless
chooses an RDRAM motherboard. In this case, new recommenda-
tions, consistent with the actual choices made by the user, are auto-
matically computed and presented. We will also illustrate how the

Figure 5: ShopIT - Ranking by price

Figure 6: ShopIT - Ranking by popularity

user may dynamically change her search criteria/ preferred ranking
and how the recommendations are instantly adjusted.

At the end of the process, we will present to the users a compari-
son of their navigation with and without the assistance of ShopIT,
in terms of the overall price deal and time of search, to demonstrate
the system effectiveness.

To conclude the demonstration and explain the novel top-k rank-
ing mechanism underlying ShopIT, we will pick one of these rec-
ommendations and, based on the previously mentioned abstract
model, explain its computation.

5. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE TKDE., 17(6), 2005.

[2] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying business
processes. In Proc. of VLDB, 2006.

[3] Business Process Execution Language for Web Services.
http://www.ibm.com/developerworks/library/ws-bpel/.

[4] D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella, and
F. Patrizi. Automatic service composition and synthesis: the roman
model. IEEE Data Eng. Bull., 31(3), 2008.

[5] D. Deutch and T. Milo. Type checking and type inference for queries
on business processes. In Proc. of VLDB, 2008.

[6] D. Deutch, T. Milo, N. Polyzotis, and T. Yam. Optimal top-k query
evaluation for weighted BPs (submitted). 2009. http:
//www.cs.tau.ac.il/∼danielde/OptimalFull.pdf.

[7] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of
communicating data-driven web services. In PODS, 2006.

[8] Ebay. http://www.ebay.com/.
[9] G. Koutrika, B. Bercovitz, and H. Garcia-Molina. Flexrecs:

Expressing and combining flexible recommendations (to appear). In
SIGMOD, 2009.

[10] launch.com. http://www.launch.com/.
[11] netflix. http://www.netflix.com/.
[12] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based

collaborative filtering recommendation algorithms. In WWW, 2001.
[13] L. Ungar and D. Foster. Clustering methods for collaborative

filtering. In Workshop on Recommendation Systems, 1998.
[14] Yahoo! shopping. http://shopping.yahoo.com/.


