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ABSTRACT

Before sharing to support ad hoc aggregate analyses, microdata
often need to be anonymized to protect the privacy of individu-
als. A variety of privacy models have been proposed for microdata
anonymization. Many of these models (e.g., t-closeness) essen-
tially require that, after anonymization, groups of sensitive attribute
values follow specified distributions. To support such models, in
this paper we study the problem of transforming a group of sensi-
tive attribute values to follow a certain target distribution with min-
imal data distortion. Specifically, we develop and evaluate a novel
methodology that combines the use of sensitive attribute permuta-
tion and generalization with the addition of fake sensitive attribute
values to achieve this transformation. We identify metrics related
to accuracy of aggregate query answers over the transformed data,
and develop efficient anonymization algorithms to optimize these
accuracy metrics. Using a variety of data sets, we experimentally
demonstrate the effectiveness of our techniques.

1. INTRODUCTION

Cooperation among enterprises and governmental agencies of-
ten requires the sharing of private microdata, because they support
flexible and ad hoc aggregate analyses, a major advantage over pre-
computed aggregates. Due to privacy concerns, microdata need to
be properly transformed to prevent the discovery of any individual’s
sensitive attributes. A variety of privacy models and techniques
have been proposed to address this problem. k-anonymity [9, 10],
the first privacy model proposed for microdata anonymization, only
requires that for each tuple ¢ there exist at least £ — 1 other tuples
with the same quasi-identifier as ¢. Since k-anonymity does not
consider the distribution of sensitive attributes, it suffers from the
homogeneity attack when all these k tuples have the same or simi-
lar sensitive attribute values [7]. Several privacy models have been
recently proposed to remedy this problem, including ¢-diversity [7]
and t-closeness [6].

Though these privacy models have different definitions or tar-
get different types of sensitive attributes, they essentially specify
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constraints on the sensitive attribute distribution of a group of in-
dividual tuples. For example, ¢-diversity requires that there are at
least £ well-represented sensitive attribute values in P. Similarly,
t-closeness requires that the distribution P of sensitive attributes in
a group should be similar to that of the whole microdata table.

Given these distribution-based privacy models, the anonymiza-
tion problem is thus to transform the original microdata table to
groups of tuples so that the sensitive attribute distribution of each
group satisfies the privacy goal. Existing approaches are to form
groups (through quasi-identifier generalization or clustering) such
that the distributions of those groups naturally satisfy the privacy
goal without any modification. However, there are two concerns
with such approaches. First, there may not always exist groupings
that satisfy the privacy goal. For example, even if the microdata
table as a single group satisfies £-diversity, no non-trivial grouping
may do so. Second, the data owner has no control over how the
final grouping will look. Though these groups after anonymization
satisfy a privacy goal, they may not be suitable for the target re-
search analysis. For example, for health care research, it may be
desirable to group patient records by age group, by geography, etc.
However, to achieve a privacy goal, we may have to put an arbitrary
subset of patient records into a group. We observe that, with exist-
ing approaches, there is a dilemma between the desirable groupings
for microdata analysis and those for privacy protection.

The essential reason for the above dilemma is that existing ap-
proaches solely rely on the original distribution of a group to achieve
a privacy goal. In other words, they tightly couple grouping with
privacy goals. In this paper, we propose distribution transformation
as a new methodology to support distribution-based anonymiza-
tion. Specifically, we study the following problem: given an arbi-
trary group of tuples with quasi-identifiers and a sensitive attribute
and a target distribution on the sensitive attribute that satisfies a
privacy model, modify the sensitive attribute values of tuples in the
group such that one can only infer from the anonymized data that
for each tuple its sensitive attribute in the group follows the target
distribution but nothing more. We call this problem the distribution
transformation problem.

One major advantage of this problem setting is that it clearly
decouples grouping from privacy goals. It allows data owners to
come up with more useful groupings for data analysis while still
protecting privacy. For example, both ¢-diversity and ¢-closeness
require k-anonymity. Using our problem setting, we may first use
any basic k-anonymity algorithm to come up with groupings that
minimize the generalization. Then for each group, we can further
achieve ¢-diversity or t-closeness (i.e., define target distributions
that satisfy £-diversity or t-closeness). This problem setting further



offers an additional flexibility to have different target distributions
for different groups, so that the data owner can strike a fine-grained
tradeoff between privacy and data utility. It is also easy to see that
the distribution transformation problem is a more general problem
setting, in the sense that it is independent of specific privacy goals.
Solutions to this problem thus can be generally applied to existing
distribution-based privacy models.

As is true for any anonymization technique, besides privacy pro-
tection, solutions to the distribution transformation problem should
also maintain as much useful information as possible in the pub-
lished microdata. In particular, it should still be possible to an-
swer ad hoc aggregate queries with reasonable accuracy. Other-
wise, the whole purpose of data sharing is lost. For instance, one
naive approach is to replace each record’s sensitive attribute value
with one that is randomly generated following the target distribu-
tion. However, this approach changes the original data completely,
and will have a significant negative impact on the accuracy of ad
hoc query answering. In particular, it is impossible to get deter-
ministic bounds except the trivial ones for aggregate queries. This
is because by only looking at the perturbed microdata table each tu-
ple’s true sensitive attribute can take any value independently in the
domain. To get deterministic bounds, we have to consider the worst
case which will result in trivial bounds. In this paper, we propose a
methodology for distribution-based microdata anonymization that
returns accurate bounds as answers to ad hoc aggregate queries, and
make the following contributions.

First, we present a general framework for distribution-based mi-
crodata anonymization. We develop novel techniques that combine
sensitive attribute generalization and permutation to transform mi-
crodata such that each record appears to follow a target distribution.

Second, we identify metrics related to accuracy of query an-
swers over the anonymized microdata, and develop algorithms to
optimize these metrics. Intuitively, the less generalization we per-
form on sensitive attributes, the more accurate query results we tend
to obtain. We design efficient algorithms to minimize the sum of
ranges of sensitive attribute generalizations.

Third, to further support accurate aggregate query answering, we
propose to add fake sensitive attribute values into the original data
set before performing sensitive attribute generalization and permu-
tation. The use of fake values adds significant challenges to the
anonymization process. We design an efficient algorithm to com-
pute the optimal fake values that minimize our proposed metrics.

Finally, we conduct comprehensive experiments over both real
and synthetic data sets to verify the advantages of the proposed
techniques. The experimental results show that microdata protected
through sensitive attribute generalization and permutation combined
with the use of fake sensitive attribute values can answer ad hoc
queries with reasonable accuracy. Our experiments also verify the
effectiveness of the proposed optimization algorithms.

We organize the rest of the paper as follows. In Section 2, we
use examples to show the basic idea of our approach. In Section 3,
we present a general privacy protection framework for distribution-
based microdata anonymization. An optimal algorithm for sensi-
tive attribute generalization is presented in Section 4. We discuss
the use of fake values in Section 5. Experimental results are re-
ported in Section 6. We discuss closely related work in Section 7
and conclude this paper in Section 8.

2. ILLUSTRATIVE EXAMPLES

Figure 1 shows an example employee record table. Before this
table is shared, the explicit identifier attribute Name should be re-
moved. Attributes Zipcode and Gender are quasi-identifiers and
Salary is the sensitive attribute. For simplicity, we assume the do-

1D Quasi-identifiers Sensitive

tuple ID name zipcode | gender salary
1 Alice 91110 F $30K
2 Bob 91110 M $40K
3 Carol 91110 M $50K
4 Debra 91130 F $60K
5 Elaine 91210 F $40K
6 Grace 91220 F $30K
7 Helen 91240 F $50K
8 Jason 91310 M $40K
9 Kyle 91320 M $60K
10 Leo 91330 M $60K
11 Nancy 91340 F $60K

Figure 1: An example microdata table

Quasi-identifiers Sensitive
group ID | tuple ID zipcode | gender salary
1 1 91110 F $40K
1 2 91110 M $60K
1 3 91110 M $30K
1 4 91130 F $50K
2 5 91210 F {$30K,$40K}
2 6 91220 F {$50K, $60K}
2 7 91240 F {$30K, $40K, $50K, $60K}
3 8 91310 M {$30K, $40K, $50K, $60K}
3 9 91320 M {$30K, $40K, $50K, $60K}
3 10 91330 M {$50K, $60k}
3 11 91340 F {$30K, $40K}

Figure 2: An example microdata table after sensitive attribute
generalization and permutation

main of Salary to be {30K, 40K, 50K, 60K }.

Suppose the data owner wants to share this information with
a third party for business analysis, which prefers to have tuples
grouped according to the first three digits of their Zipcode. For pri-
vacy protection, it is further required that the salary attribute val-
ues in each group should satisfy 4-diversity. To achieve this pri-
vacy goal, the data owner may specify for each group a distribution
(called a target distribution) over the domain of Salary that satisfies
4-diversity. For ease of explanation, we assume the target distri-
bution for each group is the uniform distribution. In practice, each
group may have its own target distribution.

Clearly, except the first group (those with zipcode 911%*), the
distributions of the sensitive attribute values of the other two groups
do not follow the target distribution. In this paper, we study the fol-
lowing problem: given a target distribution P of sensitive attribute
values for a group of tuples, perform anonymization so that for each
individual tuple ¢ one can only infer from the anonymized data that
t’s sensitive attribute value follows P but nothing more. We call it
the distribution transformation problem.

This problem cannot be solved by existing anonymization tech-
niques (e.g., quasi-identifier generalization or permutation), as none
of them allows the modification of sensitive attribute values, and
thus cannot change the original distribution of a group to fit into
the target distribution.

Our basic scheme is to leave quasi-identifiers unchanged and
generalize and permute the sensitive attribute values (see section 3).
Figure 2 shows one possible anonymized microdata table after ap-
plying our scheme. Figure 3 shows the generalization hierarchy for
the Salary attribute. As we show in Section 3.1, any target distribu-
tion can be specified over the domain generalization hierarchy by
giving different weights to the children of nodes in the hierarchy
tree. The weight assignments in Figure 3 correspond to a uniform
distribution. Note that in group 1, since its distribution is already
the same as the target distribution, no generalization is needed. In-
stead, to protect privacy, we only need to perform a random per-
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Figure 3: An example domain generalization hierarchy

mutation to break the association between a tuple and a particular
sensitive attribute value. For the other two groups, both generaliza-
tion and permutation are needed to achieve the privacy goal.

Once a group of tuples and the corresponding target distribution
are given, each tuple’s sensitive attribute is generalized to a sub-
domain corresponding to a node in the domain hierarchy. Then
the generalized domains of the tuples in the same group are per-
muted. For example, in group 1 of Figure 2, each tuple’s sensitive
attribute is generalized to itself. These values are then permuted
among group 1. In group 2, the three sensitive attribute values
30K, 40K and 50K are generalized to {30K, 40K}, {30K, 40K,
50K, 60K} and {50K, 60K} respectively. Then again we perform
arandom permutation of the generalized sensitive attributes among
group 2. The combination of generalization and permutation guar-
antees that even if an attacker can associate a tuple with a unique
individual through its quasi-identifiers, he can only infer that a tu-
ple’s sensitive attribute follows the target distribution.

Since sensitive attributes are generalized and permuted, we usu-
ally cannot get exact answers to aggregate queries. But we can
always derive a correct bound for a query from the anonymized
table. For example, consider the following query: What is the av-
erage salary of female employees?

As our scheme does not change the quasi-identifiers of each tu-
ple, we know exactly how many tuples in each group are selected
by the query, i.e., 2 tuples from group 1, 3 tuples from group 2,
and 1 tuple from group 3. Since sensitive attributes are general-
ized and permuted, we do not know these tuples’ original salaries.
But we can derive the lower and upper bounds of the query re-
sult. Specifically, from group 1, the minimum and the maximum
of the sum of the two tuples’ salaries are 30K+40K = 70K and
50K+60K=110K, respectively. For group 2, consider the general-
ized value {30K, 40K}. Since we do not know its original value,
we have to estimate conservatively to make sure that the derived
bounds are correct. Thus, the minimum and the maximum of the
sum of the three tuples in group 2 would be 30K+30K+50K=110K
and 40K+60K+60K=160K respectively. And the bounds for the
single tuple from group 3 would be [30K, 60K]. Overall, the bounds
for the answer of the query would be [35K, 55K].

Domain generalization and permutation ensure that each individ-
uval tuple’s sensitive attribute value follows the target distribution.
Meanwhile, compared with perturbation-based approach, the tech-
nique preserves some of the properties of sensitive attributes in the
whole group. For example, from group 1, one can only know that
for each tuple its salary has equal chance to be any of the four possi-
ble values, i.e., it follows the target distribution. But one also knows
that inside this group, there is exactly one occurrence of each value
in the domain. This helps one obtain more accurate deterministic
bounds for aggregate queries.

Note that if sensitive attribute values were randomly generated
to follow the target distribution, we could get inaccurate answers
to queries without any confidence guarantee. For example, if the
four tuples with group ID = 3 were associated with the randomly

Quasi-identifiers Sensitive
group ID | tuple ID zipcode | gender salary
1 1 91110 F {3$30K, $40K}
1 2 91110 M $50K
1 3 91110 M {$30K, $40K}
1 4 91130 F $60K
2 5 91210 F {$50K, $60K}
2 6 91220 F {$30K, $40K}
2 7 91240 F {$30K, $40K, $50K, $60K}
3 9 91310 M {$30K, $40K, $50K, $60K} |
3 10 91320 M {$30K, $40K, $50K, $60K}
3 11 91330 M {$30K, $40K, $50K, $60K}
3 12 91340 F {$30K, $40K, $50K, $60K}

Figure 4: An example microdata table after sensitive attribute
generalization and permutation, where aggregate queries can-
not be accurately answered.

generated salary values 30K, 40K, 50K and 60K (following the tar-
get uniform distribution), the query “What is the average salary
of people in the 913* zipcode” would return the incorrect value
45K, whereas our method based on generalization and permuta-
tion would return the range [35K, 55K], which includes the correct
value of 55K. If one wanted to provide deterministic bounds based
on the randomly generated salary values, one could only provide
the trivial range [30K, 60K].

Given a group of sensitive attribute values, there are many ways
to generalize them to reach the target distribution. For example,
Figure 4 shows another way of generalization and permutation.
An extreme example is to generalize each sensitive attribute to the
whole domain. Though they offer the same privacy, the accuracy
of query answering from these different schemes may vary greatly.
We can verify that the bounds derived from the trivial generaliza-
tion table are much worse than those from the table in Figure 2.

Intuitively, the less generalization we perform, the better bounds
we tend to obtain. Based on this observation, in Section 4, we iden-
tify optimization metrics and design algorithms that produce sen-
sitive attribute generalization and permutation schemes that offer
better query answering accuracy.

A second important technique we propose to improve the accu-
racy of query answering is to introduce fake sensitive attribute val-
ues along with sensitive attribute generalization and permutation.
To show the benefit of this technique, let us have a closer look at
group 2 in Figure 2. With only generalization and permutation, the
generalization shown in Figure 2 is the best we can do to minimize
the sum of ranges of generalizations. If we ask what is the average
salary of employees in area with zipcode 912**, the best bound we
can get is [110K/3, 160K/3].

Instead, if we introduce another sensitive attribute value 60K
into the group (we call it a fake value as it does not appear in the
original data set), the resulting distribution will be exactly the same
as the target distribution. Thus we only need to perform a permu-
tation without any generalization. Group 2 will then be as follows.

Quasi-identifiers Sensitive

group ID | tuple ID zipcode | gender salary
2 5 91210 F {$30K}
2 6 91220 F {$40K}
2 7 91220 F {$50K}
{$60K}

Here we list three employees in this group but four possible
salaries, meaning that their salaries can be any three out of the
four.! From the above table one can still only infer that the possible

!This table can be easily implemented by separately creating a
quasi-identifier table and a sensitive attribute table, which can be
joined through the group ID, as in [13].



salary of each employee is uniformly distributed between 30K and
60K . Meanwhile, since we reduce the generalization of sensitive
attributes dramatically, the average salary of employees in that area
can be more accurately bounded to be [40K, 50K].

From the above example, we see that adding fake values may
reduce the level of generalizations needed to match a target distri-
bution. Meanwhile, fake values also introduce uncertainty into the
original data set. Without any restriction, given any data set, we can
always protect privacy without using any generalization. But this
may not be the best choice for accurate aggregate query answering.
For example, in group 3 of Figure 2, we can add the following fake
values: three 30K, two 40K and three 50K. Clearly, this will re-
sult in much worse bounds for aggregate queries. For example, the
only bounds we can get for the average salary for group 3 would be
[130K/4, 230K /4], which is worse than [140K /4, 220K /4], the
bound when only applying generalization and permutation. Thus,
it would be sensible to minimize the sum of ranges of generaliza-
tions while limiting the number of added fake values. In Section 5,
we present an efficient algorithm to do so.

3. A FRAMEWORK FOR DISTRIBUTION-
BASED ANONYMIZATION

3.1 Basic Concepts and Notations

As in most works on microdata anonymization, we assume the
schema of a de-identified microdata table consists of two parts: a
set of quasi-identifiers {Q1, ..., @k}, and a sensitive attribute S.
Our technique can be used to protect both numerical and categorical
sensitive attributes. Here we focus on numerical data as they sup-
port more interesting aggregation operations, such as SUM and AV-
ERAGE, while for categorical data usually only COUNT is mean-
ingful. For simplicity, we also assume the domain of S is finite.

Given the domain D of S, we say D' C D is a subdomain of S
if it covers a continuous segment of D. In other words, there exists
not € D(S) such that t € D' but min(D') <t < mazx(D'). We
thus also denote D’ as [min(D'), maz(D')], and call maz(D') —
min(D") the range of D'.

A generalization hierarchy of S is a rooted tree H that satisfies
the following conditions: (1) Each node of H is a subdomain of D;
(2) D is the root; (3) All the children of a node IV form a partition
of N; and (4) A leaf node is a subdomain {t}, where t € D.

As mentioned in Section 2, the owner of a microdata table spec-
ifies a partition {g1,...,g»} of the microdata table and a target
distribution P; for each group g;. The requirement of anonymiza-
tion is to make sure that in the released microdata table one can
only infer that the sensitive attribute values of each group g; follow
P;. Note that this is a very flexible model for microdata protec-
tion. In particular, it does not require the target distribution to be
the same for all groups. For example, the target distributions P;
and P; may both satisfy £-diversity or ¢t-closeness, but are different
such that each is closer to the original distributions of g; and g;. By
doing so, we may reduce data distortion for privacy protection.

Without loss of generality and for ease of explanation, in the rest
of our discussion, we assume that the data owner only specifies a
target distribution for the whole microdata table. When we have
multiple groups each with their own target distributions, we can
simply use the techniques in this paper to accommodate the target
distribution of each group separately.

From an anonymized microdata table 7', if we can only derive
that the distribution of each tuple’s sensitive attribute follows a dis-
tribution P, we say T preserves privacy in terms of P, or is P-
private for short. For example, the table in Figure 2 is U-private,

where U is the uniform distribution over {30K, 40K, 50K, 60K}.

Note that there are two types of privacy in microdata anonymiza-
tion. One is existence privacy, where the existence of a record for
an individual is considered sensitive. The other is linkage privacy,
where the association between a tuple and its sensitive attribute val-
ues is sensitive. Depending on specific applications, either one of
them or both may be desirable. Like many existing works, in this
paper we focus on linkage privacy [8, 13,15].

Given a target distribution P and a domain generalization hierar-
chy H for S, we assign a weight to each edge of H such that for any
two children C; and C> of a node N, we have weight((N, C1)) :
weight((N,C2)) = P(x € C1) : P(x € C2). We call the re-
sulting domain hierarchy a privacy-annotated hierarchy. For sim-
plicity, we assume all the weights are integers. It is easy to see
that a privacy-annotated hierarchy represents a distribution over D.
For example, Figure 3 is a privacy-annotated hierarchy that corre-
sponds to a uniform distribution. In the rest of this paper, unless
otherwise noted, we assume that a target distribution is given as a
privacy-annotated hierarchy.

3.2 Sensitive Attribute Generalization and Per-
mutation

As illustrated earlier, the basic idea of our approach is to gener-
alize the sensitive attribute value of each tuple to a subdomain of
D. We then randomly permute the resulting subdomains among all
the tuples, so that the distribution of the possible value of a tuple
t’s sensitive attribute ¢..S is the same as the target distribution. Note
that the distribution of ¢..S depends on the given privacy-annotated
hierarchy. For example, for a subdomain {30K, 40K}, given the
privacy-annotated hierarchy in Figure 3, we know that, if t.5 €
{30K, 40K}, then ¢.S has an equal probability to be either 30K or
40K. On the other hand, suppose the ratio between the weights of
30K and 40K 1is 2:1 instead of 1:1 in the hierarchy (i.e., the hierar-
chy corresponds to a different target distribution). If ¢.S € {30K,
40K}, the probabilities of .S to be 30K and 40K will be 2/3 and
1/3 respectively. Formally, we have the following definitions.

DEFINITION 3.1. Let g be a multiset of elements in D and G
be a multiset of subdomains of D.> We say G is a generalization of
g if there is a one-to-one mapping f from g to G such that Vs €

g,8 € f(s).

DEFINITION 3.2. Let G = {D4s, ..., Dy} be a generalization
of g, and P be a target distribution over D. We say G is P-
private generalization of g if for any elementt € D, P(x = t) =

%Elgign Pz =tz € Dy).

Intuitively, if G is a P-private generalization of g, then from a
random permutation of G the probability for any element in D to be
in g follows P. Thus, G effectively hides the original distribution
of values in g. From G, an attacker can only derive that elements
in g follow P but nothing more.

For example, let U denote the uniform distribution over {30K,
40K, 50K, 60K}. Then both {{30K}, {40K}, {50K-60K}, {50K-
60K}} and {{30K, 40K}, {30K, 40K}, {50K}, {60K}} are U-
private generalizations of {30K, 40K, 50K, 60K}, and the latter is
also a U-private generalization of {30K, 30K, 50K, 60K}.

Since the interpretation of a generalized subdomain is subject to
the target distribution, given in the form of a privacy-annotated hi-
erarchy with weights on each subdomain, a trivial P-private gener-
alization is to generalize every sensitive attribute value to the whole

2¢ is a multiset because multiple tuples may have the same sensitive
attribute values. Similarly, G is a multiset since multiple elements
in g may be generalized to the same subdomain.



domain D. For example, suppose the target distribution is a normal
distribution. Then if a sensitive value is generalized to the root do-
main, one can only infer that it follows the target normal distribu-
tion (not a uniform distribution). Though secure, the resulting mi-
crodata table from this trivial generalization is hardly useful. Thus,
it is important to develop algorithms to produce generalizations
which protect privacy, and further, can answer aggregate queries
accurately. Before presenting such algorithms, we first briefly dis-
cuss how to answer aggregate queries over an anonymized micro-
data table.

3.3 Answering Aggregate Queries

In this paper, we consider ad hoc data analysis in OLAP and
focus on queries that select a subset of tuples based on arbitrary
conditions on quasi-identifiers and then aggregate over the sensi-
tive attribute, i.e., the aggregate queries are of the form “SELECT
Aggr(S) FROM Microdata WHERE C”, where C is a condition
on quasi-identifiers, and Aggr may be common aggregates such as
SUM, AVERAGE and MIN.

Given an aggregate query, since quasi-identifiers are not changed
during anonymization, from the anonymized table, we know ex-
actly how many tuples in each group are selected by the query.
Thus, from a P-private generalization of the group, we can esti-
mate the lower and upper bounds of the aggregation inside each
group. These bounds can then be combined together to form those
for the whole table. In fact, to get the bounds for an aggregate
query, what matters is only the number of selected tuples in each
group. Therefore, as in [15], we can pre-compute for each group
the bounds of each type of aggregates when different numbers of
tuples in that group are selected by a query, and store these bounds
in an auxiliary table. When answering an aggregate query @, after
knowing the number of tuples selected by ), we only look up the
auxiliary table, and combine together the bounds of each group to
get the bounds for Q. This process can be easily implemented us-
ing SQL. Therefore, there is no need to modify the DBMS’s query
engine to support aggregate queries over the anonymized table.

4. OPTIMAL ALGORITHM FOR SENSITIVE
ATTRIBUTE GENERALIZATION

As mentioned before, a trivial P-private generalization that gen-
eralizes every sensitive attribute value to the whole domain is not
useful for answering aggregate queries. In this section, we present
optimization criteria for distribution-based anonymization so that
aggregate queries can be more accurately answered.

4.1 Minimize the Sum of Ranges of Sensitive
Attribute Generalizations

The higher a subdomain is in the domain hierarchy, the more
general it is, and thus the more “uncertainty” is introduced when
answering queries. A natural measure of the uncertainty of a sub-
domain is its range, i.e., the difference between the maximum and
the minimum elements in the subdomain. Formally, we define the
following optimization problem.

PROBLEM 4.1. Given a multiset g of sensitive attribute values,
a privacy-annotated domain generalization hierarchy H that cor-
responds to a distribution P over D, find a P-private generaliza-
tion G of g such that Y, . ; range(D") is minimized.

We call G the optimal P-private generalization of g.*

3This problem setting can be easily extended to handle categorical
data with hierarchies, by defining the range of each subdomain in
the hierarchy as the number of categorical values in that subdomain.

To facilitate our discussion, we introduce the following nota-
tions. Given a subdomain D’ and a multiset g of sensitive at-
tribute values, we denote gps to be the multiset that contains all
the elements in g that belong to D’. For example, suppose g =
{30K, 30K,40K,50K} and D' = {30K,40K}. Then gpr =
{30K, 30K,40K }.

Further, let N = (ni,...,nt) be a sequence of integers, W =

(w1,...,wg) be a sequence of weights, and m be an integer. We
say (n,...,n}), where n} is an integer and n; < n; for i =
1,...,k, is an m-bound allocation of N subject to W, if n} :
Myt M = W w2 e Wi, and Yo, < m
(i.e., proportional). We say (n},...,n}) is a maximum m-bound
allocation, if for any other m-bound allocation (nf, ..., n}), nj <
ng, 4 = 1,..., k. With a slight abuse of notation, we assume that
(0,0,...,0) is always an m-bound allocation that is subject to any

sequence of weights W.

For example, suppose we have N = (3,8,6,9), W = (1,2,2,1)
and m = 15. Then (2, 4, 4, 2) is the maximum m-bound allocation
of IV subject to W. If m = 5, then the only m-bound allocation of
N subject to W is (0,0, 0,0).

To minimize the sum of ranges of generalizations, it is prefer-
able to generalize a sensitive attribute value to a more specific sub-
domain (i.e., one far away from the root in the privacy-annotated
hierarchy). Meanwhile, to make the tuples in the group follow the
target distribution, the number of sensitive values generalized to a
certain level of subdomains should preserve the ratio between the
weights of those subdomains in the privacy-annotated hierarchy.
This explains the intuition behind maximum allocation.

Algorithm 1 shows an optimal algorithm to the above problem.
The algorithm is essentially a greedy algorithm. We start at the
root node, and determine how many tuples have to be generalized
to the root node. The basic idea is that we should push as many
tuples as possible to the subtrees rooted at its children, as long as
the distribution P is preserved (i.e., subject to the weights of its
children). In detail, suppose we have n elements in g and the root
node has k children D1, ... D; in the domain generalization hier-
archy. We determine what is the maximum number of tuples that
should be generalized to subdomains in the subtree rooted at each
D;,i=1,...,k, subject to the target distribution P. The remain-
ing tuples must be generalized to the root domain.

EXAMPLE 1. Here we use an example to show in detail how
the algorithm works. Consider the privacy-annotated hierarchy H
in Figure 3 and a multiset g of sensitive attribute values {30K, 30K,
40K, 40K, 50K, 60K}.

Initially, we set m to |g| = 6, and call MinSumOfRange(g, H,
m). For the two children of the root of H, we have |93k 40k} | =
4 and |g¢sok,60x}| = 2. Since the ratio between the weights of
{30K, 40K} and {50K, 60K} is 1:1 in H, we can at most have
two subdomains in the subtree rooted at {30K, 40K} in the final
P-private generalization. Otherwise, the target distribution cannot
be preserved. In other words, the maximum m-bound allocation is
(2,2). And the algorithm outputs 6—2—2 = 2 generalized domain
corresponding to the root, which is {30K, 40K, 50K, 60K }. This
means that any P-private generalization should contain at least
two root domains.

We next call MinSumOfRange(g, H;, 2), where H; is the sub-
tree rooted at {30K,40K} and {50K,60K} respectively. For
the left child, we have g(soxy = 2 and ggaoxy = 2. The max-
imum 2-bound allocation of g would be (1,1). Therefore, at this
step, we do not output any generalized subdomain {30K, 40K} as
2—1—1=0. A similar process happens for the subtree rooted at
{50K, 60K }.



The algorithm continues to the leaf nodes in the hierarchy. The
optimal generalization of g would be {{30K}, {40K}, {50K},
{60K}, {30K,40K,50K,60K}, {30K,40K, 50K, 60K }}.

Note that as we continue to the children of a node by calling
function MinSumOfRange, we pass the subtree rooted at a child
node the new bound. But we still pass g, all the tuples in the group,
to the function. In other words, our algorithm does not need to de-
cide which tuple’s sensitive attribute value is generalized to which
subdomain. This decision is not relevant because we will later
permute all the generalized subdomains anyway. We only need
to know what generalized subdomains are in an optimal solution.
This is the essential reason for the efficiency of the algorithm.

Algorithm 1 MinSumOfRange(g, H, m): optimal generalization
for the minimum sum of range problem
Let D be the root of H
Let D1, ..., D be the children of the root
Let W = (w1, ..., wg) be the weights of D1,..., Dy in H
Let N = (|91, -- - |9D, 1)
Compute (n1, . ..,ny), the maximum m-bound allocation of N
subject to W
Outputm — 3, . n; copies of D to the final generalization

for each subtree H; rooted at D; do
if n; > 0 then
MinSumOfRange(g, H;, n;)
end if
end for

We can compute |gpr| for all subdomains D’ bottom-up from
all the leaf nodes. Therefore the complexity of this step is O(|g|)
assuming |g| is greater than the number of subdomains in H. The
above algorithm simply does a depth-first traversal of H, with com-
plexity of O(|H|). Thus the overall complexity is O(|g|), i.e., lin-
ear to the size of the microdata.

THEOREM 1. The multiset of subdomains generated by the al-
gorithm MinSumOfRange is a P-private generalization with the
minimum sum of ranges of subdomains. The complexity of Min-
SumOfRange is linear to the size of the microdata.

4.2 Partitioning Quasi-Identifiers

We have shown an optimal algorithm that finds a P-private gen-
eralization with the minimum sum of ranges of subdomains for a
given set of sensitive attribute values. Meanwhile, we observe that
the more tuples in a group an aggregate query selects, the more
accurate the bounds tend to be. For example, consider group 1 in
Figure 2. If a query asks for the average salary of employees who
live in the area with zipcode 911**, since all the selected tuples
are in group 1, we can get very accurate bounds for this query. On
the other hand, if the selected tuples are scattered in three different
groups, then we can only get the trivial bounds [30K-60K].

Since a majority of aggregate queries involve range conditions,
tuples with similar quasi-identifiers tend to be selected together.
This observation suggests that, we may further partition the group
specified by the microdata owner, and have tuples with similar
quasi-identifiers together to improve query answering accuracy.

One possible approach is to preserve the optimal P-private gen-
eralization of the whole group. In other words, we further parti-
tion the tuples in the group into multiple subgroups such that the
union of the optimal P-private generalization of each subgroup is
the same as that of the whole group. And the optimization goal

is to minimize the sum or max of the distances among the quasi-
identifiers of tuples in all the subgroups. Here several possible dis-
tance functions can be used. However, clustering problems involv-
ing multi-dimensional attributes are generally intractable.

In this paper, we specifically consider a pragmatic approach,
where we first partition a group into multiple subgroups such that
tuples in each subgroup have the same quasi-identifiers. Then for
each subgroup we find its optimal P-private generalization. We call
this algorithm the QI-SA algorithm. In contrast, we use SA-only to
denote the approach that uses only the optimal sensitive attribute
generalization to answer queries without further partitioning.

One advantage of QI-SA is that, given any aggregate query, ei-
ther all or none of the tuples in a subgroup are selected by the
query. On the other hand, though the union of each subgroup’s
optimal P-private generalization is still a P-private generalization
for the whole group, it may not be optimal. Thus in general we
cannot claim that one approach always yields more accurate query
answers than the other. In our experiments, we will perform a de-
tailed comparison of the two approaches with different data sets.

S. INTEGRATION OF FAKE VALUES

In this section, we consider the use of fake values to further im-
prove query answering accuracy. As shown in section 2, adding
fake values may reduce the level of generalization. However, if we
do not limit the number of fake values, though the sum of ranges
of generalizations can always be reduced to O, it may not improve
the bounds for queries. The sum of ranges of generalizations can
serve as a reasonable heuristic only when we restrict the number of
added fake values. Formally, we study the following problem.

PROBLEM 5.1. Given a multiset g of sensitive attribute values,
a privacy-annotated hierarchy H corresponding to a target distri-
bution P over D, and a threshold t, find a multiset f of no more
than t fake values, such that MinSumO f Range(gUf, H, |gUf])
(minSOR(g U f, H) for short) is minimized.

5.1 Challenges

For simplicity, for the rest of our discussion, we assume H is
a binary hierarchy. As mentioned before, with appropriate privacy
annotation, a binary hierarchy can represent any distribution P over
a domain D.

EXAMPLE 2. Suppose g = {1,3,5}, t = 2, and H is the uni-
form distribution over {1, ...,8}. The optimal solution is for f to
have only one fake value (either 7 or 8). We can easily verify that
any f with two fake values is suboptimal. This example suggests
that it is not sufficient to only examine set f that contains exactly t
fake tuples.

In fact, we can also show that there exists fake value set f which
is locally optimal but suboptimal globally. By locally optimal, we
mean that for any fi and fa, where |fi| = |f| — 1 and |f2| =
|f] + 1, we have minSOR(g U f1,H) > minSOR(g U f, H)
and minSOR(g U f2, H) > minSOR(gU f, H).

EXAMPLE 3. Consider g = {1,3,5,7} andt = 4. We can see
that f = {1, 5} is a locally optimal solution. The optimal general-
ization for gU f is {[1-2], [3-4], [5-6], [7-8], [1-4], [5-8]}, whose
sum of ranges is 10. For any fi with size 1, the optimal generaliza-
tion for g U f1 is {[1-2], [3-4], [5-6], [7-8], [1-8]}, whose sum of
ranges is 11. Similarly, for any fa with size 3, the optimal general-
ization for gU fa is {[1-2], [3-4], [5-6], [7-8], [1-4], [5-8], [1-8]},
whose sum of ranges is 17. Though f is locally optimal, it is not
a globally optimal solution, which should be f' = {2,4,6,8}, as
minSOR(gU f',H) = 0.



The above example shows that Problem 5.1 cannot be solved by
sequentially scanning fake value sets from size 0 to size ¢ and using
local optimality as a stopping condition.

To further show the challenges in solving this problem, let us
consider a simpler case. Suppose we only allow to add a single
fake value, and the target distribution is uniform. Assume in g the
number of values in the left subtree is one more than that in the right
subtree. When adding a fake value, a natural conjecture is that it is
optimal to add a value belonging to the right subtree. Intuitively, by
doing so the number of values in the two subtrees are balanced and
thus closer to the target distribution. If this conjecture were true,
the problem can be solved in a straightforward top-down manner.

Unfortunately, it turns out that adding fake values to the subtree
with fewer values in g is not always the best choice.

EXAMPLE 4. Consider g={1, 1,1,2, 3,45 6,7,9 9 11,11,
13, 13, 15, 15}, where the domain D = {1...16}. Here g has
one more element in the subdomain [1 — 8] than in [9 — 16]. If we
add a fake value to the right subtree, i.e., [9 — 16], then the optimal
generalization would be three copies of [1-8], two copies of [9-10],
[11-12], [13-14] and [15-16] respectively, and a single copy of [1-
2], [3-4], [5-6], [7-8], [1-4], [5-8] and [9-16] respectively, whose
sum of ranges is 46.

Instead, if we add 8 which belongs to the left subtree, the optimal
generalization would be two copies of [1-16], [9-10], [11-12], [13-
14] and [15-16] respectively, and a single copy of [1-1], [2-2], ...,
[8-8], whose sum of ranges is 38 < 46.

The above example shows that when determining where to put
fake values, we have to take the whole data set into consideration.
Heuristics that only examine local properties (e.g., the balance of
the subtrees at some level of the generalization hierarchy) would
not yield optimal solutions.

5.2 Optimal Algorithm

Next we present an optimal algorithm for Problem 5.1. The ba-
sic idea is illustrated as follows. For simplicity, assume the target
distribution represented by H is uniform. Let the two children of
the root domain be D; and D». Suppose we want to find a set
f of exactly k fake values, among which z comes from D; and
k — x comes from Do, such that minSOR(g U f, H) is mini-
mized. Once z is fixed, we would know exactly how many values
should be generalized to the root domain and from which side. In
detail, let n = |gp,| + z and m = |gp,| + k — = (which are
the numbers of values in g U f that belong to D; and D3 respec-
tively). If n > m, then exactly n — m values should be generalized
to the root domain, and they are all from D;. Thus, to minimize
minSOR(g U f, H), we need to do the following. First, choose a
set fo of k — x fake values, such that minSOR(gp, U f2, Hp,)
is minimized, where Hp, is the hierarchy rooted at D2. Second,
choose a set f; of x fake values, and then choose f' C gp, U f1,
where |f'| = n — m, such that minSOR(gp, U f1 — f', Hp, ) is
minimized. In other words, for the side of D;, we need to insert x
fake values and then remove n — m values so that the resulting data
set offers the minimum sum of ranges of generalizations. Note that
this is not the same as simply inserting  — (n — m) fake values, as
the n — m removed values may come from both the inserted fake
values and the original data set gp, .

In general, if H is not uniform, for both subdomains we may
need to insert some fake values and then remove several others.
For example, suppose in H the ratio between D; and Ds is 2:1.
Originally |gp, | = 10 and |gp, | = 7. Now assume we want to add
3 fake values to each of gp, and gp,. In this case, we need to have
5 values generalized to the root domain, 1 from those in Dy and 4

from D. That means, for gp,, we need to insert 3 fake values and
then remove 1 value. And for gp,, we should insert 3 fake values
and then remove 4 values. Here we see that sometimes the number
of removed values may be more than that of those inserted.

The above discussion shows that Problem 5.1 is a special case
of a more general problem: adding a set of k fake values to g and
then removing r values, what is the minimum sum of ranges for the
remaining data set after it is generalized and permuted to achieve
P-privacy? We denote the problem as minSORFake(g,k,r,H).
Our discussion also suggests that this problem has the optimal sub-
structure property, and is amenable to dynamic programming so-
Iutions. Specifically, let the ratio between D; and Dy be a : b.
Suppose among the k added fake values,  belongs to subdomain
D; and k — z belongs to subdomain D;. Clearly, to minimize the
sum of ranges of generalizations, the fewer values generalized to
the root domain, the better. Let (u,v) be the maximum pair such
thatw < |gp, |+, v < |gp,|+k—zand u : v = a : b. Therefore,
among the |g| + k values, there should be at least |g| + k — (u + v)
to be generalized to D.

Remember that we also need to remove 7 values. If r < |g| +
k—(u+v), we can simply take r values out from those generalized
to the root domain. Otherwise, we have to further take values from
gp, and gp,. Thus, in general, we should let (u,v) be the maxi-
mum pairsuchthatu : v = a : b,u < |gp, |[+z,v < |gp, | +k—z,
and |g| + k — (u+v) > 7.

Once (u,v) is determined, we essentially break the solution to
minSORFake(g,k,r, P) into three parts: (1) those values gen-
eralized to the root domain D; (2) those values generalized to the
subdomains within the hierarchy rooted at D; ; and (3) those values
generalized to the subdomains within the hierarchy rooted at Ds.

For the subdomain D; and gp,, we essentially insert  fake val-
ues and then remove r; = |g171 | + x — u values, i.e., it is the sub-
problem minSORFake(gp,, z,r1, Hp, ). Similarly, for the sub-
domain D2, we have subproblem minSORF ake(gp,,x,r2, Pp,),
where 72 = |gp,| + (K — ) — v. In summary, we have

minSORFake(g,k,r, P) =
ZOngk minSORFake(gp,,x,r1, Pp,) +
minSORFake(gp,,x,r2, Pp,) + (|g| — v — v — r)Range(D)

where u, v, r1 and r2 are calculated as described above. Al-
gorithm 2 shows the pseudocode for the optimal algorithm. For
simplicity, we present the algorithm using recursion, which can be
easily converted to a standard dynamic programming algorithm.

To solve Problem 5.1 completely, we invoke minSORFake(g, &,
0, H) for k = 0,...,t in order to identify the optimal number of
fake values to add. Another interesting observation is that, if we
set k = 0, i.e., we do not insert any fake values, then algorithm
minSORFake is exactly the same as algorithm MinSumOfRange.

EXAMPLE 5. Letg ={1,2,3,5,6,7,7}and D = {1,...,8}.
Assume H is a balanced binary tree that represents the uniform
distribution over D. Suppose we want to insert exactly 2 fake values
into g, and thus invoke minSORFake(g, 2, 0, H). At the root level,
we first let t = 0 and k — x = 2, i.e., all the fake values are from
[6 — 8], and will have sizeL = 3 and sizeR = 6. Since now the
right subtree has 3 more values than the left one, we have to extract
3 values from the right tree and generalize them to the root domain.
This is exactly what the algorithm does, as we set w = v = 3,
r1 = 0 and r2 = 3, and invoke minSORFake(g1—4, 0, 0, H[1_4])
and minSORFake(g[s_g), 2, 3, H[5_g)). Because we do not need to
add or remove any values from g[1 4], minSORFake(gp1—43, 0, 0,
Hyy_y)) is the same as MinSumOfRange(g[1—43, Hji—ap, |91 a1])-



Algorithm 2 minSORFake(g, k, r, H): the minimum sum of
ranges of generalizations when allowing fake values

Let D be the root of H

Let D1 and D, be the left and right children of the root

if minSORFake(g, k, r, H) calculated before then
return the calculated result

end if

if H is a leaf node then
return 0

end if

man=inf;

for z=0to k do
let a : b be the ratio between left and right children of the root
sizeL=|gp, |+z
sizeR=|gp, |+k —
let (u,v) be the maximum pair such that w : v = a : b,
w < |gpy |+ 2.0 < |gpa| +k — 2. and [g| +k — (u+v) > 7
i =|gp,|+2—u
re =|gp,| +k—z—v
tmp = minSORFake(gp,, z, r1,Hp, )+ minSORFake(gp,,
k—z,7r2,Hp,)+ (l]g| — v — v — r) * Range(D)
if tmp < min then

min = tmp

end if

end for

return min

After minSORFake(g(s_g), 2, 3,Hs_g)) is invoked, we also first
check the case x = 0. As we need to eventually remove 3 values
from the domain [5 — 8], we will have w = v = 1, r1 = 1 and
ry = 3. Here we take a total of 4 values from the domains [5 — 6]
and [T — 8], among which 3 are removed (they are in fact those
taken to the higher level to be generalized), and the remaining one
is generalized to [5 — 8]. The algorithm will then continue to the
next level of H.

From the example, we see that the algorithm does not really need
to generate specific fake values to add. Instead, it directly computes
domain generalizations supposing optimal fake values are added.

5.3 Complexity Analysis

Suppose the hierarchy H is a balanced binary tree, and the do-
main of the sensitive attribute is D (i.e., the root domain of H).
Observe that there are at most 2|D| nodes in H. For each node,
the algorithm can be invoked with at most ¢ + 1 possible values of
the number of fake values to be inserted in the node’s subtree. And
for each node and each possible number of fake values to insert in
the node’s subtree, there are at most |g| + ¢ values for the num-
ber of values to remove from the subtree. Thus a natural but loose
bound for the number of cells in the dynamic programming matrix
is 2(t + 1)(|g| + t)|D|. For each cell, the computation takes the
minimum over ¢ + 1 possible cells, which gives the time bound as
O(#* (9| +DID)).

However, observe that, given g and H, even though algorithm
minSORFake has two additional parameters k and r, r is not a free
parameter. From the pseudocode we see that, once the number of
fake values for each subdomains of the root is fixed (i.e., £ and
k — x), r is also uniquely determined. Let d be the depth of a node
D’ in H (where the root’s depth is 0). Then the number of possi-
ble choices of fake values to add is bounded by (¢ + 1)¢, which,
based on the above observation, also bounds the number of possible
choices of values to remove from the subtree. Further, as the num-

ber of values to remove from a subtree cannot exceed the number of
values in D', a tighter bound is given by min((t + 1)%, |gp| + t).

Summed over all the 2¢ nodes in the same level as D', we get
the bound for the number of values to remove from all nodes in
that level as min((2t + 2)%, |g| + t2%). Note that the first term
is small close to the root of the tree and gets much larger than the
second term close to the leaves of the tree, if D is reasonably large.

Summed over all levels (and hence all the nodes) in the tree,
the sum of the second term is given by |g|(1 + log|D|)+ 2t|D|.
Thus, even ignoring the first term in man((2t + 2)¢, |g| + t2%),
this would yield a bound for the number of cells to be maintained
in the dynamic programming matrix as (¢t + 1)(|g|(1 + log|D|)+
2t|D|), which is much tighter than the bound 2(t + 1)(|g| + t)|D|
given above. Similarly, a much tighter bound for time complexity
is given by O(t?(|g|log|D| + 2t|D|)).

THEOREM 2. A P-private generalization with minimum sum of
ranges of subdomains when adding no more than t fake values is
obtained using t + 1 invocations of Algorithm minSORFake. The
space and time complexities of the algorithm are O(t(|g|log|D| +
t|D|)) and O(t*(|g|llog|D| + t|D|)) respectively.

6. EXPERIMENTS

Our experiments are conducted on the Adult Database from the
UCI Machine Learning Repository [12]. The database is obtained
from the US Census data, and contains 14 attributes and over 48,000
tuples. The same database has been commonly used in previous
work on microdata anonymization [5,7]. We choose the same eight
attributes as quasi-identifiers in our experiments in accordance to
previous works. Since our approach focuses on numerical sensitive
attributes, we choose “capital loss” as the sensitive attribute. In par-
ticular, we are interested in those people who do have capital loss.
Therefore, we remove those tuples whose capital loss attributes are
0 or NULL. That leaves us with 1427 tuples. The range of capital
loss in these tuples is from 155 to 3900, with 89 distinct values.

We also conduct experiments on synthetic data sets with the
same schema as the Adult Database. We populate a table with dif-
ferent numbers of tuples, assuming certain distributions of the capi-
tal loss attribute. We also consider the correlation between “capital
loss” and quasi-identifiers. The details of the synthetic data sets
will be described later when we present the experimental results.

We design the following experiments to verify the effectiveness
of our approach. In all the experiments, we evaluate the accuracy
of the bounds derived from an anonymized table. Specifically, let
and u be the lower and upper bounds of an aggregate query result
r. We define err = (u—1)/r to be the relative error of the bounds.
The smaller err is, the more accurate the bounds are.

The performance of anonymization through SA generaliza-
tion. We show the accuracy of aggregate query answers of different
query sizes, when applying the SA-only algorithm and the QI-SA
algorithm on both real and synthetic data sets.

The impact of adding fake values. We show the impact of in-
tegrating different number of fake values with the QI-SA and SA-
only schemes.

The impact of the target distributions. We study the accuracy
tradeoff when the data owner specifies different target distributions
other than the actual distribution of the sensitive attributes in the
original microdata.

Enforcing different target distributions on different parts of
the data. We show the effectiveness of our algorithm when we
enforce different target distributions for different parts of the data.

Next, we describe each set of experiments in detail. Unless oth-
erwise specified, the domain generalization hierarchy used in these



experiments is a balanced binary tree.

6.1 Performance of Anonymization through
Sensitive Attribute Generalization

We first study the relative errors of our algorithms applied on dif-
ferent data sets. In all experiments in this section, the target distri-
bution is set as the source distribution of sensitive attribute values in
the overall microdata table (like t-closeness). We issue a sequence
of queries of the form “select avg(capital_loss) from adult-table
where age > X and age < Y”, and vary the range [X,Y]. More
specifically, given a range R, we randomly pick 100 pairs of X and
Y from the domain of the age attribute such thatY — X = R. We
then report the average relative error of these 100 queries.

Figure 5 shows the experimental results when using SA-only and
QI-SA respectively. We observe that, as the total number of tuples
selected increases, the relative error introduced by SA-only drops

dramatically, while that introduced by QI-SA does not change much.

This is because for SA-only, when the query range increases, the
number of tuples touched in each group also increases, which re-
sults in a more accurate estimate. For QI-SA, each “age” value is
by itself a group, and tuples in each group are either completely
touched or not touched at all by a query. So the derived bounds do
not change much when the query range changes.

Another observation is that when the query range is small, SA-
only gives quite inaccurate bounds. The reason is that with small
query range the selected tuples only account for a very small por-
tion of each group, which results in bounds with poor accuracy.
When the query range increases, as SA-only minimizes the sum of
ranges across all generalized subdomains, it produces bounds with
better accuracy than QI-SA.

Meanwhile, as QI-SA generates many more groups than SA-
only, each group is of a much smaller size. Thus when using QI-
SA, the sensitive attribute values in many groups are generalized
to the root domain, because the distribution of each group with the
same quasi-identifiers is often quite different from the target distri-
bution. So even when the query range increases, the accuracy of
the bounds does not improve.

To further validate our evaluation, we compare QI-SA and SA-
only on two synthetic data sets, with different sensitive attribute
distributions and correlations between quasi-identifiers and the sen-
sitive attribute. In the first data set, there is no correlation between
quasi-identifiers and the sensitive attribute. We randomly generate
10k tuples whose sensitive attribute values for each tuple follows
a normal distribution. The only quasi-identifier “age” is randomly
generated uniformly in the range [17, 79].

The experimental results are shown in Figure 5. We see that for
this data set QI-SA consistently produces accurate bounds. This is
because the sensitive attribute values in each age group follow the
overall distribution closely. Thus, only a few generalizations are
needed to achieve the privacy goal. As the query range increases,
more tuples are selected, and the relative errors of SA-only quickly
drops. In particular, when most of the tuples are selected by a query,
SA-only outperforms QI-SA, due to its emphasis on a global opti-
mal subdomain generalization.

Intuitively, if a strong correlation exists between quasi-identifiers
and the sensitive attribute, tuples in each age group generated by
the QI-SA algorithm tend to have similar sensitive attribute values,
which need to be generalized to higher subdomains to achieve the
privacy goal. Our next experiment aims to investigate the impact of
correlation on query answering accuracy. We compare QI-SA and
SA-only when varying the correlation between quasi-identifiers and
the sensitive attribute. In the second synthetic data set, we intro-
duce a correlation between “age” and “capital loss”. First, “age”

is generated following a uniform distribution in the range [17, 79].
We assume a positive correlation between “age” and “capital loss”.
For each tuple with age a, we generate its capital loss following a
normal distribution with mean v. The higher one’s age is, the larger
v we choose. The size of the data set is also 10k.

Figure 5 shows the experimental results. We see that SA-only
consistently outperforms QI-SA. In fact, the trend of SA-only is
similar to the case with no correlation between “age” and “capital
loss”. This suggests that an optimal P-private generalization of the
whole group can accommodate such correlation well. On the other
hand, QI-SA, as expected, performs poorly, since it only consid-
ers the sensitive attribute values inside a single subgroup, whose
distribution is very different from the overall distribution.

Overall, the above experiments suggest that our optimization al-
gorithms are capable of supporting aggregate query answering with
reasonable accuracy while protecting privacy. In particular, SA-
only tends to answer aggregate queries more accurately if quasi-
identifiers and the sensitive attribute are correlated. Otherwise, QI-
SA offers more accurate query answering for smaller query ranges.

6.2 Impact of Integrating Fake Values

We study the impact of integrating fake values with the QI-SA
and SA-only schemes. We first look at QI-SA. In each QI partition
of size N, we allow up to K = z% - N fake values. Different
number of fake values allowed are denoted “+x%” in the legend.
Figure 5 shows the impact in the real data set. We see that adding
a few fake tuples helps reduce the error rates effectively. But when
adding too many fake tuples (20%), the uncertainty introduced by
fake tuples begins to dominate, resulting in worse query accuracy.
Figure 5 shows the impact in the non-correlated synthetic data. As
explained before, SA values in each partition follows the target dis-
tribution closely. Thus very few generalizations are needed ini-
tially. When adding a few fake tuples (5%), it helps to reduce
error rates. Adding more fake tuples reduces query accuracy due
the same reason described above. Figure 5 shows the impact on
the correlated synthetic data. Since there are many generalizations
initially in this case, adding fake tuples keeps reducing error rates.

Next we look at the SA-only scheme. To study the impact of
adding fake values, we randomly remove 10% of the source data to
make its distribution different from the target distribution.* Figure
6 shows the results, from which we have the same observation as
from the QI-SA case.

6.3 Impact of Target Distributions

We investigate the relative errors of QI-SA and SA-only when
we have different target distributions and domain generalization hi-
erarchies. As shown above, QI-SA does not perform well when
there is a strong correlation between quasi-identifiers and the sen-
sitive attribute. Thus, in this experiment we use a data set in which
quasi-identifiers and the sensitive attribute are not correlated.

The first experiment studies the trends when the target distribu-
tion is different from the actual distribution. In the synthetic data
set of size 10k, the sensitive attribute “capital loss” is generated
following a uniform distribution in the range D = [1024, 3072].
The target distribution is set to be a normal distribution. We change
the variance of the target distribution by adjusting a parameter r,
where the variance of the normal distribution equals range(D)/r.
The bigger r, the smaller the variance, and the larger the difference
between the target and the actual distributions. We examine the
relative errors of range queries whose ranges are set to be 50. The

“When the target distribution is the same as the source distribu-
tion, the SA-only scheme is the same as global permutation, and no
generalization is involved. So adding fake values has no effect.
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Figure 6: Relative errors of SA-only on both the real and the synthetic data sets
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Figure 7: Relative errors of QI-SA and SA-only when target
distributions are normal distributions with different variances

experimental result is shown in Figure 7.

We see that when the target distribution is close to the actual
uniform distribution, both algorithms offer better accuracy. As r
increases, the error rates also increase. This is expected as more
tuples’ sensitive attribute values have to be generalized to higher
domains to make them follow the target distribution that is far dif-
ferent from the actual distribution.

We also investigate the impact when the sensitive attribute val-
ues in the original microdata are skewed. In particular, we set the
actual distribution of the sensitive attribute values to be a zipf dis-
tribution. All values in the sensitive attribute domain are ordered
and assigned a rank correspondingly. Denote the size of the do-
main as N. For any element with rank £, its probability is set to be

P(k) = ,5,1/719)5,, where s is a control parameter. The smaller
Zi=1 (1/4)s

the value s is, the less skewed the data are. In our experiment the
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Figure 8: Relative errors of QI-SA and SA-only when target
distributions are Zipf distributions with different parameters

control parameter s is set to 0.1. The target distribution is also a zipf
distribution, with s set to different values. The results are shown in
Figure 8. We see that when the target distribution has parameter
s = 0.1, we have the best accuracy for query answering, as it is the
same as the actual distribution. As s increases, the difference be-
tween the target distribution and the actual distribution is enlarged,
which results in increased relative errors.

We also conduct the same experiment on a skewed data set with
a strong correlation between the quasi-identifiers and the sensitive
attribute. Specifically, the sensitive attribute values are generated
following the Zipf distribution as described above. Meanwhile, the
quasi-identifier of a tuple is generated to be positively correlated
with its sensitive attribute. Figure 9 shows the experiment results.
We see a similar observation to that of Figure 5.

Our scheme does not impose any constraints on the structure
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Figure 10: Relative errors of QI-SA and SA-only when using
different domain hierarchies

of the domain generalization hierarchy The data owner has com-
plete freedom to design their own domain hierarchy. Although it
is impossible to enumerate all possible hierarchies, there are some
general guidelines for choosing domain hierarchies. In the follow-
ing experiment, we choose a balanced binary tree and a balanced
ternary tree as two domain hierarchies. In the legend of Figure 10,
we use (2) and (3) to represent them respectively. In the data set
10k sensitive attribute values are uniformly generated in the range
[1024,3072]. The target distribution is also set to be a uniform dis-
tribution for simplicity.

We see that the case with the binary hierarchy results in lower
relative errors. This is because it has more subdomains than in the
ternary one. Thus statistically we have more choices of smaller
subdomains when generating optimal generalizations, introducing
less uncertainty to the microdata.

6.4 Anonymizing Different Parts of Data

One feature of our scheme is to accommodate different target
distributions for different parts of the data. Next we study how it af-
fects the quality of query answering. We first conduct experiments
on the real data set. We study two cases where we partition the
data into 2 groups and 10 groups respectively, based on the “age”
attribute. In each case, the target distribution of each part is set to
be the distribution of the source data in that group. In the legend
of Figure 11, SAonly-k means we partition the table into k& groups,
and in each group we apply the SA-only algorithm to generalize
the sensitive attribute values. QISA-k is interpreted similarly.

We see that the accuracy of both SA-only and QI-SA improves
as the number of partitions increases. The reason is that as the
number of groups increases, each group has fewer tuples, and the
same range query will cover a bigger portion of each group, which
leads to better accuracy of query answering.

We conduct a similar experiment on the correlated synthetic data
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Figure 11: Accommodating target distributions of different
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Figure 12: Accommodating distribution of different parts of a
synthetic data set

set described in Section 6.1. In this experiment we use a uniform
distribution as the target distribution for each group. The range of
each corresponding uniform distribution is the actual range of the
sensitive attribute values in that group. The results are shown in
Figure 12. As with real data sets, we observe that as the number of
groups increases, the relative errors of both SA-only and QI-SA de-
creases. When we have more groups, the ratio of tuples touched by
arange query in each group increases. Another reason contributing
to this result is the strong correlation between “age” and ‘“capital
loss”. As we split the data based on “age”, the range of sensitive
attribute values in each group also becomes smaller. Thus we can
use a smaller hierarchy tree for each group. This leads to smaller
generalizations, and reduces the error further.

Overall, the above experiments show that by accommodating dif-
ferent target distributions, we can have a finer protection of micro-
data. Further, the generalizations produced by QI-SA and SA-only
allow aggregate query answering with reasonable accuracy.

6.5 Algorithm Complexity

Figure 13 shows the running time of algorithms QI-SA and SA-
only when varying the number of tuples in the data set. As ex-
pected, it is linear to the size of a data set.

7. RELATED WORK

The privacy vulnerability of de-identified microdata was first dis-
cussed by Sweeney [10], who showed that medical records of many
individuals could be uniquely identified, after linking a de-identified
medical database with voter registration records. Sweeney further
proposed k-anonymity as a model for protecting privacy of micro-
data, and introduced quasi-identifier generalization and record sup-
pression as two techniques to achieve k-anonymity [11].

In [9], Samarati presented a framework of quasi-identifier gen-
eralization and suppression to achieve k-anonymity. Given pre-
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Figure 13: The time complexities of QI-SA and SA-only.

defined domain hierarchies of quasi-identifiers, the problem of k-
anonymity is thus to find the minimal quasi-identifier generaliza-
tion so that, for each tuple ¢ in the released microdata table, there
exist at least k—1 other tuples which have the same quasi-identifiers
as t. Samarati also designed a binary search algorithm to identify
minimal quasi-identifier domain generalizations.

The concept of £-diversity was introduced by Machanavajjhala et
al. in [7] to prevent attackers with background knowledge. In [6],
distribution of sensitive attributes is first considered. Based on this,
a more robust privacy measure (referred to as ¢-closeness) is pro-
posed. Their work guarantees that the distribution of any sensi-
tive attribute within each group (equivalence class) is close to its
global distribution in the table. In [8], Martin et al. develop a lan-
guage to describe public background knowledge and design an al-
gorithm to measure the worst-case information disclosure for dif-
ferent anonymization techniques. Brickell and Shmatikov [1] an-
alyze the privacy/utility tradeoff in microdata anonymization, and
showed that quasi-identifier generalization often incurs significant
negative impact on data utility.

All the above works focus on introducing less imprecise infor-
mation to microdata. But they did not discuss their impact on the
accuracy of aggregate queries. Xiao et al. [13] propose to achieve
k-anonymity by separating quasi-identifiers and sensitive attributes
into two tables. These two tables are connected by the group ID
of each tuple. It is easy to see that their scheme is equivalent to a
permutation of sensitive attributes among tuples in the same group.
They show that when quasi-identifiers are maintained, the accu-
racy of aggregate reasoning is improved a lot, as the probability
of each tuple being touched is known. As with most other works
discussed above, however, this work only focuses on categorical
sensitive attributes. Their techniques cannot be directly applied to
handle numerical sensitive attributes, which was the focus of the
work by Zhang et al. [15].

None of the above works can transform the microdata such that
the distribution of the sensitive attribute of each tuple appears to
follow a target distribution.

Recent advances in data anonymization go beyond tabular data
to handle data with richer structures, including bipartite graphs [3]
and social network graphs [4, 16]. Privacy models for each type
of data and corresponding anonymization techniques are proposed,
which are complementary to our approach. In particular, we ob-
serve that the basic idea of this paper can be similarly applied to
the above data models as well.

Privacy models have also been proposed for the anonymization
of microdata that need to be updated [2, 14]. m-invariance is one of
the representative models [14]. The basic idea is to keep unchanged
the set of sensitive attribute values in the group that a tuple belongs
to even though the tuple may be put into different groups in dif-
ferent versions of the microdata. The concept of distribution-based

anonymization can also be extended for dynamic microdata.

8. CONCLUSION

In this paper, we proposed a novel technique for distribution-
based microdata anonymization, which combines sensitive attribute
generalization and permutation along with the use of fake values.
The proposed scheme allows the microdata owner to flexibly decide
the grouping of individual tuples while still protecting privacy. We
further designed algorithms that produce optimal sensitive attribute
generalization to improve the accuracy of ad hoc aggregate queries
over the released microdata.

There are many interesting issues to be further explored. In par-
ticular, we would like to extend the techniques in this paper to sup-
port personalized privacy and other types of data. We are also inter-
ested in efficient algorithms to answer more complex data analysis,
such as data mining, over anonymized microdata.
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