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ABSTRACT
Recently, dynamic networks are attracting increasing inter-
est due to their high potential in capturing natural and so-
cial phenomena over time. Discovery of evolutionary com-
munities in dynamic networks has become a critical task.
The previous evolutionary clustering methods usually adopt
the temporal smoothness framework, which has a desirable
feature of controlling the balance between temporal noise
and true concept drift of communities. They, however, have
some major drawbacks: (1) assuming only a fixed number
of communities over time; and (2) not allowing arbitrary
start/stop of community over time. The forming of new
communities and dissolving of existing communities are very
common phenomena in real dynamic networks. In this pa-
per, we propose a new particle-and-density based evolution-
ary clustering method that efficiently discovers a variable
number of communities of arbitrary forming and dissolv-
ing. We first model a dynamic network as a collection of
lots of particles called nano-communities, and a community
as a densely connected subset of particles, called a quasi
l-clique-by-clique (shortly, l-KK ). Each particle contains a
small amount of information about the evolution of data or
patterns, and the quasi l-KK s inherent in a given dynamic
network provide us with guidance on how to find a variable
number of communities of arbitrary forming and dissolv-
ing. We propose a density-based clustering method that
efficiently finds temporally smoothed local clusters of high
quality by using a cost embedding technique and optimal
modularity. We also propose a mapping method based on
information theory that makes sequences of smoothed local
clusters as close as possible to data-inherent quasi l-KKs.
The result of the mapping method allows us to easily iden-
tify the stage of each community among the three stages:
evolving, forming, and dissolving. Experimental studies, by
using various data sets, demonstrate that our method im-
proves the clustering accuracy, and at the same time, the
time performance by an order of magnitude compared with
the current state-of-the art method.
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1. INTRODUCTION
In recent years, social networks or information networks

are of growing importance in a wide range of disciplines and
application domains due to their ubiquity and generality of
modeling. Especially, their time-evolving version, dynamic
networks are attracting increasing interest due to their great
potential in capturing natural and social phenomena over
time. Examples of dynamic networks include network traffic
data [20], telephone traffic data [23], bibliographic data [6],
dynamic social networks [22], and time-series microarray da-
ta [29].

Clustering is the process of grouping similar objects into
clusters. The clusters in network data called communities
typically represent cohesive subgroups of individuals within
a network, where each cohesive subgroup is a “subset of ac-
tors among whom there are relatively strong, direct, intense,
frequent, or positive ties” [24, 15]. Identifying communities
in network data has been paid much attention as an impor-
tant research topic, but most studies have focused on static
networks, not dynamic networks.

Recently, a new kind of clustering concept called evolu-
tionary clustering has been proposed to capture the evolu-
tionary process of clusters in temporal data. Chakrabarti et
al. [4] first addressed this issue and proposed a framework
called temporal smoothness. This framework assumes that
the structure of clusters significantly changes in a very short
time is less desirable, and so, it tries to smooth out each com-
munity over time. For smoothing, it trades off two kinds of
qualities — the snapshot quality and the history quality —
at every timestamp during clustering. The snapshot qual-
ity is about how accurately the clustering result captures
the structure of current network, and the temporal quality
about how similar the current clustering result is with the
previous clustering result. This temporal smoothing allows
us to control the balance between temporal noise and true
concept drift of temporal patterns.

Several evolutionary clustering methods [5, 21, 15] have
been proposed under the temporal smoothness framework.
Especially, FacetNet [15] has several advanced features such
as allowing attachment/detachment of nodes and explicitly
handling general dynamic networks. However, the previous
methods including FacetNet have several drawbacks: (1) as-
suming only a fixed number of communities over time; (2)
not allowing arbitrary start/stop of community over time;
and (3) not being scalable well with network size. Since the
size of real dynamic networks tends to be large, and more-
over, the forming of a new community and dissolving of an
existing community are quite natural and common phenom-



ena in real dynamic networks [1], those existing methods
would not be very useful in real applications. For exam-
ple, they could not find a large number of evolving research
groups of co-authors that form or dissolve at arbitrary time
in the DBLP data.

In this paper, we propose a new particle-and-density based
evolutionary clustering method that efficiently discovers a
variable number of communities of arbitrary forming and
dissolving. We first identify two sub-problems that arise
when removing the constraint of the fixed number of com-
munities. The first sub-problem is how to perform clustering
with temporal smoothing when the number of communities
varies, and the second sub-problem how to connect between
local clusters across time when the number of local clus-
ters are different. For solving them, we propose the concept
of nano-community capturing how dynamic networks evolve
over time at a particle level, and model a community as a
dense subset of nano-communities forming an l-clique-by-
clique (shortly, l-KK ) topologically. The nano-communities
and quasi l-KK s inherent in a given dynamic network pro-
vide guidance on how to find a variable number of com-
munities of arbitrary forming and dissolving. For the first
sub-problem, we present a density-based clustering method
that efficiently finds smoothed local clusters of high quality
using a cost embedding technique and optimal modularity.
Our proposed cost embedding technique achieves flexible
and efficient temporal smoothing by pushing down the cost
formula from the clustering result level into the data level.
For the second sub-problem, we propose a mapping method
based on information theory, especially mutual information,
that can identify the stage of each community at each times-
tamp among the following three stages: evolving, forming,
and dissolving. Finding an optimal mapping of the max-
imum mutual information is a combinatorial optimization
problem, and we propose a heuristic algorithm for it.

In summary, the contributions of this paper are as follows:

• We propose the concepts of nano-community and quasi
l-KK, which enable us to discover a variable number of
communities of arbitrary forming and dissolving by cap-
turing the tendency inherent in a given dynamic network.

• We propose a cost-embedding technique that allows tem-
poral smoothing independently of both the similarity mea-
sure and the clustering algorithm.

• We present an efficient density-based clustering method
using optimal modularity that finds local clusters.

• We propose a mapping method based on information the-
ory that makes sequences of local clusters close to data-
inherent quasi l-KK s.

• We demonstrate, by using various data sets, that our
method achieves better clustering accuracy, and at the
same time, improves the time performance compared with
the state-of-art method.

The rest of the paper is organized as follows. Section 2
presents the problem statement. Section 3 defines the con-
cept of nano-community and quasi l-KK. Section 4 pro-
poses a cost embedding technique and our density-based
clustering method. Section 5 proposes the mapping method
between local clusters. Section 6 presents the results of ex-
perimental evaluation. Section 7 discusses related work. Fi-
nally, Section 8 concludes the study.

Table 1: Definitions of symbols
Symbols Definitions

G dynamic network
t timestamp

Gt network at timestamp t of G
Vt set of nodes in the network Gt

Et set of edges in the network Gt

CRt set of local clusters discovered on Gt

Ct local cluster discovered on Gt (Ct ∈ CRt)
M community
Mt cross section of M at timestamp t

2. PROBLEM STATEMENT

2.1 Notation
We define a dynamic network G as a sequence of networks

Gt (Vt, Et), i.e., G = {G1, . . . , Gt, . . .}. Table 1 shows the
symbols and their definitions. The dynamic network G al-
lows new nodes to be attached to Gt or existing nodes to
be detached from Gt at any timestamp t. We call a cluster
Ct of the clustering result CRt for Gt (Ct ∈ CRt) as a local
cluster to discriminate it from the community itself. A com-
munity M is a sequence of Mt, where Mt is a set of nodes
composing the community M at timestamp t.

2.2 Temporal Smoothness
Evolutionary clustering under the temporal smoothness

framework uses a cost function that can trade off the his-
tory quality with the snapshot quality. The cost function
is composed of two sub-costs of a snapshot cost (SC ) and a
temporal cost (TC ) as follows:

cost = α · SC(CRO, CRt) + (1− α) · TC(CRt−1, CRt) (1)

In Eq. 1, the snapshot cost SC() measures how similar
the current clustering result CRt is with the original clus-
tering result CRO that is obtained on Gt without temporal
smoothing. The smaller SC() is, the better the snapshot
quality is. The temporal cost TC() measures how similar
the current clustering result CRt is with the previous clus-
tering result CRt−1. The smaller TC() is, the better the
temporal quality is. The parameter α (0 ≤ α ≤ 1) is used
for controlling a level of preference to each sub-cost, i.e.,
for trading off between two measures. The framework tries
to find an optimal clustering CRt that minimizes Eq. 1 at
each timestamp t. When α = 1, the framework produces
the same clustering result with CRO, i.e., CRt = CRO in
order to minimize SC(). When α = 0, however, it produces
the same clustering results with CRt−1, i.e., CRt = CRt−1

in order to minimize TC(). In other cases of 0 < α < 1, it
produces an intermediate result between CRt−1 and CRO.

The temporal smoothness framework is originally devised
for a fixed number of communities, i.e., assumes that |CR1| =
. . . = |CRt|, and there is already one-to-one correspondence
between Ct−1 ∈ CRt−1 and Ct ∈ CRt. In contrast, our goal
is removing the constraint on the fixed number of commu-
nities and allowing the forming of new communities and the
dissolving of existing communities. By getting rid of the
constraint, the following two problems spontaneously arise.

Problem 1. How to perform clustering on Gt with tem-
poral smoothing when |CRt−1| 6= |CRt| and how to interpret
the meaning of the result.



Problem 2. How to connect Ct−1 ∈ CRt−1 with Ct ∈
CRt when |CRt−1| 6= |CRt| to determine the stage of each
community among the following three stages: evolving, form-
ing, and dissolving.

We present our solution for Problem 1 in Section 4 and
that for Problem 2 in Section 5.

3. MODELING OF COMMUNITY
In this section, we model the structure of community,

which is used as guidance for the clustering result. Sec-
tion 3.1 proposes a concept of nano-community and Sec-
tion 3.2 a quasi l-clique-by-clique.

3.1 Nano-Community
To capture the evolution of dynamic networks and com-

munities over time at a fine granularity level, we propose
the concept of nano-community, which is a kind of particle
composing a whole dynamic network or a community. In
fact, from the point of view of each individual node, a node
already has its tiny local cluster together with its neighbor
nodes. We could consider a sequence of such tiny local clus-
ters having non-zero similarity score between time t− 1 and
t. We call this tiny community as a nano-community, which
is defined as in Definitions 1∼2.

Definition 1. The neighborhood N(v) of a node v ∈ Vt

is defined by N(v) = {x ∈ Vt | 〈v, x〉 ∈ Et} ∪ {v}.
Definition 2. The nano-community NC(v, w) of two no-

des v ∈ Vt−1 and w ∈ Vt is defined by a sequence [N(v), N(w)]
having a non-zero score for a similarity function Γ : N(·)×
N(·) → R.

For a similarity function Γ(), we propose three candidates
as follows:

(1) ΓI(N(v), N(w)) =

{
1 if v = w

0 otherwise

(2) ΓE(N(v), N(w)) =

{
1 if v ∈ N(w) and w ∈ N(v)

0 otherwise

(3) ΓN (N(v), N(w)) =

{
1 if N(w) ∩N(v) 6= ∅
0 otherwise

The function ΓI() returns a non-zero value only if v and w
are the same node at the different timestamps. ΓE() returns
a non-zero value if v and w satisfy the condition of ΓI() (i.e.,
v = w), or N(v) and N(w) have a common edge 〈v, w〉.
ΓN () returns a non-zero value if N(v) and N(w) have a
common node, which obviously includes the conditions of
ΓI() and ΓN () for a non-zero score. Although we present Γ()
functions as ones to return just 1 for simplicity, they could
be modified such that they return different values based on
the number of common edges or nodes.

In each nano-community NC(v, w), we consider there is
a link between v and w having a weight of Γ(N(v), N(w)).
Hereafter, we call a connection between a pair of nodes of
different timestamps as a link to discriminate it from an
edge, a connection between a pair of nodes within the same
timestamp. By using links, we could conceptually construct
a bipartite graph between Gt−1 and Gt, and further, con-
struct a t-partite graph from G1 to Gt.

The function Γ() determines how many links there are
in the t-partite graph. Among above three Γ() functions,
ΓI() actually plays the role of Jaccard coefficient, and so,
the number of links when using ΓI() between two subgraphs
St−1 ⊂ Gt−1 and St ⊂ Gt is equivalent to Jaccard(St−1, St),
which is usually not dense and rich enough to capture the
evolution of either dynamic networks or communities well.
On the other hand, the number of links when using ΓN () is
usually too large to process efficiently. Therefore, we take
ΓE() as a trade-off solution, which returns a non-zero score
only if v and w are the same node, or have a common edge.

3.2 Quasi l-clique-by-clique
In this section, we model the topological structure of com-

munity M in the t-partite graph. Without losing general-
ity, a cluster in a network represents a cohesive subgroup
of nodes among whom there are relatively strong and dense
connections. Naturally, the clique is the structure of the
cluster having the highest density in networks. When the
number of nodes in a clique is s, we denote the clique as
Ks. Likewise, we could define the structure of the commu-
nity having the highest density by generalizing the concept
of biclique. A biclique (or a complete bipartite graph) is de-
fined as a bipartite graph such that two nodes are connected
if and only if they are in different partites [25]. When the
partites have sizes r and s, we denote the biclique as Kr,s.
Figure 1(a) shows an example of a biclique. When using
ΓE() function for constructing the t-partite graph, we note
that the links between two cliques Ks and Ks′ for s = s′

obviously form a biclique Ks,s′ . We could easily extend the
number of partites of biclique from two to l, which is the
length of a community. Here, we consider that each partite
of this structure corresponds to a cross section (i.e., a local
cluster) of a community, that is, each local cluster forms
a clique, and a pair of adjacent local clusters forms a bi-
clique. We call this structure as a l-clique-by-clique. When
the sizes of partites (cliques) are s1, s2, . . . , sl, respectively,
we denote the l-clique-by-clique as KK[s1,s2,...,sl]. When we
need only the length of a community, we denote it as l-KK.
Figure 1(b) shows an example of 4-KK, where each circle
indicates a clique.
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Figure 1: Examples of a biclique and an l-clique-by-
clique.

A community of l-KK is definitely the densest one among
all communities of the same partite sizes. But, in real appli-
cations, most of communities have the looser structure, i.e.,
quasi l-KK. In a quasi l-KK community M, let Mt be the
local cluster of M at time t, and Bt−1,t the bipartite graph
of M between t − 1 and t. Without losing generality, the
density of Mt could be measured by the function ΘK(Mt) =

2|EMt
|

|VMt
|(|VMt

|−1)
, where EMt is the edge set of Mt, and VMt



the node set of Mt. Likewise, the density of Bt−1,t could

be measured by the function ΘKK(Bt−1,t) =
|LBt−1,t

|
|VMt−1 ||VMt

| ,

where LBt−1,t is the link set of Bt−1,t.

4. CLUSTERING WITH TEMPORAL
SMOOTHING

In this section, we present a local clustering method with
temporal smoothing when the number of local clusters varies.
Section 4.1 proposes a cost embedding technique to perform
smoothing at the data level instead of at the result level.
Section 4.2 presents a density-based clustering algorithm us-
ing cost embedding, and Section 4.3 the optimal clustering
method using modularity.

4.1 Cost Embedding Technique
The previous clustering methods using temporal smooth-

ness perform temporal smoothing on the clustering result
CRt. So, in general, they adjust CRt iteratively so as to
decrease the cost Eq. 1. However, such iterative process
could degrade the clustering performance seriously. To solve
this performance problem, and at the same time, find the
smoothed local clusters in a flexible and natural way, we
propose a temporal smoothing method on data Gt instead
of on clustering result CRt.

In fact, temporal smoothing can be performed not only
at the community level (i.e., each Ct) but also at the nano-
community level (i.e., each node). Figure 2 shows four cases
of the relationship between two nodes v at t− 1 and w at t.
The thick solid lines indicate that v and w are similar (i.e.,
distance is small) enough to be within the same local clus-
ter, and the thin solid lines with breaker that v and w are
too dissimilar (i.e., distance is large) to be in different local
clusters. The dotted lines represent links. In case 1, v and
w are similar at both t− 1 and t, and so, they would be in
the same local cluster after temporal smoothing regardless
of α. In case 2, v and w are similar only at t. Thus, they
would be in the same cluster at t when α is large, but tend
to be in different clusters at t when α is small, in order to
decrease the temporal cost TC(). That is, there is an effect
that the actual distance between v and w becomes large by
temporal smoothing when α is small in this case. Case 3
shows the reverse case of case 2. In case 4, v and w are
dissimilar at both t − 1 and t, and thus, they would be in
different clusters regardless of α. These four cases indicate
that α determines not only the clustering result CRt, but
also the actual individual distances between pairs of nodes
at timestamp t.

From the above observation, we propose a cost embedding
technique that pushes down the cost formula from the local
cluster level to the individual distance level. The new cost
function at this nano level is defined as in Eq. 2. Here,
dt(v, w) indicates the smoothed distance between v and w
at time t, and dO(v, w) the original distance between v and
w at time t without temporal smoothing.

costN = α · SCN (dO(v, w), dt(v, w)) + (2)

(1− α) · TCN (dt−1(v, w), dt(v, w))

There would be many candidate measures for SCN () and
TCN (), but, in this paper, we use one-dimensional Euclidean
distance measure for simplicity, i.e., SCN = |dO(v, w) −
dt(v, w)|, and TCN = |dt−1(v, w)−dt(v, w)|. For those mea-
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(d) case 4

Figure 2: Four cases of the relationship between two
nodes v and w at timestamps t− 1 and t.

sures, we can easily find the optimal distance d′t(v, w) as in
Eq. 3 that minimizes the cost of Eq. 2.

d′t(v, w) = α · {dO(v, w)− dt−1(v, w)}+ dt−1(v, w) (3)

When α = 1, d′t(v, w) becomes dO(v, w), i.e., Gt have the
original distances. Thus, no matter what kind of clustering
algorithm is used, it produces CRO as the result of cluster-
ing, which is consistent with the result using Eq. 1. Likewise,
when α = 0, d′t(v, w) becomes dt−1(v, w), i.e., Gt have the
actual distances of the previous network Gt−1. Thus, it pro-
duces CRt−1, which is also consistent with the result using
Eq. 1. When 0 < α < 1, d′t(v, w) becomes an intermediate
value between dO(v, w) and dt−1(v, w), and so, it produces
an intermediate result between CRt−1 and CRO. We note
that d′t(v, w) becomes dt(v, w) at time t+1, that is, dt(v, w)
partly depends on dt−1(v, w), which in turn partly depends
on dt−2(v, w) an so on.

The cost embedding technique has two major advantages.
First, it is independent of both the similarity measure d()
and the clustering algorithm to use. Thus, temporal smooth-
ing could be performed no matter what kind of similarity
measure or clustering algorithm we use. On the contrary,
the previous evolutionary clustering methods perform tem-
poral smoothing with a specific combination of similarity
measure (e.g., KL-divergence or chi-square statistics) and
clustering algorithm (e.g., k-means or spectral clustering)
because they are required to adjust the result of cluster-
ing itself. Second, it makes temporal smoothing task effi-
cient. While the previous methods adjust CRt iteratively
for smoothing, the method using cost embedding just needs
to perform clustering once on the network that has been
already smoothed on data level.

Now, we explain the effect of temporal smoothing when
the number of local clusters varies and the role of α. Figure 3
shows the result of temporal smoothing of our method on
a tiny example. In Figure 3, there exist two communities
— upper red one and lower blue one — continuing from
t − 1 to t. When α is large (α=0.8) in Figure 3(a), a new
green colored local cluster is found at t in a clear shape,
which indicates the start of a new community. But, when
α is small (α=0.2) in Figure 3(b), the size of the new local
cluster becomes smaller, which would be totally disappeared
if α = 0. As shown in Figure 3, α controls not only the
trade-off between SC() and TC(), but also the frequency



in which a new community appears. A high α allows the
forming of new communities progressively, whereas a low α
allows it conservatively.
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(a) α = 0.8
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(b) α = 0.2

Figure 3: The effect of temporal smoothing when α
varies.

4.2 Density-based Clustering
In this section, we present the clustering method using

cost embedding for finding all local clusters at timestamp
t, which are corresponding to temporally smoothed cross
sections of quasi l-KK communities. Clustering has been
extensively studied so far, and there are three major ap-
proaches: (1) the partitioning approach (e.g., k-means), (2)
the hierarchical approach (e.g., BIRCH), and (3) the density-
based approach (e.g., DBSCAN [8]). Since the partitioning
approach needs to specify the number of clusters in advance,
and the hierarchical approach usually does not scale well, we
select the density-based approach, which has several advan-
tages such as discovering an arbitrary number of clusters,
handling noises, and being fast.

For similarity measure, we extend the structure similar-
ity (or cosine similarity) [12, 26], which is one of the famous
measures for network data. Eq. 4 shows the structure simi-
larity. Intuitively, σ(v, w) indicates how many nodes v and w
share w.r.t. the overall number of their neighborhood nodes.
By definition, σ(v, w) becomes non-zero only if v is directly
connected to w with an edge. The value of σ(v, w) is in the
range of 0.0∼1.0 and especially becomes 1.0 when both v
and w are in a clique.

σ(v, w) =
|N(v) ∩N(w)|√
|N(v)| × |N(w)| (4)

By the cost embedding technique, our method calculates
the similarity between v and w by using Eq. 5 instead of
Eq. 4. In Eq. 5, σt(v, w) indicates σ(v, w) in Gt.

σ′t(v, w) = α · {σt(v, w)− σt−1(v, w)}+ σt−1(v, w) (5)

Eq. 5 needs to look up the value of σt−1(v, w), i.e., σ(v, w)
in Gt−1, as well as σt(v, w). Since the clustering algorithm
might require multiple calculations of σ′t(v, w), it would be
better to store the value of σ′t(v, w) after the first calcula-
tion for improving the clustering performance. We note that
σ′t(v, w) becomes σt(v, w) at time t+1, and so, σt−1(v, w) in
our method is the value already computed and stored at
time t − 1 by using σt−2(v, w). Since σt(v, w) is non-zero
only if there is an edge between v and w, we only need to
calculate and store σ′t(v, w) as many as the number of edges

in Gt, i.e., |Et|. Thus, both the time complexity and space
complexity of calculating all similarity values required dur-
ing the whole clustering task on Gt is O (|Et|).

Now, we summarize the notions of density-based clus-
tering using Eq. 5 through Definitions 3∼9. The similar
notions are used in other density-based clustering meth-
ods such as DBSCAN [8], SCAN [26], and TRACLUS [11]
for points, static network, and trajectory data, respectively.
Intuitively, the clustering algorithm of these notions takes
two density parameters, µt and εt, and discovers all topolog-
ically dense subgraph on Gt as in Figure 3(a). We note that
the density-based clustering approach does not partition the
network, and there remain some noise nodes after cluster-
ing. In Figure 3, the white colored node ‘7’ indicates a noise
node. Since the density-based clustering of these notions vis-
its each node only once and checks the connectivity between
the node and its neighborhood nodes, the time complexity
becomes O (|Et|). We omit the detailed algorithm because it
is basically similar with the existing density-based clustering
algorithms.

Definition 3. The ε-neighborhood Nε(v) of a node v ∈
Vt is defined by Nε(v) = {x ∈ N(v) | σ′t(v, x) ≥ εt}.

Definition 4. A node v ∈ Vt is called a core node w.r.t.
εt and µt if |Nε(v)| ≥ µt.

Definition 5. A node x ∈ Vt is direct reachable from a
node v ∈ Vt w.r.t. εt and µt if (1) v is a core node and (2)
x ∈ Nε(v).

Definition 6. A node vj ∈ Vt is reachable from a node
vi ∈ Vt w.r.t. εt and µt if there is a chain of nodes vi, vi+1, . . . ,
vj−1, vj ∈ Vt such that vi+1 is direct reachable from vi

(i < j) w.r.t. εt and µt.

Definition 7. A node v ∈ Vt is connected to a node w ∈
Vt w.r.t. εt and µt if there is a node x ∈ Vt such that both
v and w are reachable from x w.r.t. εt and µt.

Definition 8. A non-empty subset S ⊆ Vt is called a
connected cluster w.r.t. εt and µt if S satisfies the following
two conditions:

(1) Connectivity : ∀v, w ∈ S, v is connected to w w.r.t. εt

and µt

(2) Maximality : ∀v, w ∈ Vt, if v ∈ S and w is reachable
from v w.r.t. εt and µt, then w ∈ S.

Definition 9. Let P be a set of connected clusters found
by Definition 8. A node v ∈ Vt is a noise if v is not contained
in any cluster of P .

Sometimes, new nodes are attached to Gt or existing nodes
of Gt−1 are detached from Gt. In the case of detachment,
we do not need to do something because Eq. 5 would be
calculated for only pairs of nodes that exist in Gt. However,
in the case of attachment, where v, x ∈ Vt, but v ∈ Vt−1 and
x /∈ Vt−1, i.e., x is attached to Gt, we need to determine the
value of σt−1(v, x) for calculating σ′t(v, x).

Our method sets σt−1(v, x) to the largest similarity value
to follow the semantics of temporal smoothing. Suppose
σt−1(v, x) = εt − 0.01. When α = 1, σ′t(v, x) = σt(v, x) in
Eq. 5, and so, CRt becomes CRO, which obeys the semantics
of temporal smoothing. When α = 0, σ′t(v, x) = σt−1(v, x),



and all attached nodes {x} become noise nodes since their
similarity values do not satisfy the condition of Definition 3.
Accordingly, except for the detached nodes, CRt becomes
identical with CRt−1, which obeys the semantics of temporal
smoothing as well. When 0 < α < 1, σ′t(v, x) becomes a
value between σt−1(v, x) (= εt−0.01) and σt(v, x). If we set
σt−1(v, x) to a very small value (e.g., 0), the nodes {x} tend
not to appear in the resulting clusters even when α is fairly
large. Thus, we set σt−1(v, x) = εt − 0.01.

4.3 Clustering of Optimal Modularity
The density-based clustering of Section 4.2 requires two

kinds of user-defined parameters, µt and εt, where µt is for
specifying the minimum size of cluster, and εt for specifying
the minimum similarity between nodes within a cluster. For
two parameters, it has been known that the clustering result
is sensitive to εt, but not much sensitive to µt. We propose
the method to determine εt automatically by using the novel
concept of modularity [19].

There are several well-known quality measures for graph
partitioning (or clustering) such as min-max cut, normal-
ized cut, and modularity. Among them, min-max cut and
normalized cut can only measure the quality of a binary
partitioning. Modularity, however, can measure the quality
of a partitioning into multiple clusters, and thus, it is more
suitable for our problem. Instead of the original modular-
ity that uses the number of edges or node degrees in each
cluster, we adopt the extended modularity [9] that uses the
structure similarity, which has been known to be more effec-
tive than the original modularity. The extended modularity
Qs is defined as follows:

QS =

NC∑
c=1

[
ISc

TS
−

(
DSc

TS

)2
]

, (6)

where NC is the number of clusters, TS the total simi-
larity between all pairs of nodes in the graph, ISc the total
similarity of a pair of nodes within a cluster c, DSc the total
similarity between a node in the cluster c and any node in
the graph.

The optimal clustering is achieved by maximizing QS ,
which has been known to be NP-complete. There have
been several heuristic algorithms for maximizing modular-
ity. They all are classified into two categories: (1) bottom-
up (agglomerative) clustering [18]; and (2) top-down (divisive)
clustering [28]. The former starts from all nodes, i.e., |Vt|
clusters, and the latter from a graph Gt itself, i.e., a single
cluster. They merge or split the graph iteratively until it
reaches the maximum modularity. The performance of both
approaches could be degraded when the size of network is
large because the suitable number of clusters lies between 1
and |Vt| and increases as the network size gets larger, which
would require a lot of iteration steps.

In lieu of both approaches, we propose another approach
that directly jumps into the middle point between two ex-
tremes, i.e., 1 and |Vt|. This approach takes advantage of
the feature of density-based clustering that discovers all clus-
ters above a given density threshold (i.e., εt) quickly. Our
approach first performs clustering with the initial density
parameter seedεt , and then, decreases or increases it until
reaching the maximum modularity. In fact, the maximum
point reached by our approach might be a local maximum
point, not a global maximum one. The previous two ap-

proaches also suffer from the local maximum problem. Solv-
ing this problem is beyond the scope of this paper.

The more smartly we choose the seed density parameter,
the more quickly we reach the maximum point. Here, we
present a simple heuristic method that chooses a median
value of µt-th similarity values of the sample nodes picked
from Vt. Here, a sampling rate of only about 5∼10% would
be sufficient. Each node v has |N(v)| similarity values with
its neighborhood nodes. The reason of using the µt-th value
among them is that the clustering result is mainly deter-
mined by the µt-th value in Definition 4. The reason of
choosing the median value is that it would produce an in-
termediate number of clusters between 1 and |Vt|.

For efficient clustering, our method increases or decreases
the density by a unit ∆ε (e.g., 0.01 or 0.02) and maintains
two kinds of heaps: (1) max heap Hmax for edges having
similarity below seedεt ; and (2) min heap Hmin for edges
having similarity above seedεt . Hmax and Hmin are built
during the initial clustering. After finding the initial clusters
CRt and calculating its modularity Qmid, our method cal-
culates two additional modularity values, Qhigh and Qlow.
Here, Qhigh is calculated from CRt with the edges hav-
ing similarity of [seedεt , seedεt + ∆ε] in Hmin, and Qlow

calculated from CRt except the edges having similarity of
[seedεt −∆ε, seedεt ] in Hmax. If Qhigh is the highest among
Qhigh, Qmid, and Qlow, our method increases the density
by ∆ε. If Qlow is the highest value, our method decreases
the density by ∆ε. Otherwise, seedεt would be the best
density parameter. The initial clustering result CRt is con-
tinuously modified by adding edges from Hmax to CRt or by
deleting edges of Hmin from CRt. Actually, this algorithm
corresponds to the bulk version of the incremental density-
based clustering algorithm [7]. When the algorithm stops,
the modified CRt becomes the final clustering result. The
basic outline of the algorithm is as follows:

1. Performs clustering on Gt with εt = seedεt , builds Hmax

and Hmin, and calculates Qmid.

2. Calculates Qhigh and Qlow, and then,

(1) if Qhigh is the highest value: increases εt by ∆ε and
calculates a new modularity Q′high.

(2) if Qlow is the highest value: decreases εt by ∆ε and
calculates a new modularity Q′low.

3. Repeats Step 2(1) or 2(2) until the modularity does not
increase any more.

5. MAPPING OF LOCAL CLUSTERS
Now, we can find the temporally smoothed local clusters

by using the method of Section 4, but do not know yet how
to map between Ct−1 ∈ CRt−1 and Ct ∈ CRt for finding
a variable number of communities of arbitrary forming and
dissolving. We note that the t-partite graph already contains
a fixed set of relatively densely connected subsets of nano
communities, i.e., data-inherent quasi l-KKs, each of which
has its own rough start/stop points. After finding a set of
local clusters (i.e., cross sections) by a given α, our method
tries to make sequences of such local clusters as close as
possible to data-inherent quasi l-KKs. That is, our method
finds a set of quasi l-KKs that become different by different
α, at the same time, are close to data-inherent quasi l-KKs.

This is achieved by taking advantage of link density be-
tween timestamp networks. Each Ct ∈ CRt is connected
with some local clusters Ct−1 ∈ CRt−1 through links, and



so, each Ct has its own distribution of the number of links
over CRt−1. Some mapping between Ct−1 and Ct would
have a lot of links, and so, the bipartite graph between Ct−1

and Ct is dense. On the other hand, some mapping would
have only a small number of links, and so, the link density
is low.

In the model of quasi l-KK, we consider that, if the
density of the bipartite graph between Mt−1 and Mt, i.e.,
ΘKK(Bt−1,t) is high, then the community M would be con-
tinue (evolve) from t− 1 to t. Such interpretation would be
quite natural. If there is no local cluster Ct−1 that Ct is
densely connected with, then Ct would be the begin of a
new community M where Ct = Mt. Likewise, if there is no
local cluster Ct that Ct−1 is densely connected with, then
Ct−1 would be the end of the existing community M where
Ct−1 = Mt−1.

We summarize all cases of relationships between Ct−1

and Ct representing the evolving, dissolving, or forming of
M. Here, δthreshold indicates a certain density threshold
to determine the case. The stage of the evolving is again
classified into three cases — growing, shrinking, and drift-
ing — according to the relationship between Mt−1 and Mt.
Sometimes, a community splits into multiple communities,
or multiple communities merge into one community in real
data, but we do not present such cases in this paper due to
space limit.

(1) Evolving (ΘKK(Bt−1,t) > δthreshold): a community M
evolves from t− 1 to t.

A. Growing (Mt−1 ⊆ Mt): M grows between t−1 and
t.

B. Shrinking (Mt−1 ⊇ Mt): M shrinks between t − 1
and t.

C. Drifting (|Mt−1 ∩Mt| 6= 0): M drifts between t− 1
and t.

(2) Forming (¬∃Ct−1 ∈ CRt−1 s.t. ΘKK(Bt−1,t) > δthreshold):
a community M forms at time t.

(3) Dissolving (¬∃Ct ∈ CRt s.t. ΘKK(Bt−1,t) > δthreshold):
a community M dissolves at time t.

For explanation, we use a fixed threshold δthreshold above,
but actually it might be very difficult or impossible to deter-
mine a single suitable δthreshold since there could be multiple
mappings between {Ct−1} and Ct or between Ct−1 and {Ct}
satisfying the condition of evolving case. For solving this,
we propose a mapping method based on information theory,
especially mutual information, in Sections 5.1∼5.3.

5.1 Link Counting
The mapping task is performed based on the number of

links between a pair of local clusters. That is, we need
to count the number of links for all pairs of local clus-
ters, CRt−1 × CRt. We propose a method that counts the
number of links in a single scan even when there are no
stored links. Under the model of t-partite graph and quasi
l-KK, we could derive the relationship between the number
of nodes/edges and the number of links as in Lemma 1.

Lemma 1. Given a pair of local clusters Ct−1 ∈ CRt−1

and Ct ∈ CRt, the number of links between Ct−1 and Ct,
i.e., |Bt−1,t| satisfies Eq. 7, where ||node indicates the number
of nodes, and ||edge the number of edges.

|Bt−1,t| = |Ct−1 ∩ Ct|node + 2 · |Ct−1 ∩ Ct|edge (7)

Proof. First, there is a link between every pair of nodes
of the same ID by the definition of ΓE(). Thus, there is a
total of |Ct−1∩Ct|node links for them. In Figure 4, the thick
dash lines indicate such links. Second, there are two links
between every common edge 〈x, y〉 by the definition of ΓE(),
where one link is between x at time t − 1 and y at time t,
and another link between y at time t − 1 and x at time t.
Thus, there is a total of 2 · |Ct−1 ∩Ct|edge links for them. In
Figure 4, the thin dash lines indicate such links.
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Figure 4: An example for link counting.

For mapping task, we record the number of links in a
matrix of size |CRt−1| × |CRt| denoted as Matt−1,t. After
initializing all cells as zero, our method scans each node
and edge of Gt and checks whether there is the same node
or edge in Gt−1. If there is the same node, our method
increases the link count of the corresponding cell of Matt−1,t

by 1, and if there is the same edge, it increases the link
count by 2. For example, the upper left 6-cell matrix in
Figure 5 shows the result of link counting for Gt−1 and Gt

in Figure 3. Here, Rt, Yt, and Bt indicate the local clusters
of red color, green color, and blue color, respectively. The
value in the cell Matt−1,t[Rt−1][Rt], i.e., 14 is the number of
links between Rt−1 and Rt. We note that the value of each
cell is changed by the parameter α even though the links
themselves between Gt−1 and Gt are invariable.

14 2 0
0 1 14

R � � �

B � � �

R � Y � B �

14 12 19

22
27

58
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 〉

〈 ��� � � � 〉

〈 ���� 〉

Figure 5: A matrix and arrays of link counting.

In addition to the link count between Ct−1 and Ct, we
need to count the number of links from Ct−1 to Gt and that
from Ct to Gt−1 for analysis of mutual information. In Fig-
ure 5, the upper right 2-cell array Arrt−1 shows the link
counts from Ct−1 to Gt, and the lower left 3-cell array Arrt

that from Ct to Gt−1. We note that the link count between
Ct−1 and Ct is symmetric, but that between Ct and Gt−1 or
that between Ct−1 and Gt is non-symmetric. In Figure 5,
the lower right 1-cell LCTotal indicates the number of total
links between Gt−1 and Gt. We also note that there is a re-
lationship of Eq. 8 among those link counts, where Eq. 8 is
still valid even if we replace Arrt−1 with Arrt. This relation-
ship comes from the differences in the scope of link counting.
For example, in Figure 3(a), the edge 〈3, 5〉 in Rt−1 has a
counterpart common edge in the scope of the whole network



Gt, and so, is counted in Arrt−1. The edge, however, does
not have any counterpart in the scope of the local cluster
either Rt or Yt, and so, is not counted in Matt−1,t.

∑
i,j

Matt−1,t[i][j] ≤
∑

k

Arrt−1[k] ≤ LCTotal (8)

5.2 Mutual Information
The mutual information is one of the important entropy

measures in information theory. Eq. 9 shows the equa-
tion of the mutual information. It originally means the
dependency degree between two random variables X and
Y . From a different angle, it means the distance (especially
called the Kullback-Leibler distance) between two distribu-
tions P (X, Y ) and P (X)P (Y ). If the distribution of P (X)
and P (Y ) is purely random as in Figure 6(a), MI(X; Y )
becomes 0. On the contrary, if the distribution of P (X) and
P (Y ) is skewed as in Figure 6(b), MI(X; Y ) becomes high.
In Figure 6(b), if we set the relatively low probability value
as zero, i.e., purify the distribution more (or decrease the
entropy), MI(X; Y ) increases. We take advantage of this
feature of mutual information for mapping local clusters.

MI(X; Y ) =
∑

i

∑
j

P (xi, yj) log
P (xi, yj)

P (xi)P (yj)
(9)

(a) random distribution

P(X)

P(Y)

P(X)

P(Y)

(b) skewed distribution

����
������	�	
�

Figure 6: Two distributions of P (X) and P (Y ).

We take the distributions of link counts of CRt−1 × CRt

into account for utilizing the mutual information. If xi and
yi in Eq. 9 are subsets of objects, Eq. 9 could be rewritten
as in Eqs. 10∼11. In Eq. 11, N indicates the total number
of objects. In our problem, xi and yi correspond to sets of
links of (Ct−1 → Gt) and (Gt−1 ← Ct), respectively, and
(xi ∩ yj) to a set of links of (Ct−1 ↔ Ct). Thus, by using
Matt−1,t, Arrt−1, Arrt, and LCTotal, we could derive Eq. 12
that calculates the mutual information of links between Gt−1

and Gt.

MI(X; Y ) =
∑

i

∑
j

P (xi ∩ yj) log
P (xi ∩ yj)

P (xi)P (yj)
(10)

=
∑

i

∑
j

|xi ∩ yj |
N

log
N · |xi ∩ yj |
|xi| · |yj | (11)

=
∑

i

∑
j

Matt−1,t[i][j]

LCTotal
log

LCTotal ·Matt−1,t[i][j]

Arrt−1[i] ·Arrt[j]
(12)

A mapping between Ct−1 and Ct means getting rid of
links of (Ct−1 → Gt) and (Gt−1 ← Ct) except links of
(Ct−1 ↔ Ct). This is equivalent to making the values of
Matt−1,t[i][Ct] zero (1 ≤ i ≤ |CRt−1| and i 6= Ct−1) and
making the values of Matt−1,t[Ct−1][j] zero (1 ≤ j ≤ |CRt|
and j 6= Ct). For example, Figure 7(a) shows the result

after mapping between Rt−1 and Rt. This purifying pro-
cess increases the mutual information. The initial mutual
information in Figure 5 is 0.287, which increases to 0.315
after mapping in Figure 7(a). Likewise, in Figure 7(b), the
mutual information increases to 0.345 by mapping between
Bt−1 and Bt.

14 0 0
0 1 14

(a) mapping (R � � � ↔ R � )
�� = 0.315

14 0 0
0 0 14

(b) mapping (B � � � ↔ B � )

R � � �

B � � �

R � Y � B �

�� = 0.345

Figure 7: Matt−1,t and MI during mapping process.

Once a mapping between Ct−1 and Ct is done, other local
clusters of CRt−1 cannot be connected with Ct, or other
local clusters of CRt with Ct−1, in our semantics. Thus, at
most min(|CRt−1|, |CRt|) mapping operations are possible.
As mentioned before, our method tries to make communities
as coincident as possible with data-inherent quasi l-KKs.
We consider that the higher mutual information the set of
mapping operations achieves, the more coincident with data-
inherent quasi l-KKs the resulting communities are. We can
choose at most min(|CRt−1|, |CRt|) pairs among |CRt−1|×
|CRt| pairs to achieve the maximum mutual information.
It is a combinatorial optimization problem, and in general,
very difficult to find an optimal combination. We present a
heuristic algorithm for this in Section 5.3.

5.3 Heuristic Algorithm
Our proposed greedy algorithm first performs mapping

between two local clusters producing the maximum gain
of the mutual information. Then, it repeatedly performs
the same mapping operation for the remaining pairs of lo-
cal clusters. Algorithm 1 outlines the pseudo-code of this
algorithm. UnitMI() indicates a function that calculates
the body part of Eq. 12 for Matt−1,t[i][j]. Here, we de-
note the result of UnitMI() as UnitMI [][]. We note that
UnitMI [i][j] is not necessarily proportional to the number
of the links between Ct−1 and Ct. For example, in Fig-
ure 5, Matt−1,t[Rt−1][Rt] = Matt−1,t[Bt−1][Bt] = 14, but
UnitMI [Rt−1][Rt] = 0.234 6= UnitMI [Bt−1][Bt] = 0.111.
The algorithm uses a max heap Hmax to choose the matrix
cell having the largest unit MI.

Sometimes, the mapping operation produces the minus
gain of mutual information, i.e., ∆MI < 0, which typically
occurs in a situation where the link distributions of the cor-
responding row and column is not skewed, but random, like
the circle in Figure 6(a). It means the mapping would not
be a good choice in the aspect of information theory. In an
early stage of the mapping process, ∆MI is fairly high, but
it becomes smaller as the mapping is performed repeatedly.
If ∆MI becomes less than zero, the algorithm stops even if
Hmax is not empty.

We can determine the case of each community by looking
at the purified Matt−1,t. Let Nmap be the number of map-
ping operations performed until the stop. Then, it indicates
there is a total of Nmap communities that evolve (continue)
from t−1 to t. It also indicates there is a total of (|CRt−1|−
Nmap) communities that dissolve at time t, and a total of
(|CRt|−Nmap) communities that newly form at time t. For



each dissolved community of the above (|CRt−1| − Nmap)
communities, its ∆MI < 0 indicates that there is no cor-
responding Ct having a relatively high ΘKK(Bt−1,t) value.
Likewise, for each forming community, its ∆MI < 0 indi-
cates that there is no corresponding Ct−1 having a relatively
high ΘKK(Bt−1,t) value. Therefore, we could say that the
result of the mapping method based on the mutual informa-
tion is quite reasonable and coincides with the meaning of
real community.

Algorithm 1 Greedy Algorithm

Input: (1) Matrix Matt−1,t,
(2) Arrays Arrt−1 and Arrt,
(3) Total number of links LCTotal.

Output: Purified version of Matt−1,t.

1: /* Initialization */
2: Compute all UnitMI [i][j] = UnitMI(Matt−1,t[i][j]);
3: Insert all (UnitMI [i][j], i, j) into a max heap Hmax;

4: /* Iterative phase */
5: while Hmax 6= ∅ do
6: Choose (UnitMI [p][q], p, q) ∈ Hmax with the largest

UnitMI [p][q] value;
7: ∆MI = −∑

i UnitMI [i][q]−
∑

j UnitMI [p][j]

+ 2 ∗ UnitMI [p][q];
8: if ∆MI > 0 then
9: Set all Matt−1,t[p][j] and all Matt−1,t[i][q]

as zero value except Matt−1,t[p][q];
10: Delete all (UnitMI [p][j], p, j) from Hmax;
11: Delete all (UnitMI [i][q], i, q) from Hmax;
12: else
13: Break the while loop;

14: return Matt−1,t;

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness and efficiency

of our method. We conduct all the experiments on a Pen-
tium Core2 Duo 2.0GHz PC with 2GBytes of main mem-
ory, running on Windows XP. We implement our algorithm
in C++ using Microsoft Visual Studio 2005. In all experi-
ments, we use µt = 2.

6.1 Synthetic Data
We compare the effectiveness and efficiency of our method

and the previous method FacetNet [15] by using synthetic
data. FacetNet is the current state-of-art method for dis-
covering evolutionary clusters for dynamic networks. We
generate two kinds of data sets: (1) dynamic network of a
fixed number of communities (SYN-FIX ); and (2) dynamic
network of a variable number of communities (SYN-VAR).

6.1.1 Data generation and quality measure
For SYN-FIX, we use the data generating method pro-

posed by Newman et al. [19], which has been also used in
FacetNet. One network contains 128 nodes, which are di-
vided into 4 communities of 32 nodes each. We gener-
ate such network for 10 consecutive timestamps (i.e., G =
{G1, . . . , G10}). In order to introduce dynamics into G, we
randomly select 3 nodes from each community in Gt−1 and
make those nodes leave their original communities and join

randomly the other three communities in Gt. Edges are
placed independently and randomly between a pair of nodes
within the same community with a higher probability pin

and between a pair of nodes of different communities with a
lower probability pout. The value of pin and pout are chosen
such that the average degree of each node is set to be 16.
In order to control the noise level in the dynamic network
G, we introduce a single parameter zout, which represents
the average number of edges from a node to nodes in other
communities. If we decrease zout, then pin becomes larger,
and at the same time, pout becomes smaller such that the
average degree of each node becomes 16. That is, the noise
level decreases. On the other hand, if we increase zout, the
noise level in G increases.

For SYN-VAR, we modify the generating method for SYN-
FIX so as to introduce the forming and dissolving of com-
munities and the attaching and detaching of nodes. The
initial network contains 256 nodes, which are divided into 4
communities of 64 nodes each. We generate 10 consecutive
networks. We randomly choose 8 nodes from each commu-
nity and make those 32 nodes a new community, which is
lasting for 5 timestamps and its nodes return to the original
communities. We perform this creation of a new commu-
nity once at each timestamp between 2 ≤ t ≤ 5, and so, the
numbers of communities between 1 ≤ t ≤ 10 are 4, 5, 6, 7,
8, 8, 7, 6, 5, and 4, respectively. We set the average degree
of each node to be a half of the size of the cluster where the
node belongs to. We also randomly delete exiting 16 nodes
from each network and randomly add new 16 nodes to each
network for 2 ≤ t ≤ 10.

Since we have the ground truth answer for communities
and their membership at each timestamp, we can directly
measure the accuracy of the clustering result. For the mea-
sure, we use the normalized mutual information (NMI ), which
is a well-known external criteria and has been also used in
FacetNet. NMI is defined as in Eq. 13, which is the nor-
malization of MI by the average of two entropies H(X) and
H(Y ). The reason of using NMI instead of MI is that the
method producing more clusters tends to obtain a higher
score than that producing less clusters. The value of NMI
is in the range of 0.0∼1.0 by normalization, and a higher
NMI indicates better accuracy. We note that the purpose
of using NMI here is totally different from that of using
MI in Section 5. This NMI is about distance between the
clustering result and the ground truth at each time. On
the contrary, MI in Section 5 is about distance between
two consecutive networks, which is moreover continuously
changed through the purifying process.

NMI(X; Y ) =
MI(X; Y )

[H(X) + H(Y )]/2
(13)

6.1.2 Effectiveness
Figure 8 shows the accuracies of clustering results for

SYN-FIX. When zout = 3 in Figure 8(a), i.e., when it is easy
to detect the community structure due to the low noise level,
both FacetNet and our method achieve very high accuracy.
When zout = 5 in Figure 8(b), i.e., when the noise level is
high, however, the accuracies of both methods become much
lower. We note that the accuracies of both methods contin-
uously increase as time goes on in Figure 8(b). It is because
the clustering result or the individual distance at time t− 1
affects on that at time t by temporal smoothing. There



is a similar phenomenon at the initial timestamps in Fig-
ure 8(a), but the accuracies are not improved continuously
because they are already so high.

Figure 9 shows the accuracies of clustering results for
SYN-VAR. In both figures, our method significantly im-
proves the accuracy compared with FacetNet. When new
communities form or existing communities dissolve, our met-
hod recognizes the change of the number of communities and
the start/stop points of communities, so achieves high accu-
racy. FacetNet, however, could not deal with such things,
and thus, its accuracy becomes largely degraded. Espe-
cially, the accuracy of FacetNet around at the middle times-
tamps (accumulatedt = 4 ∼ 6) is worse than that at the
initial timestamps or the final timestamps. It is because
the difference between the numbers of communities in the
ground truth and the clustering result of FacetNet is maxi-
mized at those timestamps. The accuracy when zout = 5 is
much lower than that when zout = 3, which is a similar result
with Figure 8, and it does not increase over time. The rea-
son is that temporal smoothing for SYN-VAR hardly gets
the accumulated benefits due to the continuous change of
the community structure and the attachment/detattchment
of nodes.
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Figure 8: Accuracies of clustering results for SYN-
FIX (α = 0.8).
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Figure 9: Accuracies of clustering results for SYN-
VAR(α = 0.8).

6.1.3 Efficiency
Figure 10(a) shows the time performances of our method

and FacetNet for SYN-VAR as the size of network varies.
Here, the size of network indicates the number of nodes per
timestamp network. We generate four data sets of different
sizes such that the number of clusters increase. We perform
clustering over 10 timestamps, and present the average re-
sult. We use zout = 3 and α = 0.8, but the variation of zout

or α did not influence the performance. In Figure 10(a),
our method improves the performance by an order of mag-
nitude compared with FacetNet. While FacetNet performs

a lot of iterations (e.g., 600) of matrix computation for tem-
poral smoothing, our method performs clustering once due
to the cost embedding technique. This result shows our
method is more suitable for large-scale data. We skip the
result for SYN-FIX and the result when the size of each
cluster increases, which are similar with that for SYN-VAR
in Figure 10(a).

In addition to SYN-VAR, Figure 10(b) shows the perfor-
mance result for the real DBLP co-authorship data, where
an author is a node, and a co-authorship is an edge. Our
method still significantly improves the performance com-
pared with FacetNet. We note that the running times in-
crease a little more rapidly than in Figure 10(a). The reason
is that the time complexity of our density-based clustering
algorithm is O (|Et|), and |Et| increases a little more rapidly
than |Vt| in real networks due to the densification laws of
networks [14]. The running time of FacetNet is also propor-
tional to |Et| since it uses internally a soft clustering algo-
rithm [27] that has the time complexity of almost O (|Et|).
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Figure 10: Running times as the size of network
varies.

6.2 Real Data
We evaluate some features of our method by using two

real data sets: DBLP data [6] and the football data [17]. The
football data is the NCAA Football Division 1-A schedule
data, where nodes are football teams, and edges are matches
between teams. This data has been used for several network
clustering studies [18, 26]. In particular, we study the data
of the year 2006, which has been also used in SCAN [26].
In this data, there is a total of 179 nodes, and the number
of clusters of the ground truth is eleven, which represent
real eleven conferences like “Big Ten”. For the DBLP data,
we extract the co-authorship information from the original
DBLP data, related to database or information area of the
last 10 years from 1999 to 2008. This DBLP data contains
a total of 127,214 unique authors.

6.2.1 Football Data
In Section 4.3, we have presented the clustering method

that determines εt so as to maximize modularity Qs. Fig-
ure 11(a) and Figure 11(b) show the modularity Qs and the
number of clusters, respectively, as εt varies for the football
data. When εt = 1, there is no cluster, i.e., each node itself
is a cluster since the density threshold is too high. Here, Qs

becomes zero. On the other hand, when εt = 0, there is only
a single cluster since the threshold is too low. Our method
directly jumps into the middle point between εt = 0 and
εt = 1. We choose a median value, 0.62, as a start point by
the proposed heuristic method. Since the decreasing εt can
obtain higher Qs, we continuously decrease εt by ∆ε = 0.02



until Qs reaches the maximum point. The algorithm stops
when εt = 0.46 and produces ten clusters, which are the
same result with the ground truth except only one confer-
ence. The best εt obtained manually is 0.5. We note that
our method finishes clustering within eight iterative steps
from 0.64 to 0.46, whereas the previous divisive method [28]
finishes it with about 200 iterative steps.
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Figure 11: Modularity Qs and the number of clusters
as εt varies (µ = 2, ∆ε = 0.02).

6.2.2 DBLP Data
In this section, we evaluate the effect of α using the DBLP

data. The parameter α controls the trade-off between the
snapshot quality and the history quality, and at the same
time, the frequency of forming/dissolving of communities.
Actually, the trade-off and the frequency are closely related
with each other in the case of allowing arbitrary start/stop
of communities. Figure 12 shows the average length of com-
munities and the number of communities as α varies between
0.1 and 0.9. When α = 0.9, our method mainly focuses on
the snapshot quality, and so, there is a good chance that a
local cluster is not connected with other local cluster due to
the low density between them. Thus, the average lifetime
of community decreases while the number of communities
increases. In contrast, when α = 0.1, there is a good chance
that a local cluster is connected with other local cluster,
and so, the average lifetime of community increases while
the number of communities decreases.

α

(a) avg. length of community (b) # of communities
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Figure 12: Average length of communities and the
number of communities as α varies (0.1 ≤ α ≤ 0.9).

7. RELATED WORK
There has been a lot of studies that analyze the character-

istics of communities in dynamic networks. Several studies
focus on identifying the properties or key features influenc-
ing the behavior of communities in dynamic networks [2, 10,
1, 13]. Especially, Asur et al. [1] has introduced a set of key
events that occur in real dynamic networks. According to
those events, communities can newly form (i.e., start) or dis-
solve (i.e., stop) at any time as well as continue with some

change (i.e., evolve). Some other studies such as Graph-
Scope [20] focus on discovering communities in dynamic net-
works without temporal smoothing. GraphScope identifies
the subgroup structure and the change points where the sub-
group structure is largely changed, by employing the Min-
imum Description Length (MDL) principle. GraphScope,
however, has a major weak point that it cannot catch the
evolution of community individually.

Recently, a new clustering concept called evolutionary clus-
tering and a framework called temporal smoothness have
been proposed by Chakrabarti et al. [4]. Chi et al. [5] pro-
posed two spectral clustering algorithms PCM and PCQ to
incorporate this temporal smoothness framework. Lin et
al. [15] proposed the more advanced algorithm called FacetNet
for general dynamic networks. This is the current state-of-
art method for discovering evolutionary clusters in dynamic
networks and most closely related to our work. Tang et
al. [21] proposed an evolutionary clustering algorithm based
on a little different framework to handle multi-mode net-
works. However, all above studies have some drawbacks
that they handle only a fixed number of communities over
time, they do not allow arbitrary start/stop of community
over time, or they are not very scalable due to the high
computation cost caused by a lot of iterations of matrix cal-
culation until converge. Chakrabarti et al. [4] used a similar
technique with our cost embedding technique for preparing
a similarity matrix, but their technique was not for temporal
smoothing and was not presented in a formal definition.

In addition to evolutionary clustering, there have been few
studies that discover a kind of communities over temporal
text data [16] or blogosphere data [3]. Mei et al. [16] pro-
posed an algorithm for discovering evolutionary theme from
temporal text data. This algorithm extracts themes at each
timestamp, constructs a t-partite graph by connecting rel-
evant themes between adjacent two timestamps, and finds
a sequence of themes as an evolutionary theme. Bansal et
al. [3] also constructs a t-partite graph from temporal blo-
gosphere data and finds the most stable top-k clusters for
stable topics in blogoshere. These methods can find some
evolutionary patterns of a variable number and arbitrary
start/stop. However, they do not consider temporal smooth-
ness at all. Furthermore, since they find communities in two
separated stages without temporal smoothing, the resulting
communities are rough and coarse granular. On the other
hand, our method finds the communities at a fine granularity
level by temporal smoothing based on nano communities.

8. CONCLUSION
In this paper, we have proposed a novel evolutionary clus-

tering method, the particle-and-density based method, for
efficiently discovering a variable number of communities in
dynamic networks. Since real dynamic networks tend to
be large, and at same time, the forming of new communi-
ties and dissolving of existing communities are very com-
mon phenomena in real data, a scalable and powerful evo-
lutionary clustering method is required. Our method has
modeled a dynamic network as a collection of lots of parti-
cles called nano-communities, and a community as a densely
connected subset of such particles. Each particle contains
a small amount of information about the evolution of data
or communities. For flexible and efficient temporal smooth-
ing, we have proposed a cost embedding technique, which is
independent of both the similarity measure and the cluster-



ing algorithm. The density-based clustering algorithm using
the cost embedding technique and optimal modularity mea-
sure efficiently discovers temporally smoothed local clusters
of high quality. We have also proposed a mapping method
based on information theory that can identify the stage of
each community among the three stages — evolving, form-
ing, and dissolving — by purifying link distribution between
consecutive networks so as to maximize the mutual informa-
tion. Experimental studies, by using two kinds of synthetic
data sets and two kinds of real data sets, demonstrate that
our method improves the clustering accuracy, and at the
same time, the time performance by an order of magnitude
compared with the state-of-the art method FacetNet.
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