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Abstract

XML is widely regarded as a promising means for
data representation integration, and exchange. As
companies transact business over the Internet, the
sensitive nature of the information mandates that
access must be provided selectively, using sophis-
Using the
specification directly to determine if a user has

ticated access control specifications.

access to a specific XML data item can hence
be extremely inefficient. The alternative of fully
materializing, for each data item, the users au-
thorized to access it can be space-inefficient. In
this paper, we propose a space- and time-efficient
solution to the access control problem for XML
data. Our solution is based on a novel notion of a
compressed accessibility map (CAM), which com-
pactly identifies the XML data items to which a
user has access, by exploiting structural locality of
accessibility in tree-structured data. We present
a CAM lookup algorithm for determining if a user
has access to a data item; it takes time propor-
tional to the product of the depth of the item in
the XML data and logarithm of the CAM size.
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We develop a linear-time algorithm for building
an optimal size CAM. Finally, we experimentally
demonstrate the effectiveness of the CAM for mul-
tiple users on both real and synthetic data sets.

1 Introduction

The eXtensible Markup Language (XML) is widely
regarded as a promising means for data representa-
tion, integration, and exchange, due in large part to
its simplicity and capability of representing rich data
structures. As companies transact business over the
Internet, letting authorized customers directly access,
and even modify, operational data items in XML docu-
ments over the Web offers many advantages in terms of
cost, accuracy, and timeliness. However, it raises the
question of security. Given the sensitive nature of busi-
ness information, access must be provided selectively.
Furthermore, the nature of this selective access has
more and more sophisticated requirements imposed on
it, as we move from B2C (business-to-consumer) e-
commerce to B2B (business-to-business) e-commerce.
For instance, a large corporation may be willing to let
a supplier view (i) inventories for parts that it supplies
(but not for other parts), and (ii) production schedules
for items manufactured using this supplier’s parts, but
only up to the next two weeks, etc. Where suppliers
participate in the design process, as many suppliers
to the big automobile companies do today, a complex
collection of design data must be shared with appro-
priate caution. The sophistication of the associated
access control policy required is appreciable.

While there are certainly security issues with re-
gard to obtaining protection against various forms of
attack on the Internet, our interest in this paper is in
efficiently evaluating a stated access control policy over
XML documents.

We expect that the policy will be specified in terms



of a (potentially large) set of access control rules, which
specify user access to data items on the basis of user
properties and categories, and on the basis of the prop-
erties of the data items in question. These rules fre-
quently interact with one another in complex ways,
with some priority mechanism or conflict resolution
mechanism used for unambiguously deciding for a user,
an item, and an access type whether the user has ac-
cess to it or not. As a consequence, using the access
control specification directly to determine whether or
not a user has access to a particular data item can be
extremely inefficient.

One possible approach for efficiently determining
whether or not a user has access to a particular data
item is to build a fully materialized accessibility map,
which maintains, for each data item, the set of users
authorized to access 1t; this can, however, require a
large amount of space. For instance, consider a sys-
tem with one million users, each of whom can access
(on average) about 10% of the data. Each object, on
average, would have an access list with 100,000 users,
represented as 400KB per object if each user id is 4
bytes. Alternatively a single bit per user can be used
to maintain an access map in one million bits, or 125
KB per object.

In this paper, we propose the compressed accessibil-
ity map (CAM) as a means of recording exactly this
information, but in a much smaller space, for XML
documents. Given a user and a data item, the CAM
can be used to determine efficiently if a user has access
to the data item. Our key contributions are as follows:

e We propose the novel notion of a compressed
accessibility map (CAM) as a space- and time-
efficient solution to the access control enforcement
problem for XML data. This compression is ob-
tained by exploiting structural locality of accessi-
bility, i.e., data items grouped together have sim-
ilar accessibility properties, on a per-user basis.
The total size of the CAM is typically a small frac-
tion of the fully materialized accessibility map.

e We develop algorithms to construct an optimal
(minimum size) per-user CAM for a given accessi-
bility map, which take time linear in the database
size (number of items in the database for which
accessibility is individually identified).

e Using an optimal CAM, we present algorithms for
efficiently determining if a user has access to a
data item. This lookup takes time proportional to
the product of the depth of the item in the XML
data and a logarithm of the size of the CAM.

e Finally, we experimentally demonstrate the effec-
tiveness of the CAM for hundreds of users on both
real and synthetic data sets, validating our ap-
proach to the access control enforcement problem.

The problem setting and the basic idea of the CAM
are described in Section 2. Optimal CAM construction
is addressed in Sections 3, 4, and 6. CAM lookup is
developed in Sections 5 and 6. Experimental results
are reported in Section 7. Related work is discussed in
Section 8, just before summarizing our conclusions in
Section 9. All proofs are omitted for reasons of space.

2 The Problem Setting

2.1 Hierarchically Structured Data and Struc-
tural Locality

A key foundation of our work is structural local-
ity of accessibility, i.e., data items grouped together
have similar (but not necessarily identical) accessibil-
ity properties, on a per-user basis. This is commonly
observed in hierarchically-structured data used in sup-
porting e-commerce applications, such as XML docu-
ments and file systems, where the structural organi-
zation typically results in a hierarchical grouping of
closely related data items. Locality of accessibility
exists not only horizontally, 1.e., between entities that
share the same parent, but also vertically, 1.e., between
parents and children. As a consequence, if an entity 1s
accessible, then very likely (but not always) so are its
ancestors.

XML has a hierarchical Document Object Model
within a document. Access control is often desired at a
granularity much finer than an entire XML document,
perhaps even down to the level of individual elements
in some cases [2, 5]. The access control policy is typi-
cally specified declaratively, using access control rules
and conflict resolution mechanisms. Many proposed
access control models for XML documents allow users
to propagate an access control policy in a data item to
its descendents unless it is overridden by more specific
access control policies. Therefore, structural locality
of accessibility 1s quite natural in XML documents.

A direct enforcement of the policy may be too in-
efficient, but materializing the entire policy may not
be feasible, since the smaller the unit of access con-
trol, the more serious is the overhead involved in full
materialization.

The approach of this paper offers an efficient and
elegant solution to the problem of access control en-
forcement in the case of XML databases. We assume
that we are given an XML database tree H, each of
whose nodes 1s uniquely identified by a hierarchically
structured identifier that allows direct determination
of parent-child and ancestor-descendant relationships
between tree nodes. In this paper, we use the identi-
fier that is the concatenation, in root to leaf order, of
node positions (in the prefix traversal of the tree) in
the path to it from the root of the tree.! The nodes of

LIf the database is a forest, our techniques can easily be ap-
plied by introducing a dummy root node and considering the
forest to be a single tree.



this tree reflect the finest granularity of accessibility.

2.2 Accessibility Map

Conceptually, an access control policy induces a pro-
jection of the XML database tree for each user, consist-
ing of the nodes the user is allowed to access according
to the policy. The policy itself may be specified in
terms of access control rules with conflict resolution
mechanisms, explicit access control lists, or any other
means appropriate. The specification mechanism 1s
orthogonal to the efficient enforcement techniques of
this paper.

Moreover, there could be many different types of ac-
cess allowed, e.g., read, modify, append, etc, and poli-
cies may also specify some relationships between these
access types. For instance, a user given modify access
to a node may automatically also be granted read ac-
cess. As far as we are concerned, all such policies are
also folded in to create a final decision (of “accessible”
or “inaccessible”) for each node, for each user, and for
each access type. We refer to this as the accessibility
map of the database tree, formalized below.

Definition 2.1 [Accessibility Map] Let H be a
database tree, U be a set of users, and A be a set

of access types. The accessibility map is a function
M : H x U x A — {accessible, inaccessible}. [

While the fully materialized accessibility map (suit-
ably indexed) supports rapid determination of acces-
sibility, it can be very space-inefficient. Our goal is to
identify a compact means for recording this marking,
which yet affords quick lookup.

2.3 Compressed Accessibility Map

The key to obtaining a space-efficient representation
for the accessibility map is to exploit the structural
locality of accessibility in the XML database tree,
and maintain a separate compressed accessibility map
(CAM), for each user and access type.

Restricted to a single user and access type, the ac-
cessibility map is simply a marking that maps the
nodes of the XML database tree to the set {accessible,
inaccessible}. We call a database tree H together with
a marking M as a marked tree. The basic idea of
the CAM is that, instead of explicitly keeping a list
of all the accessible (or inaccessible) nodes, we keep
only some “crucial” nodes and place some additional
information on them so that we can efficiently check
whether an arbitrary node can be accessed or not by
simply looking at relevant “crucial” nodes. The com-
pression achieved by CAM relies on two observations.

First, in a “region” of the XML database tree, uni-
form accessibility of descendants of a node can be rep-
resented at the node itself. For instance, if each node
in a subtree of the marked tree is accessible, substan-
tial compression can be achieved if the CAM maintains

the root node of the subtree with a (d+, s+) label, in-
dicating that the node is accessible (s+), and so are
its descendants (d+).? This observation can be gen-
eralized to employ a simple node labeling mechanism,
involving d+,d—, s+ and s—. The semantics of the
labels is as follows. If node z carries an s+ (resp.,
s—), then z is accessible (resp., inaccessible). If node
z carries a d+ (resp., d—) and y is a descendant of z,
then y is accessible (resp., inaccessible), unless this is
overridden by the label of a closer ancestor of y.

Second, it 1s frequently the case that, at least within
a “local region” of the XML database tree, there is a
hierarchical aspect to accessibility: if a node is accessi-
ble, then so are its ancestors. We call this the ancestor
accessibility property. This observation can be utilized
in the CAM as follows: if a node x carries an s+, then
so must all its ancestors, within the local “region”.

In many access control models for XML documents,
a user is required to have rules that, explicitly or im-
plicitly, propagate an element’s accessibility to its de-
scendents. Therefore, the ancestor accessibility prop-
erty holds across the entire document.

When the ancestor accessibility property does not
hold over the entire marked database tree, it is easy to
partition the tree into regions that satisfy the ancestor
accessibility property. We call each resulting database
subtree a unit region. The algorithm to partition a
given marked database tree into unit regions is very
simple: Perform a traversal of the database tree, and
mark each node u that is accessible but the parent
node of u is inaccessible. Each such node is called a
marker node, since it demarcates the boundary of a
unit region. The subtree rooted at a marker node (or
at the root node of the entire database tree) is a unit
region, excluding any descendant marker nodes and
their associated subtrees. In general, we expect the
number of unit regions in a database tree not to be
too large.

For expositional reasons, we first develop the com-
pressed accessibility map for a single unit region, in
the next several sections, and then, in Section 6, deal
with database trees comprised of multiple unit regions.

3 Unit Region CAM

Not all nodes need be labeled explicitly, since acces-
sibility of many nodes can be determined by the d
label of its closest labeled ancestor. In addition, some
other nodes do not require explicit labels on account
of the ancestor accessibility property, as we shall see
below. Moreover, in view of the semantics of these
labels and the ancestor accessibility property, it will
follow that the label (d+,s—) can always be replaced
by (d—,s—).

2Note that the CAM only serves to indicate whether or not
a named node is accessible, not whether or not a named node
exists in the database tree.



(d+,s+)

(a) A marked database tree; square nodes are accessible, round nodes are not

(b) An optimal CAM

Figure 1: Compressing a Marked Database Tree

Example 3.1 An example marked database tree,
which is an abstract representation of an XML doc-
ument, is shown in Figure 1(a), where square nodes
are accessible and round nodes are not. The CAM of
the tree is shown in Figure 1(b).

Nodes Y, Z, a and all their descendents can be in-
ferred to be inaccessible on account of the d— label at
their nearest labeled ancestor, K. Node K itself can be
inferred to be accessible because of its own s+ label.
Node C would have been considered inaccessible on
account of the d— label at its nearest labeled ancestor,
A. Nonetheless, the s+ label at C’s child, K, causes C
to be inferred to be accessible as well. ||

A labeling K of a database tree H is a partial func-
tion that assigns labels of the form (d+, s+), (d—, s+),
or (d—,s—) to (some) nodes in H. We call the
database tree along with its labeling, a labeled database
tree, and denote it 7. Labeling K is complete when-
ever it is total, that is, each node is labeled. Given
such a labeling, we can determine which nodes are ac-
cessible and which are not, based on the s+ or s— label
at the node, respectively. A (complete) labeling K is
said to respect a marking M of a database tree H, if
for each node in H, it is determined to be accessible by
K exactly when it is accessible according to its mark-
ing in M. In the sequel, by a (complete) labeling for a
marked tree, we mean one that respects the marking.

It is worth noting that there may be multiple com-
plete labelings that respect any given marking of a
database tree. For example, a marked database tree
that has all its nodes accessible is respected both by
the labeling that assigns label (d+, s+) to each node,
as well as by the labeling that assigns label (d—, s+)
to each node. The notion of induced labels, defined
next, plays a role in determining which node labels in
a labeled database tree are redundant.

Definition 3.1 [Induced Label] The induced label
on a node e in a labeled database tree, written L(e),
is its label if one exists. Else, for unlabeled node e,

e If the nearest labeled ancestor of ¢ has a label

(d+, s+), L(e) = (d+, s+).

e If the nearest labeled ancestor of ¢ has a label

(d—,s—), L(e) = (d—, s—).

e If the nearest labeled ancestor of ¢ has a label

(d—, s+),

— If e has a descendant labeled with either
(d—,s+) or (d+,s+), L(e) = (d—, s+)
— Else L(e) = (d—, s—).

e If e has no labeled ancestor, L(e) is undefined. [

Note that in examining the labels of ancestors and
descendants, only original labels should be considered,
not induced labels. It is easy to see that the induced
label on a node is uniquely defined, and does not de-
pend on the order in which nodes are considered.

For example, given the labeling shown in Fig-
ure 1(b), the induced labels at (some of the) nodes in
Figure 1(a) are as follows: B, F and G get (d+, s+),
A, K and C get (d—, s+), and J, D and E get (d—, s—).

Definition 3.2 [Accessible Node] A node e in
a labeled database tree T is accessible if (i) it has
an induced label of (d+,s+) or (d—,s+), or (ii) its
induced label is undefined, and it has an accessible
child node. Node e in 7 is inaccessible otherwise. ||

For example, it is easily verified that, given the la-
beling shown in Figure 1(b), the accessible nodes of
Figure 1(a) are precisely the square nodes.

A Compressed Accessibility Map (CAM) retains se-
lected labels from some complete labeling such that
the accessibility 1s determined correctly for each node.
Note that the induced labels from the CAM may not
recover the original labeling exactly.

Given a CAM (i.e., labeling) K of a marked
database tree H, we can represent the CAM succinctly
as a reduced graph, defined as follows: (i) it contains
only nodes from H that are labeled in K, and (ii) for
two labeled nodes z,y from H, there is an edge from
z to y in the reduced graph iff z is the closest labeled
ancestor of y in H, i.e., x is an ancestor of y that is
labeled in K, and there is no labeled node z such that



z is a (proper) ancestor of y but a (proper) descendant
of z in H. In general, the reduced graph of H is a for-
est instead of a tree. In that case, we add a dummy
root to render it a tree. In the sequel, we identify the
CAM with its reduced tree representation.

For example, consider the marked database H
shown in Figure 1(a). Then the reduced tree of the
labeling (CAM) K shown on the nodes of Figure 1(a)
is as shown in Figure 1(b).

The next question is which labels can we leave out,
while still determining unambiguously the accessibility
of each node. We do this characterization using the
notion of redundant labels below.

Definition 3.3 [Subsumed Label] A label at node
e in a CAM 7 is said to be subsumed if it 1s 1dentical
to the induced label at e in a CAM Z’ obtained from
T by rendering e unlabeled. [

Definition 3.4 [Upward Redundant Label] A
label at node e in a CAM Z is said to be upward re-
dundant if

e ¢ has an accessible (proper) descendant, and

e for every child ¢ of e, either ¢ is labeled in Z or ¢
is upward redundant. |

The intuition here is that the accessible descendant
induces an s+ at e, and since all children are either
labeled or upward redundant, the d-label at e is im-
material. So we do not need to record a label at e.
Note that the d-label that e has, and the exact labels
its children have (if at all), are immaterial as far as
upward redundancy 1s concerned.

Definition 3.5 [Redundant Label] A label at
node e in a CAM 7 is said to be redundant if it is
cither subsumed or upward redundant. [

Obviously, in any optimal CAM, no redundant la-
bels are retained. How to construct one efficiently 1s
the subject of the next section.

4 Optimal Unit Region CAM

The reduced tree representation of the CAM leads to
the following natural definition:

Definition 4.1 [CAM Size] The size of a CAM is
the number of labeled nodes in the CAM. ||

Since the number of users with differing accessibility
to the XML data can be large, it is important to min-
imize carefully the amount of storage required for the
CAM of each user. Storage is determined by the num-
ber of labeled nodes. A given accessible projection of
a database H can be represented by several equivalent
labelings (CAMs). Our task is to determine a CAM
of the smallest size. Conceptually, we can start with

any complete labeling and delete all redundant labels.
However, this naive strategy is not guaranteed to pro-
duce an optimal size CAM, owing to the following two
complications.

First, given any complete labeling (that respects the
database marking), it is not clear what is the order in
which we should delete redundant labels: deleting one
could render another no longer redundant. Consider,
for example, a marked database tree that is a chain of
two accessible nodes, and the labeling that labels each
node (d+, s+). The root’s label is upward redundant,
while the child’s label is subsumed. Deleting either
of these labels renders the other non-redundant. In-
deed, in general, there are exponentially many orders
in which to delete redundant labels.

Second, there are equivalent complete labelings,
such that the minimal CAM afforded by one need not
be the same size as the minimal CAM afforded by an-
other. Consider, for example, the marked database
tree with every node accessible, and the two complete
labelings: Z;, which labels each node by (d+, s+), and
T4, which labels each node by (d—, s+). Tt is easy to
see that these labelings are equivalent. The minimal
CAM for Z; only labels the root node of the database
tree with (d+, s+). The minimal CAM for Z5 needs to
label the root and each leaf node of the database tree
with (d—, s+). Clearly, these (minimal CAMs) are not
of the same size.

Thus, finding an optimal CAM for a given database
tree is a non-trivial problem. We solve it by establish-
ing some key properties of label redundancy, and use
them to devise an efficient algorithm for constructing
an optimal CAM.

4.1 Order of Redundancy Removal

Lemma 4.1 (Subsumption Order Invariance) :
Given a CAM Z in which the labels at nodes e and
f are subsumed, it must be the case that the label
at f is subsumed in the CAM Z’ obtained from Z by

making e unlabeled. |[I

It is also easy to see that the order in which differ-
ent upward redundant labels are removed is immate-
rial, since the definition of upward redundancy simply
speaks of nodes with upward redundant labels, with-
out consideration to whether these labels are present
or have been removed. With a few additional observa-
tions, see [13], we can establish:

Theorem 4.1 (Subsumption First) : Given a
CAM T, let 7' be a restriction to Z, obtained by delet-
ing subsumed labels and upward redundant labels in
a specified order. The smallest size Z is obtained by
deleting all subsumed labels first, and then deleting
ancestor-free upward redundant labels depth-first from
the root in a pre-order tree traversal. |



4.2 Optimal CAM Construction

Definition 4.2 [Terminal Node] A node ¢ in a
CAM 1s called a terminal node if e 1s accessible but
none of 1ts descendants is. When a terminal node 1is
not a leaf, we call it an internal terminal node. ||

The following lemma shows that we can safely label
all internal terminal nodes (d—, s+), without compro-
mising optimality.

Lemma 4.2 (Terminal Label): There exists an
optimal labeling with every internal terminal node la-

beled (d—,s+). 1

Definition 4.3 [Positive and Negative Nodes]
A node e is positive (resp., negative) provided

e ¢ is an accessible (resp., inaccessible) leaf, or

e ¢ is an internal non-terminal node with more pos-
itive (resp., negative) than negative (resp., posi-

tive) children. |

A declarative description of the optimal CAM con-
struction algorithm is in Figure 2. It follows that a
node’s labeling will be deferred iff it is an internal non-
terminal node which is neither positive nor negative.

Since counts of positive and negative children are
required to label a node in Stage 1, a bottom-up (or
a post-order tree traversal) procedure is suggested. A
single traversal suffices for Stage 1, except possibly for
the deferred labels. But each deferred label node is vis-
ited exactly one additional time. The rules in Stage 2
are procedurally best applied top-down. Once again,
saturation with each rule requires consideration of each
node in the database tree at most once. Adding this
up, the total time required by the above optimal CAM
construction algorithm is proportional to the number
of nodes in the database tree. We illustrate the algo-
rithm in the next section.

Example 4.1 Consider the database tree in Fig-
ure 1(a), which shows a marking in the form of
square (for accessible) nodes and circle (for inacces-
sible) nodes, for a given user and access type.

Stage 1 of the algorithm produces the following la-
beling: (i) all the nodes in the subtree rooted at B are
with label (d+, s+); (i) J(d—, s—); (iii) all the descen-
dents of K are with label (d—,s—); (iv) K(d—,s+)
(terminal internal); (v) all the nodes in the subtree
rooted at L are with label (d+, s+); (vi) C(deferred);
(vii) all the nodes in the subtree rooted at D are with
label (d—, s—); (viii) all the nodes in the subtree rooted
at E are with label (d—,s—); (ix) A(d—,s+). This
leads to the deferred label at C being eventually set to
(d—, s+), once the label of the root A is decided. In
Stage 2, all labels are found redundant, and removed,
except those at A BK,L. 1

4.3 Optimality

We have the following observations.

1. For each internal node e, the label assigned by
Stage 1 of our algorithm maximizes the number
of subsumed children. More precisely, the num-
ber of subsumed children is no fewer than in any
equivalent labeling.

2. When a node has an equal number of positive and
negative children, Stage 1 gives it a label which
makes 1t subsumed, unless the node is the root.

The couple of observations above are easily proved,
and can be used to establish the following optimality
results.

Lemma 4.3 (Good Labelings): Let K be any
complete labeling of a unit region database tree T'.
Let Z be any CAM associated with K. Then there is
an equivalent labeling K’ produced by Stage 1 of our
algorithm such that there is a CAM Z’ associated with
K’ which is no larger. 1

Theorem 4.2 (Optimality) : Let H be any
marked unit region database tree. Then the CAM
obtained using our algorithm is of the smallest size
among all CAMs associated with any complete label-
ing of T that respects its marking. [

5 Unit Region CAM Lookup

Recall that the identifier for any node in the CAM,
just as for the database tree, 1s a prefix of the identi-
fiers for each of its descendants. As such, we can store
the CAM as a trie, keeping for each node its string
extension relative to its parent along with its label,
and introducing additional nodes to “factor out” any
parent-relative string extensions common between sib-
lings. Where the relative string extensions are long,
string B-tree techniques [9] can be used to condense
these. Using these well-known data representations,
it is possible to store a CAM in space that is propor-
tional to the number of labeled nodes, independent of
the database size.

Having the (trie representation of the) optimal
CAM for a complete labeling K and given a node e in
the database tree H, checking whether e is accessible
can be done quite efficiently, using Algorithm LookUp-
UnitRegion-CAM in Figure 3. Intuitively, if node e is
labeled in the CAM, we look up its label, and we are
done. If node e is not labeled in the CAM, we locate
the nearest labeled ancestor of e in the CAM, as well
as a nearest labeled descendant (if any). Finding such
“relatives” is particularly easy using the trie represen-
tation of the CAM. Given the (query) identifier string
for the data item in question, traverse the trie begin-
ning from the root. Once we get to a labeled node that
has no labeled child that is a prefix of the query string,



// Stage 1:

label each accessible leaf (d+, s+);

label each inaccessible node (d—, s—);
label each terminal internal node (d—, s+);

// Stage 2:

Algorithm Opt-UnitRegion-CAM //given a marked database tree

for each non-terminal internal node, label it (d+, s+) if it has more positive than negative children,
or (d—, s+) if it has more negative than positive children, and defer labeling otherwise;
whenever a node gets a definite label, propagate it to any deferred descendants;
when the root has an equal number of positive and negative children,
give it an arbitrary label: (d+, s+) or (d—, s+);

apply rule 2 (delete subsumed labels) to saturation;
apply rule 1’ (delete ancestor-free upward redundant labels) to saturation;

Figure 2: Constructing an Optimal CAM

Algorithm LookUp-UnitRegion-CAM
// given a CAM trie C, and a query node e in database H
let f1 in C denote the nearest labeled ancestor-or-self of e (in H);
let f> in C denote the nearest labeled descendant (if any) of e (in H);
if (f1 =€) return (e’s accessibility as determined by the sx label of f1);
else if (label of fi is (d—,s—)) return (e is inaccessible);
else if (label of fi is (d+,s+)) return (e is accessible);
else // either fi does not exist or label of f; is (d—, s+)
if (there is no f2) return (e is inaccessible);
else return (e is accessible); // by ancestor accessibility

Figure 3: Looking Up Accessibility of Node e Using a Unit Region CAM Trie

we have found the desired nearest labeled ancestor of
the query node. (When we say “labeled child” of node
u in the trie, we mean the nearest labeled descendant
of u in the trie, ignoring any unlabeled nodes intro-
duced on account of shared prefixes.) We simply read
off the label. This node has a child corresponding to a
suffix extension of the query string iff the query node
has a labeled descendant. Thus, a simple trie lookup of
the query node identifier is all 1t takes. This strategy
takes time proportional to the product of the length
of the query string and the logarithm of the size of the
CAM. The correctness and efficiency of this algorithm
are established by the following theorem.

Theorem 5.1 (CAM Lookup):  Given a CAM
corresponding to a unit region database tree, Algo-
rithm LookUp-UnitRegion-CAM correctly determines
whether a specified node is accessible. Further, it does
so in time proportional to the product of the depth of
the node in the XML tree and log of the CAM size. |

By linking the nodes in the trie representation of the
CAM back to the corresponding nodes in the database
tree, the CAM can also be used to enumerate, for a
given user and access type, the list of all data nodes
accessible by the user. This can be achieved in time
proportional to the size of the output plus the size of
the CAM, but independent of the size of the original
database tree.

6 Multiple Unit Regions

Recall, from Section 2.3, the notion of marker nodes,
introduced to mark off regions of a database tree where
the ancestor accessibility property holds locally: a
marker node is an accessible child of an inaccessible
node. Also recall that the unit region is a maximal
subtree of the database tree that is rooted at either
the tree root or at any marker node and excludes any
marker descendants of the root of the unit region, as
well as their descendants. We are interested in label-
ings that respect certain constraints.

1. (d+, s+), (d—, s+), (d—, s—) are the only labels al-

lowed, and

2. Every marker node has to be identified.

We call any labeling that respects these constraints
a constrained labeling. The size of a constrained label-
ing is the number of nodes that are either labeled or
marked by it. We seek optimal constrained labelings
for database trees with multiple unit regions. We have
the following proposition.

Proposition 6.1 (Marker Parent Label): The
parent of a marker node is never labeled in an optimal
constrained labeling. ||

We have the following straightforward algorithm for
constructing constrained labelings for database trees



else if (label of fi is (d+,s+))

return (e is inaccessible)
else return (e is accessible)

return (e is inaccessible);

Algorithm LookUp-MultiRegion-CAM
// given a CAM trie C, and a query node e in database H
let f1 in C denote the nearest labeled ancestor-or-self of e (in H);
let f2 in C denote the nearest labeled descendant (if any) of e (in H);
let f5 in C denote the labeled node that shares the longest common prefix with e;
if (f1 =€) return (e’s accessibility as determined by the sx label of f1);
else if (label of fi is (d—,s—)) return (e is inaccessible);

if ((fs is a marker node) and (e is a descendant-or-self of the parent of f3))
// e is a descendant of an IRT node
else // either fi does not exist or label of f; is (d—, s+)

if ((there is no f2) or (f2 is a marker node))

else return (e is accessible); // by ancestor accessibility

Figure 4: Looking Up Accessibility of Node e Using a Multi-Region CAM Trie

with multiple unit regions. First, perform a decompo-
sition of the database tree H into unit region com-
ponents. Reduce each unit region by deleting the
subtree rooted at the parent of each marker node.
Second, using Algorithm Opt-UnitRegion-CAM label
each reduced unit region individually. Finally, take
the union of these reduced unit region labelings, and
mark each marker node. Call this modified algorithm
Algorithm Opt-MultiRegion-CAM.

We can show that this algorithm always yields an
optimal constrained labeling. A key lemma that needs
to be established first is that if there is an opti-
mal labeling of a unit region that assigns a label to
its root, then Algorithm Opt-UnitRegion-CAM will
produce such a labeling. The motivation is the fol-
lowing. We require marker nodes to be marked by
all constrained labelings of the database tree. Sup-
pose there is an optimal labeling that labels some
(reduced) unit region root but the one produced by
Algorithm Opt-UnitRegion-CAM does not label that
root. Then the overall labeling obtained from Algo-
rithm Opt-MultiRegion-CAM would mark an addi-
tional unlabeled node whereas in the supposed opti-
mal labeling, we mark a labeled node. Marking a la-
beled node can be accomplished with one bit whereas
marking a new (unlabeled) node costs additional space
needed to identify the node. Thus, the overall label-
ing obtained from Algorithm Opt-MultiRegion-CAM
would be suboptimal.

In comparing the sizes of constrained labelings, we
charge for the number of nodes that are either labeled
or marked. In particular, if a node is both marked
and labeled, it is counted only once.? We now have
the following theorem.

Theorem 6.1 (Optimality) : Let H be any
marked database tree, possibly with multiple unit re-

31t costs one extra bit to mark a labeled node, but this can
safely be neglected. What is important is that it costs more to
mark an unlabeled node.

gions. Then the CAM obtained by applying Algo-
rithm Opt-MultiRegion-CAM is of the smallest size
among all constrained labelings of H. |

CAM lookup for a database tree with multiple
unit regions is quite similar to the case for a single
unit region, and is presented in Algorithm LookUp-
MultiRegion-CAM, in Figure 4. The key difference
with Algorithm LookUp-UnitRegion-CAM is that the
lookup algorithm for multiple regions needs to ac-
count for marker nodes defining unit region bound-
aries. Specifically, our main lookup theorem is now
restated as:

Theorem 6.2 (Multi-Region CAM Lookup) :
Given a CAM corresponding to a multi-region
database tree, Algorithm LookUp-MultiRegion-CAM
correctly determines whether a specified node is acces-
sible. Further, it does so in time proportional to the
product of the depth of the node in the XML tree and
logarithm of the CAM size. |

7 Experimental Verification

To validate the utility of a compressed accessibility
map, we ran a variety of experiments that are intended
to be indicative of how our techniques would perform
for complex XML data that specifies access control
information. We could not find a large production
XML system with well-defined access control infor-
mation; hence, we used synthetic XML data. How-
ever, hierarchical file systems (with real access control
data) were readily available. Although our techniques
are designed for supporting efficient access control for
XML data, we made the (reasonable) assumption that
the nature of access locality in XML data would be
similar to that in hierarchical file systems.

7.1 Experiments with Synthetic XML Data

To show how access locality affects the compression
ratio, we experimented with synthetic XML data.
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Figure 5: Accessible Nodes are Uniformly Distributed

The Data:

We used XML documents generated using IBM Al-
phaWorks’ XML generator [7]. Several parameters are
provided by the XML generator that can be used to
control the structure of the generated XML documents
(e.g., fanout and depth). We ran our experiments for
a variety of XML documents and obtained essentially
similar results. We report here results for a large rep-
resentative XML tree, with 16811 nodes, with variable
fanout (maximum = 60, minimum = 1, average = 2,
not including the leaf nodes), and variable distances
between leaves and root (average depth of 8), for dif-
ferent types of access locality.

No Access Locality:

We first dealt with the case where accessible nodes
are uniformly randomly distributed in the XML data.
Note that access locality is the worst in this case. Fig-
ures 5(a) and 5(b) show the compression ratio and
number of labeled nodes of the CAM, respectively,
when the accessibility ratio is varied from 0.05 to 1.
(The accessibility ratio is the fraction of nodes in the
database that are accessible.)

From Figure 5(a), we can see that the larger is the
accessibility ratio, the better is the compression ra-
tio achieved by the CAM. The reason is that, while
the space requirement of the fully materialized acces-
sibility map grows linearly with the accessibility ra-
tio, the space requirement of the CAM grows much
more slowly. When the accessibility ratio is small,
the fully materialized accessibility map requires less
space. Therefore, even though the CAM does not re-
quire much space, the compression ratio is quite high.
On the other hand, when the accessibility ratio is large,
the fully materialized accessibility map requires far
more space than the CAM, which makes the compres-
sion ratio much better. In particular, when the acces-
sibility ratio is close to 1, accessible nodes tend to be

close to each other, which results in better locality. In
this situation, because of the way CAM takes advan-
tage of access locality, it labels only a few nodes, thus
takes little space cost.

Varying Access Locality:

Here, we present experimental results for the case
when the database has better access locality. In our
synthetic XML data, a node is called friendly (resp.,
non-friendly) if the objects in the subtree rooted at
that node have a high (resp., low) probability of being
accessible. We call the subtree rooted at a friendly
node (resp., non-friendly node) a friendly area (resp.,
non-friendly area). Two parameters of interest are af
and anf, which define the access probability of a node
in a friendly area and in a non-friendly area, respec-
tively. Initially, we set the root to be a friendly node.
To allow for multiple unit regions, we use two addi-
tional parameters. The friend ratio, or fr, is the prob-
ability that a node is a friendly node given that its par-
ent is a non-friendly node. Similarly, the reverse ratio,
or rr, is the probability that a node i1s a non-friendly
node given that its parent is a friendly node.

To have better locality, fr should be small which
will result in few unit regions in the whole database.
In our experiment, we set fr to be 0.05. To get various
accessibility ratios, we vary rr from 0 to 1. af and anf
are set to be 0.98 and 0.02 respectively. Figure 7 shows
the compression ratio when accessibility ratio changes
from 0.07 to 0.98. It is quite clear that when accessi-
bility ratio is very small (around 0.1), the compression
ratio achieved by the CAM is not good. However, as
the accessibility ratio increases, the compression ratio
improves dramatically. Even for a relatively low ac-
cessibility ratio like 0.25, the compression ratio is still
very impressive. Compared with Figure 5(a), we see
clearly how access locality greatly affects the compres-
sion ratio that the CAM can achieve.
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Figure 6: Compression Ratio versus File System Size

7.2 Experiments with Real File System Data
The Data:

We obtained access control information on 433 UNIX
file systems at a large university. Our sample included
a variety of file systems, ranging from file systems on
“old” servers, with faculty users who had been with
the University a long time, to new file systems on ma-
chines purchased recently. The file systems included
the personal systems of a variety of users, students,
visitors, and faculty, as well as data associated with
several large data intensive projects and much system
software.

The Metrics:

To demonstrate the space-efficiency of our CAM ap-
proach, for each file system, we compare the storage
cost of the CAM with that of the fully materialized
accessibility map, for multiple users. In the CAM ap-
proach, three CAMs (for read, write and execution
permissions respectively) are maintained for each user.
Thus, the total space cost of the CAM approach is the
sum of the sizes of the CAMs of each user. In the
fully materialized accessibility map, each object in the
database maintains an access control list for each per-
mission, which lists user IDs of the users who have
read/write/execution access to that object, based on
the standard UNIX semantics. Therefore, the space
cost is the sum of the sizes of these lists over all the
objects. Given a user set U, the compression ratio is
calculated as the total space cost of the CAM approach
for U over that of the fully materialized accessibility
map.

Compression Ratio Results:

First, we examined the compression ratio for a sin-
gle user.  Figure 6(a) shows the compression ratio
versus file system size for the worst of twenty users

Compression ratio when accessibility ratio varies from 0.07
to 0.98 with high access locality
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that we tested. We can see that when a file system is
reasonably large (over 25,000 files), in most cases the
compression ratio is quite good (around 0.2). Also,
it 1s fairly clear that most cases of poor compression
were for small file systems. Thus, one observes a trend
towards better compression ratios as file system size
increases.

Figure 6(b) presents compression ratio versus file
system size when U 1s set to be all the users of a file
system. It is quite heartening that the chart of com-
pression ratio for the multi-user case is very similar to
that of the single user case in both shape and trend.
The reason is that most users have access to only a
small portion of the file system. Therefore they tend
to have similar compression ratios which makes the
overall compression ratio for multiple users similar to
that of a single user.

To illustrate this point more clearly, we ran another
experiment on one file system which is of size 78501
and with 294 users. Figure 8 shows how the com-
pression ratio varies as the size of U increases. In the
beginning, most users in U are superusers. Therefore,
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the compression ratio is very good. As more and more
ordinary users are added to U, the compression ra-
tio goes up to around 0.12 and remains constant even
when U’s size increases.

Another interesting observation is that the worst
case behavior for a single user (shown in Figure 6) is
for the user login “guest”. This is because the access
locality for a guest user (files with read permission for
“other”) is poorer than that of an ordinary user. By
locality, we mean that the accessible objects tend to
be located in one or more subtrees instead of being
randomly scattered throughout the whole file system.

7.3 The Effect of Multiple Unit Regions

We also ran experiments over synthetic data to study
how the number of unit regions in an XML database
will affect the compression ratio that CAM can
achieve. Our previous experiment results (figure 5(a)
and 7) show that CAM’s compression ratio partially
depends on the accessibility ratio of the database. In
order to demonstrate clearly the effect of multiple unit
regions, it is desirable to only vary the number of unit
regions while keeping the accessibility ratio relatively
constant. To achieve this end, we introduce a parame-
ter propagation ratio (pr for short) in the experiments,
which controls the probability that a node is acces-

sible when its parents is accessible. Given an XML
database and the desired number of unit regions k, we
first randomly select k& nodes as marker nodes. Then
in each unit region, we assign each node’s accessibil-
ity according to pr. By this method, two databases
with different number of unit regions will have rela-
tively the same accessibility ratio as long as the same
pr is used. Note that if the number of unit regions are
comparable to the size of the XML database, the ac-
cessibility ratio will inevitably increase when number
of unit regions increases. Therefore, we ran the exper-
iments over a database with size 20000 and vary the
number of unit regions from 1 to 2000. Figure 9 shows
the compression ratio under different accessibility ra-
tios. We can see that with the same accessibility ratio,
the more unit regions a database has, the bigger the
compression ratio CAM achieves. This agrees with our
intuition that better locality (i.e., fewer unit regions)
yields better compression ratio. Notice that because
of the high locality of accessibility in the dataset, even
when the accessibility ratios are pretty low, the corre-
sponding compressing ratios are still very satisfactory.
It 1s also interesting to observe that the compression
ratio for each accessibility ratio increases linearly al-
most at the same rate along with the number of unit
regions, which suggests that the impact of multiple
unit regions is orthogonal to that of accessibility ratio.

8 Related Work

Bertino et al. [2] and Damiani et al. [5] deal with ac-
cess control for XML documents. In particular, Dami-
ani et al. develop an approach for expressing access
control policies using XML syntax. The semantics of
access control to a user is a particular view of the doc-
ument(s) as determined by the relevant access control
rules. They provide an elegant algorithm for comput-
ing this view using tree labeling. Our work is comple-
mentary to theirs in that we focus on efficient material-
ized policy evaluation rather than policy specification.

Commercial relational DBMSs support access con-
trol (e.g., see [12, 17]), and there is considerable litera-
ture on database security (e.g., see [6]). Access control
techniques can broadly be divided into mandatory con-
trol techniques and discretionary control techniques.
Important representative work in the former includes
[16, 14, 19, 3]. Most of the work here uses some kind of
belief logic-based semantics, where a secure database
corresponds to a set of databases: subject s’s database
has precisely those tuples that s believes hold w.r.t. its
clearance level. A CAM can be used to capture this
view efficiently, if tuples had a suitable hierarchical or-
ganization imposed on them. However, most manda-
tory techniques tend to be relatively simple.

The idea behind discretionary control is that con-
trol is effected via views that are defined in the na-
tive query language of the data source. The view
definitions may be used to explicitly define permis-



sions or denials, depending on the type of “meta-
policy” (such as “denials-take-precedence”) one wants
to adopt. Database systems have tended to lean more
towards discretionary access control. The view defini-
tions here can often be quite complex, and expensive
to compute, so materialization as in a CAM can be
quite valuable.

The history of work on discretionary access control
begins as early as System R [11, 8]. Notable extensions
and improvements include the ORION model [18], a
model due to Gal-Oz et al. [10], and the model of
Bertino et al. [1].

More recently, there has been interest in manag-
ing access control across multiple stores. For instance,
Jajodia et al. [15] propose a datalog-like specification
language, and show that many of the known meta-
policies can be easily encoded in their language, with
the intention that different meta-policies can be en-
forced for different data stores. Once more, materi-
alization of the result of executing their specifications
can be of value.

9 Conclusion

Transacting business over the Internet using XML is
becoming more and more of a reality as we move to-
wards a world of inter-networked data, with applica-
tions requiring access to data on the net. In this set-
ting, there is a need for much more sophisticated types
of access control than is permitted by simple firewalls.
We envision that the policies (rules) that define ac-
cess control to such networked data will interact in
complex ways warranting mechanisms for efficient de-
termination of whether or not a user has access to a
given data item, given an access type. The compressed
accessibility map 1s an important step towards realiz-
ing this vision.

The technical contributions of this paper include
the design of a linear-time algorithm for finding an op-
timal CAM (for a given user and access type) for XML
databases. With the aid of real-life and synthetic data
for multiple users, we demonstrated the substantial
savings a CAM can effect on the storage requirements
for efficient access control policy enforcement.

In the full version of the paper [13], we also
show that simple updates (additions/deletions) to a
database can dramatically change the composition of
an optimal CAM. However, with a small price (of a
CAM 1 worse than the optimal), we can maintain near-
optimality, very efficiently.

An interesting open problem is to take advantage of
the commonalities between the access rights of users
with respect to parts of the data to optimize the overall
space consumed by the CAMs, while still guaranteeing
fast lookup time.
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