Temporal Integrity Constraints with Indeterminacy

Wes Cowley

Department of Computer Science and Engineering

University of South Florida
wcowley@acm.org

Abstract

Temporal integrity constraints specify the way
in which a temporal database may be updated
in order to maintain semantic integrity with
respect to temporal and non-temporal data
elements as these change over time. Tempo-
ral indeterminacy evolves from uncertainty in
the measurement of time and from changes
to or differences in the granularity of tempo-
ral elements under consideration. We intro-
duce an algebra for indeterminate time inter-
vals and define the semantics of potential sat-
isfaction of temporal integrity constraints. We
propose a temporal integrity constraint frame-
work which supports temporal indeterminacy
by employing a novel representation for inde-
terminate time intervals and discuss the opti-
mization of integrity maintenance by the com-
pilation and simplification of constraints.

1 Introduction

Database integrity constraints provide a mechanism
for specifying rules in regards to which facts may
legally be stored in the database [10]. They specify the
legal database states as well as the allowable database
state transitions. Although database management sys-
tems have traditionally provided support for a small
class of mainly structural integrity constraints, there
are great benefits stemming from the support of se-
mantic constraints: in its absence, constraints must
be implemented at the application level. This re-
sults in the integrity constraints being implemented in
several application programs with the expected code

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

441

Dimitris Plexousakis
Department of Computer Science
University of Crete
dp@csd.uch.gr

consistency and maintenance issues. Centralizing in-
tegrity constraints at the database level ensures that
all programs accessing the database will respect the
same constraints. Furthermore, there are potential ef-
ficiency gains available when constraints reference data
that would not otherwise be retrieved by a given pro-
gram. Integrity constraints have been an ongoing area
of research in the database community for many years.

Another long standing area of database research is
temporal support. Typically databases maintain only
the current state of the facts stored therein and provide
little support for temporal data. The aim of tempo-
ral database research is to equip DBMSs with a higher
level of support for temporal data, specifically the abil-
ity to maintain the history of updates to the database
as well as to maintain the history of values which an
attribute has had in the modeled domain [26, 17].

With temporal databases comes the need to main-
tain the integrity of the temporal data through tem-
poral integrity constraints. This is a relatively recent
area of research [24, 16, 21, 5, 22, 13]. Temporal in-
tegrity constraints must take into account not only the
valid values of the temporal attribute themselves, but
also the allowable ways in which all attributes, includ-
ing non-temporal ones, may change over time. There-
fore, temporal integrity constraints must potentially
take into account the entire history of the database’s
evolution over time. The problem of constraint ex-
pressibility also becomes more complicated because of
the need to involve temporal information in the con-
straint specification language.

Temporal indeterminacy is an inherent problem
which arises in maintaining attribute values at differ-
ent time periods in the modeled domain [11, 18, 14,
9, 4]. It may not always be clear at exactly which
point in time an attribute’s value changes. This inde-
terminacy may stem from inherent uncertainty in the
modeled reality or from granularity changes. Hence, a
recent area of research has focused on how to handle
temporal indeterminacy in databases.

Given that there is a need to support both tempo-
ral integrity constraints and temporal indeterminacy
in temporal databases, it is reasonable to assume that
there is a need for temporal integrity constraints to
take into account temporal indeterminacy. In this pa-

per, we discuss a novel method of representing, manip-
ulating, and comparing indeterminate time intervals as
well as what we believe is the first proposed method for
incorporating indeterminacy into a temporal integrity
constraint enforcement mechanism.

Providing support for temporal indeterminacy with
temporal integrity constraints has a number of ben-
efits. In general, more flexibility is allowed in how
constraints are specified in the presence of temporal
indeterminacy. Specific application areas where tem-
poral indeterminacy and hence the concept of poten-
tial satisfaction of temporal integrity constraints are
useful include planning, archaeology, astronomy, and
genealogy. To the best of our knowledge this is the first
work to account for indeterminacy within the context
of temporal integrity maintenance.

The remainder of this paper is organized as fol-
lows. Section 2 reviews research in temporal integrity
constraint specification and the problem of dealing
with temporal indeterminacy in databases. Section
3 presents a representation of indeterminate temporal
intervals using valid interval stamps, defines an algebra
for manipulating valid interval stamps and character-
izes the complexity of operations on intervals. That
section also includes a brief discussion of the relation-
ships between indeterminate intervals [7]. Section 4
introduces the notion of potential satisfaction of in-
tegrity constraints and the integration of temporal in-
determinacy into a constraint maintenance framework.
Finally, section 5 concludes the paper with a discussion
of further research directions.

2 Related Work

The temporal integrity constraint method proposed
here 1s extended from that previously presented for
determinate time [22, 23, 21]. There have been several
proposals for implementing temporal integrity con-
straint checking. The work begun by Gertz, Lipeck
and Saake appears to be the earliest [24, 13]. They use
active rules to monitor progress through a transition
graph generated from a Future Temporal Logic (FTL)
specification. Chomicki and Toman propose a method
based on generating triggers for active RDBMSs from
Past Temporal Logic (PTL) [5]. Sistla and Wolfson’s
method uses Condition/Action rules to implement an
and/or graph for evaluating constraints specified in ei-
ther FTL or PTL [25]. Gal, Etzion, and Segev propose
an active database language which includes temporal
integrity constraints [12]. Martin and Sistac show a
method for deductive databases using SLDNF reso-
lution [19]. Doucet, et al, base their approach on a
bitemporal version database [8]. The method we de-
scribe here has been developed within the context of
the Telos KBMS [20]. We believe it is the first to in-
corporate temporal indeterminacy.

Dyreson and Snodgrass have shown the most exten-
sive results in temporal indeterminacy [9]. They de-

442

scribe a timestamp with a probability function for de-
scribing indeterminacy at the point and interval levels.
Their method for representing and manipulating inde-
terminate timestamps is both more flexible and more
complex than that described here. Anger, et al. han-
dle indeterminacy by storing interval constraints be-
tween tuples in a temporal constraint network (TCN)
[2]. Griffiths and Theodoulidis’ method also stores
interval relationships between tuples in a TCN [14]
and uses Allen’s constraint propagation algorithm to
check local consistency and derive new relationships
[1]. Koubarakis’ work represents temporal indetermi-
nacy by local and global constraints on variables rep-
resenting the end points of the intervals [18]. Gadia,
et al. propose a set oriented representation which sup-
ports both indeterminacy and incompleteness with a
three-valued logic [11]. Their work is the closest to the
indeterminate intervals described here, but provides
a different set of operators. They do not describe a
method for translating between interval constraint no-
tation and their representation, while our work does
not examine temporally missing values.

3 Valid Interval Stamps
3.1 Motivation

Indeterminate time may arise in a number of ways and
is nearly unavoidable when dealing with the valid time
of facts in a database. We are interested in associat-
ing a valid time period with tuples in order to sup-
port a temporal integrity constraint implementation
[22, 23] in which constraints include combinations of
the thirteen interval relationships [15, 1]. As such, it is
appropriate that the valid time periods are also speci-
fied using interval relationships. Because most of these
relationships do not precisely constrain the time peri-
ods involved, the resulting time stamps are indetermi-
nate. Thus, we must be able to derive indeterminate
valid time stamps from interval constraints, manipu-
late those indeterminate intervals, and translate the
results back to interval constraints.

3.2 Points and Intervals

We assume a linear discrete time line [3] bounded by
the range of the underlying integer type in which tem-
poral points are represented. For our purposes, we
assume that the underlying type is unbounded with
respect to the range of the temporal domain being
modeled. In practice, overflows will need to be ad-
dressed by allowing the granularity to be changed or
by changing to a type with a larger range. We do not
address either of these solutions in this paper. We fur-
ther assume distinct elements oo, —oo, and nil. With
the exception of the incomparable element nil, points
are totally ordered by <. The relationships <, =, and
< between two points, p; and pa, carry the expected
meaning. More formally, we will assume a temporal

structure 7 where 7T 1s characterized by a set of points
P, P={...,p-1,po,p1,---}, and a relation <.

The set P’ = PU{—00, 00,nil} is isomorphic to the
set 2/ = ZU {—00,00,nil}. We define a one-to-one,
onto, and invertible mapping function, ¢+ : P/ — Z’ :
Z' — P’ as follows:

(p) = {f

The relation < between members of the set P is defined
as p1 < p2 < t(p1) < t(p2) and can be extended to
the special elements —oo and oo by observing that
Vp € P —o0 < p < oo. Finally, < is undefined if
either operand is nil. Similar translations give the
meanings for = and <. Note that from the definition
of t, p=p; =>1=17].

In several places in the sequel we will need to deter-
mine the relative order of a pair of points on the time
line. The functions to do so are defined next.

if p=—o00,00, ornil
for p;, 1€ Z

Definition 1. The functions min,, max,, minyp,
maXyp : P! x P = P’ are defined as follows:

nil if py = nilV py =nil
ming(p1,p2) = qp1 if p1 < po
ps otherwise
nil if py = nilV ps; =nil
maxp(p1,p2) = (P ifpy <pi
ps otherwise
nil if py = nil A ps =nil
ming,(p1,p2) =< p1 if p2 =nilVp; < ps
ps otherwise
nil if py = nil Aps =nil
maxyp(p1,p2) = p1 ifpr=nilVpy <p;
ps otherwise

min, (maxp) chooses the earliest (latest) operand if
both are not nil. min,, and max,, treat the case
where exactly one of the operands is nil by returning
the other point. All four operators are commutative,
reflexive, and associative.

Given a point p, we need to refer to its next and
previous points on the time line.

Definition 2. The functions previous and next, each
with signature P’ — P’, are defined as follows:

if p € {—00,00,nil}

. _Jp
previous(p) = otherwise

if p € {—00,00,nil}
otherwise

443

In order to discuss periods of time, as opposed to
instants, we use intervals.

Definition 3. A conver interval is a set of consecu-
tive points. An interval I can be represented by its
lowest and highest points (I, I.), I; < I, I, = nil &
I, = nil. We say that p € T iff I;, < p < I.. The
empty interval, which contains no point, is represented
by (nil,nil) or). We say that a convex interval is
wnfinite if one or both endpoints is co or —oo. 7 refers
to the set of all convex intervals. Points may be im-
plicitly converted to intervals by the function nterval:
P — I, defined as interval(p) = {p, p).

We will use the 13 basic interval relationships [15, 1]
for comparing intervals for ordering and inclusion. The
concept of intersection of convex intervals is impor-
tant. This carries the same meaning as in set theory,
namely that there is at least one point in common.
Note that the empty interval, (nil, nil) does not in-
tersect with any interval due to the incomparability
of nil. The infinite interval, (—oo, co) intersects with
all non-empty intervals. We also need the concept of
adjacency of convex intervals, which 1s defined next.

Definition 4. We say that two intervals Iy and I, are
adjacent if next(I1,) = Is, Vnext(lz,) = I1,.

We will also need the concept of non-convex in-
tervals to talk about sets of non-consecutive points.
These are defined simply as a set of convex intervals
I; which neither intersect nor are adjacent.

3.3 Valid Interval Stamps

A wvalid interval stamp (VIS) is an extension of the in-
terval concept. A VIS describes the set of points which
are definitely in the interval as well as those which may
be in the interval. Through this we can represent the
indeterminacy inherent in interval constraints.

Definition 5. A convez valid interval stamp (CVIS)
is a 4-tuple (I, Dy, D,, I} associated with a fact in a
database. Dy, D, if not nil, are time stamps marking
the end points of the determinate interval D; that pe-
riod of time during which the associated fact is true.
Is and I, if not nil, represent the extended period of
time before and after the determinate interval, respec-
tively, during which the associated fact may be true.
The indeterminate interval then is the non-convex in-

terval I = {I;,, Iy} where I1, and Iy are derived from
the CVIS V as follows:

] If I, = nil
(V.I,,V.L) D=0
(V.Is, previous(V. D)) otherwise

Iy,

Ifl, =nilvD=90
otherwise

0
In = {{next(V.De), V.I.)

0 1 2 4 6 0o 1 2 4 6
(a) (b)
— 3 4 6
o

Figure 1: Three examples of CVISs

A CVIS for which both I; and I, are nil is called fully
determinate, while one with both D; and D, being
nil is called fully indeterminate. The empty VIS is
represented as {(nil,nil,nil,nil) or §. We will use
CV to refer to the set of all CVISs. An interval I can
be converted implicitly to a CVIS with the function
cvis : T = CV, defined as cvis(7) = (nil, I, I.,nil).

Example 1. Figure la shows the CVIS (1,2 4,6).
This contains the points {2,3,4} in the determinate
region and {1,5,6} in the indeterminate region. Fig-
ure 1b shows the same period of time covered by the
fully indeterminate interval (1,nil,nil,6). Finally,
figure lc shows the left infinite CVIS (—00,4,6,nil)
which has no upper indeterminate region.

We will often need to obtain the earliest and latest
points in a CVIS independently of whether that point
1s determinate or not.

Definition 6. We define the functions upper and
lower: CV — P as upper(V) = maxyp(V.D., V.I.) and
lower(V) = miny,(V.D,, V.I,).

We will also need to know the latest point at which
a CVIS V can start and the earliest point at which it
can end. To understand these functions, observe that
if V has a determinate region then the interval will
start no later than V.D, and end no earlier than V.D,.
On the other hand, if V' is fully indeterminate then it
may start as late as V.1, and end as earlier as V.I;.

Definition 7. We define two functions, mazlo and
minup: CV — P as maxlo(V) = min,,(V.D;,V.1.) and
minup(V') = max.,(V.I,, V.D.).

The following extends the definition of membership
in an interval. We will also use p € V.D to represent
p’s determinate inclusion in V and p € V.I to represent
p’s indeterminate inclusion in V.

Definition 8. We denote membership of a point p in
a CVIS V as p € V and define that membership as
p € V < lower(V) < p < upper(V).

Next we extend the concept of intersection.

Definition 9. Two CVISs, V; and V5 intersect if:
lower(V1) < upper(V2) A lower(V2) < upper(V1). We
say Vi and Vs determinately intersect if V1.D # @ A
Vo.D # O A V1.D intersects V5. D.

The concept of adjacency can be extended to convex
valid interval stamps as follows.

Definition 10. We say that two CVISs, V7 and V5
are adjacent if next(upper(V1)) = lower(V2) V
next(upper(Vz)) = lower(V;). We say that V7 and
Vy are determinately adjacent if V1.D # 0 AV3.D #
0 A Vi.D adjacent Vo.D. Note that two CVISs which
are determinately adjacent may intersect but will not
determinately intersect.

Details on how to translate from interval constraints
of the form R I, where R is an interval relationship and
I is a determinate interval, to a convex valid interval
stamp can be found in [6].

We will also need to consider non-convex valid in-
terval stamps.

Definition 11. A non-convexr valid interval stamp
(NVIS) is a finite set of CVISs which meet two condi-
tions. 1) No two CVISs may intersect. 2) If any two
CVISs are adjacent, then both must have a definite
interval and they must not be determinately adjacent.
NV refers to the set of all NVISs. A CVIS can be im-
plicitly converted to an NVIS with the function nwis:
CY — NV, defined as nvis(C') = {C}.

Definition 12. V = CVUNV denotes the set of VISs.

3.4 Operators on Valid Interval Stamps

There are a number of operators on VISs which corre-
spond to the similarly named ones on Boolean expres-
sions and sets. Specifically, we will define conjunction,
intersection, union, and difference of VISs below. To
avoid confusion, we will annotate the usual operators
to emphasize that they carry different semantics than

ey v .
the familiar ones. For example, we use U for the union

of VISs. When operands are known to be convex (non-
nv

convex) VISs, we will use U (U). When the familiar
semantics from logic or set theory are sufficient, we
will use the unannotated operators. The algorithms
and correctness proofs are omitted for space reasons
and are presented elsewhere [6].

3.4.1 Conjunction

There are times when a single interval constraint may
not adequately express the knowledge one has about
a fact’s valid time. For that we must conjoin multiple
constraints. We will do this by way of the VIS con-

junction operator': A. The effect of A is to produce

IThe term conjunction refers to the operation on interval

v
constraints which A supports. It might be more appropriate to

444

a determinate region which includes the determinate
region of both operands and an indeterminate region
which includes only points in the indeterminate region
of both operands. The operator uses the knowledge
expressed by two VISs in order to increase the accu-
racy to which the valid time of a fact is known.

In order to compute the resulting VIS, V,, from the
conjunction of two existing CVISs, V7 and V5, we must
first ensure that the conjunction is satisfiable. For ex-
ample, there are no dates which satisfy the condition
“contains Jan-98 and during Mar-98”. On the other
hand, “contains Jan-98 and after Nov-97” can be sat-
isfied. Each operand restricts the range of the other.

Definition 13. Two CVISs, V; and V5, are con-
Jjunction compatible, denoted Vi Acomp Vo, if 1) V4
intersects Va2, 2) Vo.D # 0 = (lower(V}) <=
Va.Ds A Va.D. <= upper(V1)), and 3) V1.D # 0 =
(lower(Va) <= Vi.Ds; A V1.D. <= upper(V3)). We
extend this definition to NVISs by saying that two
NVISs are conjunction compatible if YV, € V1 3Vs; €
Vo such that Vi, Acomp Vo, and VVa, € VodVy, €
Vi such that Vo, Acomp V1,. It should be clear from
this definition that Acomp is symmetric and reflexive.

Conjunction compatibility ensures that the indefi-
nite region of each interval encloses the definite region
of the other. Otherwise, there would be a point which
is in the definite region of one operand but not in the
other operand at all. That is the condition which re-
sults from inconsistent interval constraints.

Definition 14 (/U\) If Vi and V5 are VISs such that
Vi Acomp Vo we define their conjunction, denoted by

Vi AVy, as the VIS V, such that V;.D = {plp € V1.DV
p € Va.D} and V;.I = {plp € i.l Ap € Vo.I}. If
_'(Vl /\comp ‘/2) then V1 }/\ V2 = @

Example 2. Suppose we wish to conjoin the three
VISs shown in figure 2:

Vi = (—o0, 14,21, 00)
Vs = (o0, 17,19, 23)
Vi = (—00,9,12, 00)

We will arbitrarily start with V; 7\} V5. It’s clear that
they intersect and that each interval’s determinate re-
gion falls within the indeterminate region of the other.
Hence, they are conjunction compatible. Further, we
can see that they determinately intersect. We compute
the intermediate result to be V., = {—o0, 14,21, 23).

The final valid interval is then V! = V, c/l\} V3. We
note that V, and V3 are conjunction compatible but
neither determinately intersect nor are determinately
adjacent. The result then is:

V! = {(—00,9,12,ni1), (13, 14,21, 23)}
think of the effect on a VIS as strengthens.

445

—0o0 9 12 14 17 19 21 23 oo

I T v
| Bl v

v

N .. v

Figure 2: A Graphical Representation of Example 2

Because the order of the interval constraints in a
valid time specification should not matter, it 1s 1m-

portant that the order of VISs with respect to A not

matter. It can easily be shown that (V,/U\) forms a
commutative monoid with identity (—oo,nil nil, co).

3.4.2 Intersection

The intersection of two CVISs is defined similarly to
conjunction. The precondition is not as restrictive. It
is simply necessary that the intervals intersect by def-
inition 9. On the other hand, the result of intersection
is more restrictive than that of conjunction. Specifi-
cally, the determinate region produced by conjunction
includes the determinate regions of both operands. If
a point is determinate in only one of the operands,
it is determinate in the result. For intersection, the
determinate region includes only those points deter-
minately in both operands. If a point is determinately
in one operand but indeterminately in the other, the
intersection contains that point indeterminately.

Definition 15 (rUW) We define the intersection of two

VISs, Vi and V3, denoted by V; FUW Vs, as the VIS V,
such that V.. D = {plpe Vi.DAp € V5.D} and V,..T =
{plpeViApeVaA(peVi.IVp e VL))

It is straightforward to show that (V, F\) forms a
commutative monoid with identity {(nil, —oco, 00, nil).

3.4.3 Union

When an insert operation is performed for a tuple
whose non-temporal attributes are the same as an ex-
isting tuple either the operation is treated as a new in-
sert, resulting in a pair of tuples which are duplicated
except in their valid interval stamps; or the valid inter-
val stamp of the existing tuple is updated to include
the valid time specified for the insert. We choose the
latter semantics, provided by the union operator.
The union of two VISs is somewhat more compli-
cated than conjunction and intersection. This is be-
cause the union of two NVISs may contain overlapping
regions on the time line, which must be merged or split

Operator | Complexity
Acomp O(W][Va])
A O(VilIVa)
n o(vilIvVal)
U o((vilIva)?)
- O(IVal*|Va)

Table 1: Complexity of Operators over NVISs

in order to satisfy the definition. There are also no re-

strictions on the VISs which can be combined by U.

Definition 16 (LUJ) We define the union of two VISs,

V1 and V3, denoted by V LUJ V5, as the VIS V, such that
Vi.D={plpe Vi.DVp e Vo.D} and V,.I = {p|p ¢
Vi DA (p eWVi.IVvpe Vz[)}

Again, it is easy to show that (V, LUJ) forms a com-
mutative monoid with identity (nil, nil, nil, nil).

3.4.4 Difference

When performing a deletion or update operation where
the valid time specified is only a portion of the valid
time for the affected tuples, we will need to produce
the difference of two valid interval stamps. In general,
this results in a non-convex interval. Observe that
when deleting an interval V; from another interval V|
the resulting non-convex interval contains two portions
of V. One is the section of V occurring before Vy, the
other is the section occurring after V. If either V or
V4 is indeterminate, then so is the resulting interval.

Definition 17 (i) We define the difference of two

VISs, Vi and V5, denoted by Vi — V5 as the VIS V,
such that V,.D = {plp e Vi.DAp ¢ Va} and V. =
{p|(p eVi.DApe Vg[) Vv (p eVi.Ap ¢ VQD)}

Note that 2 1s neither commutative nor associative.
There is, however, an identity element: .

3.5 Complexity of VIS Operators

v cU cu cv
]

The basic operators on CVISs: Acomp, ?\, N, U, and
are all constant time. This should be clear from their
definitions, which depend solely on the values of the
end points and not the duration of the intervals. For
an NVIS V| we will use |V| to indicate the number of
CVISs V; € V. Based on an analysis of the algorithms
developed to implement the operators, we have the
results in table 1 for NVISs. Proofs of these results
can be found with the algorithms [6].

3.6 Indeterminate Intervals Relationships

Having defined a representation for indeterminate in-
tervals, we need a way of comparing intervals for or-

446

dering and inclusion. We propose an extension of the
thirteen relationships between determinate intervals.
For each relationship between determinate intervals
we have two corresponding relationships, potential and
definite, between indeterminate intervals. The follow-
ing principles give the basis for defining the definite
and potential relationships. The specific definitions
for each of the twenty-six relationships can be found
in previous work [7].

Principle 1. For Vj definitely R V5 to hold, where R
is an interval relationship, we must have: AV{, V/

SuCh that V1 /\comp Vlf A VZ /\comp V2l A _'((Vl C/\J

Vi).DR (Vo A V4).D). If this principle is met, it is not
possible to conjoin any compatible interval constraint
to either V7 or V5 such that R will not be satisfied.

Principle 2. For V] potentially R V2 to hold, where
R is an interval relationship, we must have: 3V{, Vj

such that Vi Acomp Vi A Vo Acomp Vi A (Vi A

VY) definitely R (V3 A V3). This ensures that it is pos-
sible, via the conjunction of additional interval con-
straints with V7 and V5 to arrive at a pair of intervals
which definitely satisfy R by principle 12.

Previous work has shown some interesting obser-
vations about the compatibility of the various inter-
val relationships [7]. First, we note that the inter-
val relationships between determinate intervals are
mutually exclusive. This observation extends to the
definite relationships between valid interval stamps.
We cannot make the same conclusion regarding po-
tential relationships, however. It is easy to show
that, for indeterminate interval V;, V5 and indeter-
minate relationships R1,R2, Vi potentiallyRq, Vy %
(V1 potentially Ry V3). Finally, we can see from Prin-
ciples 1 and 2 that, as expected, a definite relationship
implies a potential one.

4 Potential Temporal Integrity Con-
straint Satisfaction

4.1 Constraint Satisfaction

We now examine what it means for a database to sat-
isfy an integrity constraint in the presence of temporal
indeterminacy. Definitions for constraint satisfaction
have previously been given for the case of determinate
intervals [21, 22, 23]. We extend those definitions to
allow for temporal indeterminacy as supported by the
VIS. In what follows, the notations r(i1, i2) and iy 7 is
where r is an interval relationship and iy, iy are valid
interval stamps will be used interchangeably. First, we
define the contents of the knowledge bases (databases)
which underlie the integrity constraints.

2Note that either or both of V], V4 may be the identity.

Definition 18. A knowledge base, KB, comprises a
set of propositions, KBp, defining the validity of pred-
icates over possibly indeterminate time intervals, as
well as a set, KBpg, of deductive rules and a set, KB
of integrity constraints.

We will need the concepts of both object and tem-
poral variable substitution.

Definition 19. An object variable substitution o is
a function mapping a variable z; of sort S; to
an instance of the corresponding class C; so that
instanceOf (o(x;),C;,t) € KBp for some VIS 1. A
temporal variable substitution 7 is a function mapping
a temporal variable ¢ of sort Time to an interval in V.

The next definition forms the core of the extension
of the temporal integrity constraint method to indeter-
minate intervals. We show how to determine whether
a knowledge base satisfies, either definitely or poten-
tially, a temporal formula. In this definition and the
following, we will require a shorthand notation for a
common disjunction of interval relationships. We will
use the term covers as the disjunction between fin-
1shes, starts, during, and equals, prefixing with poten-
tially or definitely as appropriate. We will use covered-
by as the disjunction of the inverses of those four re-
lationships.

With the introduction of temporal indeterminacy,
one may not be able to determine with certainty
whether a knowledge base KB satisfies a formula or
not. In the case where KB may or may not satisfy
a formula because of temporal indeterminacy, we will

P
use the symbol F for potential satisfaction. The tradi-
tional E will be used for definite satisfaction.

Definition 20. For base predicates P and @, object
substitution o and temporal substitution 7:

e If P is ground and of the form r(iy, is) for
a determinate interval relationship r and inter-
vals i1,i2 then (KB,o,7) F P iff (KB,o,7) F

2
definitely r(i1,42). Similarly, (KB,o,7) F P iff
(KB, o, 1) F potentially r(i1, i3).

e If P is ground, then (KB,o,7)
2
(KB,o,7)E Piff P € KBp.

E P and

e (KB,o,7) F P(a,t) iff 3’ € V such that
7(t) definitely covered-by 7(t') A (KB,o,7) FE
Plo(z), (1))

P
e (KB,o,7) F P(a,t) iff 3’ € V such that
p
7(t) potentially covered-by 7(¢') A (KB,o,7) F
Plo(z), 7(t)).

e (KB,o,7) E =P(z,t) iff 3 € V such that

447

P
7(t) potentially covered-by 7(¢') A (KB,o,7) F
Po(z), 7(t')).

2
e (KB,o,7) E =P(z,t) iff #/ € V such that
7(t) definitely covered-by 7(t') A (KB,o,7) E
Po(z), 7(t')).
e (KB,o,7) F P(x,t1) V Q(z,t2) iff (KB,o,7) F
P(z,t1) V (KB,o,7) F Q(z,t3). Similarly,
P P
(KB,o,7) F P(x,t1) V Q(z,ts) iff (KB,o,7) F
2
P(z,t1) V(KB,o,7)F Q(z,t3).
e (KB,o,7) F V&/C P(z,t) iff (KB,o[z/d],T) E

P(z,t) for all d such that instanceOf (d, C,T) for
some interval T', T' definitely covered-by 7(¢).

p 2

e (KB,o,7) F V&/C P(z,t) iff (KB,o[z/d],T) F

P(z,t) for all d such that instanceOf (d, C,T) for
some interval T', T' potentially covered-by 7(t).

e (KB,o,7) FE Vt/Time
V(KB,o,T[t/T]) E P(x,t).

P(x,t) iff VT €

e (KB,o,7) FI; Vi/Time P(z,t) iff VI €
V (KB, o, [t/T]) E P(x,1).

If P is a derivable predicate defined by a set of deduc-
tive rules with bodies Ry, ..., Rx and respective time
intervals T1,... Ty, T; € V, then:

e (KB,o,7) E P(x,t) iff (KB,o,7) E \/i_, Ri A
vk
(t definitely covered-by T), where T'=(,_,T;.

P P
e (KB,o,7) E P(z,t) iff (KB,o,7) F \/f:k1 Ri A
(t potentially covered-by T'), where T'=(,_,T;.

The intuition behind the cases for (KB,o,7) F
P
- P(z,t) and (KB,o,7) F =P(z,t) is that if there is

some time interval ¢ which potentially covers ¢ during
which KB potentially entails P then we cannot say
that KB definitely entails P’s negation. Likewise, we
can say that KB may entail the negation of P during
some interval ¢ only if there is no time interval ¢’ which
definitely covers t during which P is definitely entailed
by KB.

The satisfaction of temporal integrity constraints
follows from definition 20.

Definition 21. If the temporal variables tq,...,
occur in the constraint C' with history time® 7', then:

e (KB,o,7) E Clat T] iff (KB,o,7) F C', where
C'=CA /\le(ti definitely covered-by T').

31In the context of Telos, history and belief time refer to the
same concepts as valid and transaction time, respectively.

P 2
e (KB,o,7) E Clat T] iff (KB,o,7) F C', where
C'=CA /\le(ti potentially covered—by T).

4.2 Compilation and Simplification

In this paragraph, we will discuss an extension of tem-
poral integrity constraint compilation algorithm pre-
viously given in [21, 22, 23] to handle valid interval
stamps. First, we define what is meant by an update
and transaction in the context of the Telos language

[20].

Definition 22. An update is an instantiated literal
whose sign determines whether 1t is an insert or a dele-
tion. A transaction 1s an arbitrary set of updates.

Next, we define how to determine updates possibly
affecting the validity of a constraint.

Definition 23. Let ¢+ and T be VISs. An update
U(, - - t)is an affecting update for a constraint C' [at T
if and only if there exists a literal L(_,_,) in C such
that L unifies with the complement of U, and the in-

determinate intersection (rUW), t + T, of intervals ¢ and
T is non-empty. A transaction X = {Uy,...,Un} is
called an affecting transaction for a constraint C' [at T
if and only if at least one of Uy, ... Uy, is an affecting
update for the constraint.

The notion of dependence between constraints and
deductive rules, defined next, does not depend on the
temporal intervals involved.

Definition 24. A literal L directly depends on a lit-
eral K if and only if there exists a rule of the form
Ve /Cy.. Vr,/Cy (F = A) such that there exists a
literal in F' unifying with K with most general unifier
6 and A = L. A literal L transitively depends (or,
simply, depends) on literal K if and only if it directly
depends on K or depends on a literal M that directly
depends on KA.

The concerned class of a literal is used to narrow the
set of constraints to be checked at runtime for each
update. This is not strictly necessary for constraint
checking, but is used as an optimization.

Definition 25. A concerned class for a literal L is a
most specialized class C'C' such that inserting or delet-
ing an instance of C'C' can affect the truth of L and the
time intervals of I and C'C are potentially unifiable®.
The concerned set for a literal L is the set of distinct
concerned classes for L.

Now we arrive at the compiled form of a constraint,
the Parameterized Simplified Structure (PSS).

4By potentially unifiable we mean that there is some assign-
ment which can be made to the intervals such that they are
potentially equal.

448

Definition 26. Given a temporal constraint C [at T
expressed in DNF and a literal L occurring posi-
tively (negatively) in C, the parameterized simpli-
fied structure of C' with respect to L is a 6-tuple
(L, Params,CS, T,

T',SF) where Params is the list of instantiation vari-
ables of L, C'S is the concerned set of L, T and T’
are the history and belief time intervals of the con-
straint respectively, and SF is the simplified form
of the constraint that suffices to be evaluated when
a deletion from (insertion to) L takes place. SF
is derived by replacing instantiation variables with
parameters, conjoining history time variables with
potentially during(¢;, 7"), conjoining belief time vari-
ables with potentially during(¢;,7"), replacing L with
True when the update is an insertion or False when the
update is a delete, applying first order logic absorption
rules, and applying temporal simplification rules.

Example 3. As an example of the application of the
above definition to integrity constraints, consider the
following dynamic constraint expressing the property
that “salaries should never decrease”.

Vp/Employee Vs, s'/Integer Vi;,t;/Time
(salary(p, s, t1) A salary(p,s’, t2) A
potentiallybefore(ty,?s)

= (s <)) (at 02/01/99..4)

The constraint is expressed in the assertion lan-
guage of Telos [20], a many-sorted first-order language
with classes corresponding to sorts (e.g., the class
Employee). Time is a built in class of time intervals.
The example serves to convey the idea behind compi-
lation and simplification of constraints.

Applying the simplification steps of definition 26 to
this constraint will generate the following simplified
form (capitalized variables denote parameters):

Vs/Integer Vt;/TimeInterval
(salary(p, s, t1) A
(t; potentiallyduring 02/01/1999..%) A
(t; potentially before T5)
= (s <)

4.3 Temporal Simplification

The last phase of the constraint compilation algo-
rithms is temporal simplification. Consider a con-
junction of the form potentially during(t, 1) A r1(t,72)
where 71 is one of the interval relationships or the nega-
tion of one of the relationships and i1, i are known
intervals. Such a constraint often arises from the build-
ing of the PSS. Using the derived interval relationship,
r9, between #; and i3 one can in some cases either show
that the conjunction is unsatisfiable or find a simpler
form of the conjunction, r(t,i3) where r and i3 are
derived from a simplification table. The simplification
tables as well as details on their development have been
omitted for space reasons. They can be found in [6].

Example 4. Suppose we have the temporal con-
straint:

C' = potentially during(¢, i1) A potentially starts(t, iz)

where i, = (10, 20, 30,40) and i3 = (5,20, 35,nil). In
[7], definition 20 gives the potentially finishes relation-
ship as:

Vl.fe =nil A Vg.[e =nil A Vl.De = VQ.DS A
Va.Ds < lower(V7)

From this we can see that i1 potentially finishes is.
From C' we see that ry is potentially starts. By consult-
ing the simplification table we find the simplification
rule:

Let #f = (nil, next(lower(i1)), upper(iy),nil)
and i3 = i} N is.
If lower(iz) < upper(iz) then
C' = potentially starts(t, iz)
otherwise inconsistent

and we proceed as follows:
iy = (nil, 11,40, nil)

i3 = i) Ay = (nil, 11,35, nil)
C’ = potentially starts(t, i3)

4.4 Graph Construction and Run Time Eval-
uation

The remainder of the integrity constraint compilation
algorithms, specifically the construction of the depen-
dency graph, the computation of its transitive closure,
and the incremental maintenance of both, do not re-
quire changes from the original definition [23] to handle
indeterminate intervals. Graph construction proceeds
by assigning each PSS to a vertex and drawing di-
rected arcs from a vertex v; to a vertex vy when the
integrity constraint or deductive rule associated with
vy directly depends on the deductive rule associated
with vy. Definition 24 does not rely on the valid time
interval of the rules.

The time intervals associated with the rules and
the associated literals come into play during the run
time evaluation of the dependency graph. The original
evaluation algorithm [23] does not need to be changed
to incorporate indeterminate intervals except for the
choice between definite or potential constraint satis-
faction semantics. The algorithm assumes that be-
fore each update all constraints are satisfied. When
an update is made to the database the algorithm iden-
tifies each PSS in the graph associated with a literal
which unifies with a literal involved in the update. All
integrity constraints which are associated with these
PSSs are potentially affected and must be evaluated
using definition 21.

449

Complexity results and a performance analysis for
the dependency graph maintenance and constraint
evaluation phases have been previously produced for
the determinate version of the algorithms [23]. Be-
cause the operations used in the extension to indeter-
minate intervals have a constant time complexity it
is not expected that these results will be significantly
different for the extension.

5 Conclusions and Future Directions

By using a novel representation for indeterminate in-
tervals and an extension of the interval relationships to
indeterminate time, a previously proposed method for
temporal integrity constraint enforcement has been ex-
tended to accommodate temporal indeterminacy. Po-
tential integrity constraint satisfaction allows a con-
straint designer more flexibility in specifying integrity
constraints so as to delay violation until it is certain
that no series of updates can be made which will cause
the database to satisfy the constraints under definite
constraint satisfaction semantics. We believe that for
applications in which temporal indeterminacy is inher-
ent this flexibility will prove important. To the best of
our knowledge this is the first work to account for in-
determinacy within the context of temporal integrity
maintenance.

As far as complexity is concerned, the operations
on valid interval stamps which are involved in the po-
tential constraint satisfaction semantics are constant
time, so should not increase the previously presented
complexity results for determinate temporal integrity
constraints.

There are several directions for further research.
Foremost will be to produce an implementation of both
the determinate version of the temporal integrity con-
straint algorithms, as well as the extension presented
here. From a more theoretical standpoint, it would be
interesting to examine whether the indeterminate in-
terval relationships could be applied to an extension
of Allen’s constraint propogation algorithm [1] and
to reformulate the indeterminate interval relationships
without reference to the endpoints. The determinate
interval relationships can be stated in terms of before
or meets, for example. Finally, it 1s worth investigat-
ing how the complexity and expressiveness of potential
constraint satisfaction would change if the indetermi-
nate intervals had an associated probability function,
similar to Dyreson and Snodgrass [9] and also to fuzzy
logic based approach of Bouzid and Mouaddib [4].

References

[1] James F. Allen. Maintaining knowledge about
temporal intervals. Communications of the ACM,

26(11):832-843, 1983.

[2] Frank D. Anger, Ramon A. Mata-Toledo,
Robert A. Morris, and Rita V. Rodriguez. A re-

[8]

[12]

lational knowledge base with temporal reasoning.
In Proceedings of the Florida AI Research Sympo-
stum, pages 147-151, 1988.

Johan van Benthem. The Logic of Time. Kluwer
Academic Publishers, Dordrecht, Holland, 1991.

Maroua Bouzid and Abdel-Tllah Mouaddib. Un-
certain temporal reasoning for the distributed
transportation scheduling problem. In Proceed-
ings of the 5th Int. Workshop on Temporal Rep-
resentation and Reasoning, pages 21-28, 1998.

Jan Chomicki and David Toman. Implement-
ing temporal integrity constraints using an active
DBMS. [EEE Transactions on Knowledge and
Data FEngineering, 7(4):566-582, 1995.

Wes Cowley. Temporal integrity constraints with
temporal indeterminacy. Master’s thesis, Univer-
sity of South Florida, November 1999.

Wes Cowley and Dimitris Plexousakis. An inter-
val algebra for indeterminate time. In Proceedings
of the Seventeenth National Conference on Arti-
ficial Intelligence (AAAI-2000). To appear.

Anne Doucet, Marie-Christine Fauvet, Stéphane
Gangcarski, Geneviéve Jomier, and Sophie Mon-
ties. Using database versions to implement tem-
poral integrity constraints. In Proceedings of the
Int. Workshop on Constraint Databases, pages
219-233, 1997.

Curtis E. Dyreson and Richard T. Snodgrass.
Supporting valid-time indeterminacy. ACM
Transactions on Database Systems, 23(1):1-57,
1998.

J. Florentin. Consistency auditing of databases.

Computer Journal, 17(1):52-58, 1974.
Shashi K. Gadia, Sunil S. Nair, and Yiu-Cheong

Poon. Incomplete information in relational tem-
poral databases. In Proceedings of the 18th Int.
Conference on Very Large Databases, pages 395~
406, 1992.

Avigdor Gal, Opher Etzion, and Arie Segev. A
language for the support of constraints in tem-
poral active databases. In Proceedings ILPS’95-
Workshop on Constraints, Databases and Logic
Programming, pages 42-58, 1995.

M. Gertz and U.W. Lipeck. Deriving optimized
integrity monitoring triggers from dynamic in-
tegrity constraints. Data and Knowledge Engi-
neering, 20(2):163-194, 1996.

Antony Griffiths and Babis Theodoulidis. SQL+i:
Adding temporal indeterminacy to the database

450

[15]

[20]

[21]

[22]

[23]

[24]

[25]

language SQL. In Proceedings of the British Na-
tional Conference on Databases, pages 204-221,
1996.

C. L. Hamblin. Instants and intervals. In J. T.
Fraser, F. C. Haber, and G. H. Miiller, editors,
The Study of Time, pages 324-331, New York,
NY, USA, 1972. Springer-Verlag.

K. Hulsmann and G Saake. Theoretical founda-
tions of handling large substitution sets in tem-
poral integrity monitoring. Acta Informatica,

28(4):365-407, 1991.

Christian S. Jensen, et al. A consensus glossary
of temporal database concepts. ACM SIGMOD
Record, 23(1):52-64, March 1994.

Manolis Koubarakis. Database models for infinite
and indefinite temporal information. Information

Systems, 19(2):141-174, 1994.

Carme Martin and Jaume Sistac. Applying tran-
sition rules to bitemporal deductive databases for
integrity constraint checking. In LID 96, pages
111-128, 1996.

John Mylopoulos,
itris Plexousakis,

Topaloglou.
ment systems.

1996.

Vinay Chaudhri, Dim-
Adel Shrufi, and Thodoros
Building knowledge base manage-

VLDB Journal, 5(4):238-263,

Dimitris Plexousakis. Integrity constraint and
rule maintenance in temporal deductive knowl-
edge bases. In Proceedings of the 19th Int. Con-
ference on Very Large Databases, pages 146157,
1993.

Dimitris Plexousakis. Compilation and simplifi-
cation of temporal integrity constraints. In Pro-
ceedings of the 2nd Int. Workshop on Rules in
Database Systems, pages 260-274, 1995.

Dimitris Plexousakis. On the Efficient Mainte-
nance of Temporal Integrity in Knowledge Bases.
PhD thesis, University of Toronto, 1996.

G. Saake and U. Lipeck. Foundations of temporal
integrity monitoring. In C. Roland et al., editor,
Temporal Aspects in Information Systems, pages

235-249. North Holland, 1988.

A. Prasad Sistla and Ouri Wolfson. Temporal
triggers in active databases. IEEE Transactions
on Knowledge and Data FEngineering, 7(3):471-
486, 1995.

A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia,
A. Segev, and R. Snodgrass, editors. Temporal
Databases: Theory, Design, and Implementation.
Benjamin/Cummings, Redwood City, Cal., 1993.

