
CLUEBOX: A Performance Log Analyzer for Automated Troubleshooting

S. Ratna Sandeep∗, M. Swapna†, Thirumale Niranjan, Sai Susarla, Siddhartha Nandi

NetApp‡, Inc.

Abstract
Performance problems in complex systems are often caused byunder-

provisioning, workload interference, incorrect expectations or bugs.

Troubleshooting such systems is a difficult task faced by service en-

gineers. We have built CLUEBOX, a non-intrusive toolkit that aids

rapid problem diagnosis. It employs machine learning techniques on

the available performance logs to characterize workloads,predict per-

formance and discover anomalous behavior. By identifying the most

relevant anomalies to focus on, CLUEBOX automates the most oner-

ous aspects of performance troubleshooting. We have experimentally

validated our methodology in a networked storage environment with

real workloads. Using CLUEBOX to learn from a set of historical per-

formance observations, we were able to distill over 2000 performance

counters into 68 counters that succinctly describe a running workload.

Further, we demonstrate effective troubleshooting of two scenarios that

adversely impacted application response time: (1) an unknown com-

peting workload, and (2) a file system consistency checker. By reducing

the set of anomalous counters to examine to a dozen significant ones,

CLUEBOX was able to guide a systems engineer towards identifying

the correct root-cause rapidly.

1 Introduction

Enterprise data centers contain large, complex systems
whose performance behavior is difficult to characterize.
The vendors of these systems get many performance-
related service calls from the users. The causes of the
problem could be one of many. Under-provisioning,
where the system is not able to handle the workload, is
a common cause. Another cause of a perceived perfor-
mance problem is that of interfering workloads. Often,
the administrator will not be aware of the various back-
ground activities such as disk scrubs, RAID reconstruc-
tions, anti-virus scans, and data replication. As a result,

∗BITS Pilani. NetApp intern.
†BITS Pilani. NetApp intern.
‡NetApp, the NetApp logo, Go further, faster, Snapshot and WAFL

are trademarks or registered trademarks of NetApp, Inc. in the United
States and/or other countries.

the main application workload may suffer intolerable re-
sponse time or throughput. Bugs are yet another cause of
performance problems.

The above scenarios often manifest themselves pri-
marily as one thing – a slowing down of the application.
Someone has to piece together a variety of hidden symp-
toms and arrive at a diagnosis. Troubleshooting is an
expert-intensive activity. It is also a time-sensitive activ-
ity – the longer it takes to identify and to solve a problem,
the costs mount. Therefore, there is a real need for an
automated facility for troubleshooting. In this paper, we
make significant inroads into this area. The contributions
of this paper are as follows.

1. Performance logs recorded in software systems con-
tain a very large number of periodically recorded
counters. They reflect the effect of an applica-
tion workload on the system. We use data min-
ing techniques to distill this large set into a concise
workload signature that succinctly describes the ef-
fect of the workload, thus enabling computation-
ally efficient analysis. We illustrate and evaluate
our methodology on logs recorded by a network-
attached storage (NAS) appliance.

2. We build an accurate performance model of a stor-
age system from the logs.

3. We describe a methodology to identify the coun-
ters that are symptoms of performance anomalies.
CLUEBOX automatically ranks them in the order
of importance, thus reducing the time required for
an expert to zero in on the root-cause. It also en-
ables a non-expert such as a new employee to be
more effective at troubleshooting. We substantiate
our claim with experiments where a list of ranked
anomalous counters, when provided to an engineer,
helped him identify the root-cause rapidly and cor-
rectly.

The rest of the paper is organized as follows. Section 2

presents the current state of research in this area and
places our work in context. Section 3 describes the ar-
chitecture of our machine learning toolkit and describes
how it crafts a workload signature, predicts latencies and
identifies anomalies. Section 4 offers experimental val-
idation of our techniques. Section 5 summarizes the
lessons learned and proposes avenues for continuing this
work. Finally, Section 6 presents our conclusions.

2 Related Work

In the past few years, the systems research community
has come to understand that quick diagnosis and repair
of complex computer systems is beyond the capabilities
of human administrators [12]. As a first step towards au-
tomated troubleshooting, rule-based expert systems have
been proposed [13]. We believe that this approach is dif-
ficult to sustain. Systems evolve, workloads change, and
having to involve an expert constantly to update the rules
is not scalable. Therefore, there has been significant re-
search into statistical learning systems for tackling this
problem.

Systems such as PinPoint [5] and Magpie [2] diagnose
problems in distributed systems by monitoring the com-
munications between black box components or by infer-
ring causal paths by analyzing message-level traces[1].
Spectroscope [17] is another system that uses cluster-
ing on request flow graphs constructed from traces, to
categorize and to learn about differences in system be-
havior. Pip [16] proposes formalisms to allow program-
mers to express expectations about systems’ communi-
cation, timing and resource consumption, using a declar-
ative language. In contrast to Pip and PinPoint, we do
not seek to derive causality directly. Unlike the kind of
applications that they seek to model such as web services
and EJBs, our problem domain is large systems such as
servers and storage. We use performance logs collected
by a system as opposed to tracing communication. The
methodologies are complementary.

Recent work has explored using Tree-Augmented
Bayesian Networks for analyzing counter data [6], as
well as extending the work to include ensembles of mod-
els [18] to characterize good workload execution and
anomalous execution. They report that models serve well
to identify SLO violations in web services. Unlike our
work, their models have to be trained with both normal
and bad behavior, and are able to identify only those
anomalous behaviors that the models know about. They
also do not have predictive capabilities like ours. An-
other work on statistical debugging in a Microsoft envi-
ronment [3] attempts to discover which process is at fault
in end-user environments. The complexity of the system
and the instrumentation data that we are attempting to
characterize is much higher.

Figure 1:Variable importance of counters. A high decrease

in node impurity implies that the counter is very important for

effective clustering.

An interesting approach towards root-cause analysis
of problems in replicated systems [15] is to combine lo-
cal (node-level) anomaly detection with global analysis.
The intuition here is that the node with a different view
of the anomalies when compared with the other nodes is
the root-cause. The granularity of the anomaly is a node,
and they report modest success in their results.

We do not invent new mathematical techniques in this
paper. We use existing data mining techniques and com-
pose them in an innovative way to implement an end-to-
end system for performance troubleshooting.

3 System Architecture

The methodology used in CLUEBOX translates to a vari-
ety of systems. However, we will present it in the context
of a network storage controller or a NAS appliance. The
storage controller consists of processors and disks orga-
nized in RAID groups; it serves data to clients via net-
work file system protocols like NFS and CIFS. Data is
stored in containers calledvolumesthat reside on disks.
Data from clients is stored using a file system called
WAFL R©[8]. The complex storage controller software
has been instrumented over the years with a large set
of performance counters, which are periodically dumped
into a performance log. There are counters that measure
the number of ops/sec, latencies, utilizations, etc. Many
of these counters are correlated with each other. Some
counters compose information from lower layers. Not
only are there a lot of counters, they have also evolved
over time. Different components log these statistics at
different times and frequencies. This is typical of large
complex systems. We used the R environment [9] for
statistical computing and graphics. We describe our tech-
niques in the following sections.

3.1 Workload Characterization
First, we attempt to understand the effect of workloads

on a system. In the abstract, workloads have two dimen-
sions: a characteristic and an intensity. The characteristic
of a workload refers to attributes such as the read/write
ratio, sequentiality, and arrival distribution. The intensity
of a workload refers to attributes such as the arrival rate
of operations and throughput of data read. CLUEBOX
is a modeling tool that analyzes performance logs and
learns about the characteristics of the workloads. Fur-
ther, having been trained with workloads of varied char-
acteristics and intensities, CLUEBOX is able to predict
the performance of a given workload, spot a performance
problem, and identify the few anomalous counters that
could help an engineer rapidly identify the root-cause of
the issue. In this section, we detail our learning method-
ology.
3.1.1 Reducing the Dimensionality of Data

Clustering algorithms do not perform well if the num-
ber of features (counters) is large. Therefore, dimen-
sion reduction techniques are often applied as a data pre-
processing step. The instance of the storage controller
that we have been performing our experiments on, logs
more than 2000 counters. It is computationally imprac-
tical to use the entire set for clustering or classification.
Many counters have little information value but hamper
effective analysis by adding noise. A standard method
for dimensionality reduction is called Principal Compo-
nent Analysis (PCA) [7]. Since PCA loses the intuitive
meaning of the counters, we chose to use a method called
Principal Feature Analysis (PFA) [14]. By using PFA,
we reduced our counter set to around 300 for the type of
workloads that are described in Tables 1 and 2.
3.1.2 Crafting a Workload Signature

To distill the counters further requires a different kind
of analysis. In any counter set, some of the counters
are more important to characterizing the workload than
others. We use a standard machine learning technique
calledrandom forest(RF) [4], which uses decision trees
to classify labeled data. The output of the RF unsuper-
vised learning algorithm gives us a ranking of the coun-
ters by their importance in classifying the observations,
as shown in Figure 1.

Given the ranked list of counters, we now figure out
the cutoff point beyond which the information value of
the counters is low. We use clustering using CLARA [11]
for that purpose. By clustering on increasing subsets of
the ranked counters, we discover the smallest set of coun-
ters that distinguishes the workloads most effectively.
Algorithm 1 has the details. In our experiments, de-
scribed in Section 4.1, the top 68 counters distinguished
the workloads the best. We call this counter set the work-
load signature profile. A cluster contains points repre-
senting all intensities of a given workload characteristic.

The signature of a given workload is the medoid of its
cluster as calculated above, and serves as a concise de-
scription of the workload. Note that the signature is de-
pendent on the training set. By making the training set
encompass the type of workloads that the system is ex-
pected to encounter, we can be confident that the signa-
ture does not miss important counters. Typically, a given
system in an enterprise deployment will see only a few
workload types corresponding to the applications that are
used, so the performance logs of a running system should
have adequate data for training.

3.2 Prediction Model
The performance of the system when a given workload

is imposed on it depends on the characteristic and the in-
tensity of the workload. For simplicity, we assume that
theaverage system latencyof NFS operations represents
the performance of the system. The scheme is extend-
able to other metrics such as throughput. CLUEBOX is
trained with workloads at various intensities and the la-
tencies are recorded for each cluster (i.e., workload sig-
nature) at each intensity. Decision tree modeling based
on RF regression analysis is then used for performance
prediction. Given an input workload, CLUEBOX will
generate a predicted average system latency.

We next explain how the model can be used for detect-
ing anomalous system behavior.

3.3 Anomaly Detection
We assume that the user articulates his issue in the fol-

lowing form: “The performance of the system was fine
at time T. I haven’t changed a thing since then, but now
the latencies are unacceptably high.”

First, we have to discover the workload that is run-
ning on the system. Because of the perceived perfor-
mance problem, current data cannot be used for this task
since the counter values may not match the workload
that the user thinks he is running. We therefore use data
from time T to identify the workload. We could have
also worked backwards in time to find a workload that’s
known to the model.
3.3.1 Detecting the Closest Workload

When the vector of counter values at time T is given to
CLUEBOX, its first job is to identify the current running
workload by matching it against known workloads. We
perform this step as follows.

Every known workload belongs to a cluster whose
medoid represents the signature of that workload.
CLUEBOX creates an RF using the medoids and the test
workload. Passing the test data and the medoids through
the decision trees of the RF, it calculates theproximity
between the test data and the medoids. The medoid that
has the highest proximity to the test load is considered to
be the closest workload cluster. We now have to discover
the intensity. A comprehensive set of logs will include
each workload type at varying intensities. The RF of

Algorithm 1 Inferring workload signatures
find_workload_signature (IN: counter_set, IN: expected_ distribution, OUT: workload_signature) {

principal_counter_set = PFA(counter_set);
rf = randomforest(principal_counter_set);
varimp = variableimportance(rf); // varimp <- ranked list o f N counters
workload_signature_set = {};
best_cluster_quality = 0;
for each subset [0..n] of varimp[N], n <= N {

best_clusters = get_best_number_of_clusters(principal _counter_set,varimp[0..n]);
workload_clusters = clara(principal_counter_set,best_ clusters);
observed_distribution = analyze(workload_clusters);
cluster_quality = get_cluster_quality(observed_distri bution, expected_distribution);
if (cluster_quality > best_cluster_quality) {

best_cluster_quality = cluster_quality;
workload_signature = varimp[0..n];

}
} // OUT: workload_signature contains smallest counter sub set that best distinguishes training workloads

}

the closest workload cluster will encode data points from
the workload at different intensities. The RF computes
proximity measures between these observations and the
counter values at time T. If the proximity measure is
close to 1, then we infer that the test load is of known
intensity; if the proximity measure is close to 0, then we
infer that it is of unknown intensity. If the intensity of
the test load is unknown, we use interpolation in our pre-
diction model.
3.3.2 Predicting Latency

Next, the random forest of the closest workload is ex-
tracted. The test load is run through the decision trees of
the random forest to generate a prediction for the average
latency.
3.3.3 Finding Anomalous Counters

CLUEBOX compares the predicted system latencyLp

with the observed latencyLo. The user can set a thresh-
old value of deviation,Lt, of the predicted latency from
the observed latency. When|Lp − Lo|/Lp > Lt, it
flags the corresponding observation as a suspect for an
anomaly. Based on the closest workload characteristic
and intensity, it generates a table containing the observed
value of the counter, the expected value of the counter
and the deviation between them.

There are two dimensions to anomaly detection: 1)
the sensitivity of latencies to each of the counter values,
and 2), the degree of deviation between the expected and
observed values for each of the counters. CLUEBOX
first examines the counters in the order of theimportance
valueof the counter within the given workload, which is
generated during the construction of the random forest.
The importance value describes the sensitivity of a sys-
tem output metric of interest (in this paper, the average
latency) to that particular variable. If the top counters in
the table show a major deviation, they are likely to be the
key anomalies.

The tool then examines the counters based on the er-
ror between the observed counter value and the expected
counter value. This helps in identifying which counter
is affected the most. The tool takes both the error and

importance value into account to come up with a ranked
list of anomalous counters that could identify the root-
cause of the performance problem. Algorithm 2 gives an
outline of the method.

4 Evaluation

In this section, we present our evaluation of CLUE-
BOX along three lines – inferring workload signatures
from performance logs, matching new workloads against
known signatures, and narrowing down the root cause of
anomalous behavior.

4.1 Inferring Workload Signatures
We validated our conjecture that a small subset of

counters in a performance log is sufficient to distinguish
a wide variety of input workloads. For our validation,
we ran the following types of workloads on our storage
controller:

• SIO1 generates an I/O intensive workload. Our ex-
periments used a working set of 20 GB and 10 ap-
plication threads.

• PostMark [10] is a file system benchmark that
reflects typical workloads generated by e-mail,
Usenet news and e-commerce applications. The
benchmark operates on a large number of short-
lived small files. Our experiments used two levels
of subdirectories.

• Connectathon (cthon) is an NFS benchmark that
exercises a wide variety of namespace operations
supported by the NFS protocol. The “Basic Tests”
that we ran include file and directory creation and
removal, lookup, setattr, getattr, readdir, link, re-
name, symlink, readlink and statfs.

• Sysbenchgenerates database workloads. We used
Sysbench on a MySQL database to generate OLTP-

1A NetApp Internal Workload Generator

Algorithm 2 Algorithm to find anomalous counters.
list_anomalies(IN: vecT // counter set at T, IN: vecProb // c ounter set when the problem occurred

IN: latency_tolerance, OUT: anomaly_list) {
predicted_workload and predicted_intensity = closest_wo rkload(vecT);
predicted_latency = predict(RandomForest of predicted_w orkload cluster, vecT);
observed_latency = get_latency_counter(vecProb);
if ((|observed_latency - predicted_latency| / observed_latenc y) > latency_tolerance) {

anomaly_list = order_by_importance(RandomForest of pred icted_workload, vecProb);
Remove items in anomaly_list that have small difference bet ween prediction and measurement;

}
else print(“Performance problem imagined, not real”);

}

like workloads. We generated10
6 transactions from

10 threads.

We ran each workload for 3 hours from a remote NFS
client. Between each workload run, we restored the
system to a common state using SnapshotTMtechnology
in the storage controller. The storage controller was a
FAS960 model having 6 GB of memory and six disks in
a RAID-DP configuration. Tables 1 and 2 show details
of each workload.

During the run, we collected performance logs at 1-
minute intervals. Then, we coalesced the collected data
into a single time-series data set of counter value vectors.
Subsequently, we removed counters (columns) that were
zero all the time and performed PFA to remove redun-
dant counters. This step reduced the number of counters
to analyze to 309. Using the RF Unsupervised Learn-
ing algorithm, we then ranked the counters in order of
their importance towards quantifying the dissimilarities
between the data points. Finally, we clustered the data set
based on top-rankedN counters to determine the “sweet
spot” – the ideal number of counters that will distinguish
our workloads most effectively. Table 3 displays our re-
sults for increasing values ofN.

We see that when the top 40 counters are used for clus-
tering, the namespace-intensive workloads separate from
I/O-intensive workloads, but we get no further separa-
tion. When we increase the number of counters to 51,
PostMark and Cthon workloads form distinct clusters.
Using 57 counters gives us separate clusters for reads and
writes; using 62 counters distinguishes random reads,
random writes, sequential reads and sequential writes,
as well as individual Sysbench workloads. Clustering
using the top 68 counters gives us the expected ideal
result, where each of our distinctly different workloads
falls into different clusters. Workloads that are similar,
such as S1 and S5, naturally do not exhibit any separa-
tion, which is an expected outcome. We also found that
using more counters reduces the quality of clustering be-
cause the data gets noisier. The standard 2-D projection
scatter plot of three of the workload clusters in Figure
3 offers visual confirmation that our clustering is good.
We note that for our evaluation, we manually inspect the
clustering output to identify if it is ideal. We conjecture
that we could automate this step in the future by using

Figure 2:Clusters identified in the SIO workload.

Figure 3:Scatter plot of 2-D projected clusters

well-known clustering quality metrics.
We show the quality of the clustering of SIO work-

loads in Figure 2. As we can see, Cluster 4 is composed
of points from S1 and S5, which are very similar sequen-
tial read workloads. Cluster 10 is composed of points
from S2 and S3, which are similar sequential write work-
loads. S4, a random write workload, clearly separates
out. So does S6, a random read workload. Cluster 5 has
a few stray points from many workloads; these points
represent the beginning stages of workloads where the
state of the system is “cold.”‘

Since our experiments involved a wide variety of
workloads, we are confident that these 68 counters
clearly define the effect of running a workload on our
system, and will serve as the workload signature profile

Workload Parameters

S1 SIO Read = 80%, Randomness = 20%

S2 SIO Read = 20%, Randomness = 20%

S3 SIO Read = 30%, Randomness = 10%

S4 SIO Read = 30%, Randomness = 90%

S5 SIO Read = 80%, Randomness = 10%

S6 SIO Read = 80%, Randomness = 90%

P1 PostMark # of Files = 10000, File Size Range = 2KB–1MB

P2 PostMark # of Files =, File Size Range = 1KB–100KB

Table 1:SIO and PostMark workload descriptions.

Workload Parameters

C1 Cthon Test9 (Statfs), # of Operations =

C2 Cthon Test8(Symlink, Readlink),Files=1000,Symlinks=1000

C3 Cthon Test7 (Link, Rename), Files = 1000, Symlinks = 1000

C4 Cthon Test4(Setattr,Getattr,Lookup),Files=10
4 ,Ops/file=50

C5 Cthon Test1&2(Creation/Removal),Lvlls=4,Files=15,Dirs=4

B1 Sysbench Prepare Stage, Table Size =X

B2 Sysbench Select,Range,Sum,Order by,Update,Delete,Insert

B3 Sysbench Read-Only, Transactions =

B4 Sysbench Non Transactional Test Mode (Delete), Queries =

B5 Sysbench B2-variant,Selects/trans=1,Sum/Range per transctn=10

Table 2:Cthon and Sysbench workload descriptions.

#Counters (N) #Clusters Description of Clusters Incremental Separation

40 2 All SIO+All Sysbench, All PostMark+All Cthon metadata, I/O

51 3 All SIO+All Sysbench, PostMark, and Cthon separate PostMark

57 7 S1+S5+S6, S2+S3+S4, B1+B2, B3, B4+B5, PostMark and Cthon separate Read, Write SIO, Sysbench split

62 9 S1+S5, S2+S3, S4, S6, B1+B2, B3, B4, B5, PostMark and Cthon separate Sequentiality vs. Randomness

68 13 S1+S5, S2+S3, S4, S6, B1+B2, B3, B4, B5, P1, P2+C5, C1, C2, C3,C4 Ideal separation

70 12 S1+S5, S2+S3+S4, S6, B1+B2, B3, B4, B5, P1, P2+C5, C1, C2, C3,C4 Random & sequential writes merged

80 10 S1+S5+S6, S2+S3+S4, B1+B2, B3, B4, B5, P1+P2+C5, C1, C2, C3,C4 worse clustering

95 5 All SIO, B3, B1+B2+B4+B5, P1+P2+C5, C1+C2+C3+C4 worse clustering

Table 3: Workload separation as a function of counter set size. When 68 counters are used, the algorithm correctly identifies all the distinct workloads correctly.

Including more counters amplifies noise.

of the system.

4.2 Workload Identification
To see how well CLUEBOX detects the similarity of

a running workload with known workloads (identified in
Table 1), we ran a test SIO workload with 90% reads,
80% of them being sequential. Figure 4 shows the signa-
tures of the test and training workloads as profile curves
of counter values. We can visually see how “close” the
test workload’s curve is to that of S5 (SIO), and how “dif-
ferent” they both are from the PostMark (P2) workload.
Similarly, when we ran a cthon (test8) workload and fed
its data to CLUEBOX, it correctly spotted the workload
to be most similar to C2. The signature profile for the
SIO workload S1 is clearly very different.

4.3 Troubleshooting Cases
We used the above methodologies to troubleshoot per-

formance problems in our Storage Controller. We first
introduced performance anomalies into the system, and
evaluated the capability of our tool in spotting the issue
as well as identifying the root cause. In all the following
scenarios, the main workload was SIO with 80% reads
and 80% sequentiality. After the anomaly was injected,
in all cases, latency went up significantly.

The first scenario represents the situation where an
error-correction or self-healing activity in the system
gets triggered without the knowledge of the administra-
tor. Naturally, the performance drop is noticeable. We
duplicate this scenario by running anfsck -like util-

Figure 4:Identifying SIO. The workload signature profile of the test

data matches that of S5 very closely. P2’s profile is very different.

Figure 5:Identifying cthon. The workload signature of the test work-

load closely resembles that of C2. S1’s profile is very different.

ity that performs a file system check of the entire data
store. The performance logs from the time interval with-
out the problem as well as the current logs were passed
through our prediction model, which identified the key
anomalous counters shown in Table 4. First, we note
that the performance of the user workload has actu-
ally degraded since the countersifnet:e0:total_packets,
testVol:nfs_read_data, testVol:nfs_write_dataare much
lower than expected. Other oddities of note are thepro-
cessor0:hard_switchesand system:cpu_busycounters,
which are inordinately high, indicating that there could
be something else running on the system. We now try
to establish if the anomalies that our toolkit has iden-
tified is useful to an engineer to spot the root-cause
quickly. We showed the table to a file system devel-
oper. To him, thewafl:restart_msg_cnt:BACKDOOR
counter being 99947% high indicated that there could
be any one of four things going on: (1) a replication
load, (2) a very high amount of destaging of data from
cache, (3) repeated mounts and unmounts of volumes
due to a bug, or (4) anfsck -like scanner. A replication
load will cause an increase in read-aheads and not much
impact on the buffer hash table. However, thereada-
head:readand readahead:total_read_reqs:4Kcounters
have dropped, whilewafl:buf_hash_hithas gone up sig-
nificantly. Changes in the rate of destaging of data
are indicated by differences in thewafl:cp_phase_times
counters, but there was no such anomaly. Repeated
mounts and unmounts of volumes will not cause the
wafl:buf_hash_hitto go up so much. Finally, anfsck
or similar scanner would causewafl:buf_hash_hitto go
up as seen. Thus, the results from our anomaly detection
engine allowed efficient troubleshooting by digging up
the few needles in the haystack that matter.

The second scenario represents the situation where a
new application, unknown to the administrator, is provi-
sioned on the system, resulting in overload. The latency
for the existing application goes up, which confounds the
administrator and results in a service call to the vendor
of the system. We represent this scenario by running a
different workload (another copy of SIO, in this case)
directly on the storage controller via its console. By run-
ning the observed performance counters through CLUE-
BOX, we identified significantly anomalous counters,
which are shown in Table 5. Looking through the list,
we first note that thesystem:cpu_busycounter is much
higher than expected, most likely due to some other load
on the system. However, theifnet:e0:total_packetsis
not different, so the other load is not a network I/O
load. Other loads could be bookkeeping activities done
on the filer, but those typically show up as increases
in counters, which are not seen in our table. The fact
that testAggr:total_transfersis much higher implies that
there is a significant amount of new I/O in the system.

Based on the above analysis, we conclude that a separate
I/O workload local to the storage controller is the cause
of the performance anomaly.

In both of these scenarios, theranking of counters
based on their correlation with latencies was key. High
error percentages in low-ranked counters were actually
found to be irrelevant, confirming the value of CLUE-
BOX.

5 Lessons Learned and Future Work

Machine learning techniques like the ones we used have
a singular drawback – they are only as good as the train-
ing. Another drawback of our work is that the counters
are typically tied to the system’s configuration. If we
add more disks to the system or tweak its configuration,
CLUEBOX has to be retrained. We feel that this is un-
avoidable, but would welcome efforts to make training of
black box models less sensitive to changes in the system.
We intend to explore the problem space in more depth.
Some of the research avenues that merit a more detailed
look are mentioned below.

Workloads Are Temporal In this paper, we have not
looked at the temporal nature of workloads. Understand-
ing workloads by explicitly considering our data set as
a time series will yield substantial information on how
workloads behave over time.

Mixed Workloads When multiple workloads are ap-
plied to a system, the counters show a picture that’s a
superposition of the effects of all the workloads. By an-
alyzing the logs, we may be able to characterize the in-
terference profile of workloads, which will lead to intel-
ligent provisioning decisions.

Background Workloads Systems have constant or pe-
riodic background workloads. By mining logs over
a long period of time, we can characterize this back-
ground workload, which will help developers sched-
ule background tasks intelligently. Administrators can
do performance-based provisioning taking background
workloads into account.

Derived Workloads The characteristic of one work-
load may impact another. For instance, if there is a large
fraction of writes in a foreground workload, an asyn-
chronous replicator may have to transfer large amounts
of data. We can learn such interesting connections be-
tween workloads. Again, provisioning and troubleshoot-
ing are the key use cases.

Pre-existing Conditions Our methodology assumes
that the system has no anomalies during training. Re-
moving the assumption will make the use-case more re-
alistic, but it is not yet clear to the authors how it can be
accomplished.

Counter Expected Observed Error%

ifnet:e0:total_packets 4383 23.81 -99.4

processor0:hard_switches 7393 2689 -63.6

system:cpu_busy 7.23 29.3 305.6

wafl:restart_msg_cnt:BACKDOOR 336 3.3E5 99947

testVol:nfs_read_data 2.7E6 12902 -99.5

readahead:total_read_reqs:4K 44701 0 -100

wafl:buf_miss_cnt 159.8 2693 1584

testVol:nfs_write_data 8.1E5 1.3E5 -83.2

wafl:buf_hash_hit 9214 6.6E5 7088

nvram:transaction_count 165.8 0.25 -99.8

wafl:buf_hash_miss 6222 852 -86.3

wafl:buf_load_cnt 1713 1.9E5 11362

wafl:total_cp_msecs 21638 4296 -80.1

nvram:total_nvlog_data 8.5E5 206.50 -99.9

wafl:new_msg_cnt:BACKDOOR 1974 21180 972.9

readahead:read 41373 452 -98.9

Table 4:fsck -like anomaly.

Counter Expected Observed Error%

testAggr:cp_read_blocks 9.3 21.29 129

ifnet:e0:total_packets 9052 9797 8.2

system:cpu_busy 14.77 67.93 359.9

testAggr:wv_fsinfo_blks_used 1.3E7 2.1E7 62.6

testVol:nfs_write_data 5.1E6 9.3E6 80.6

processor1:processor_busy 16.12 69.11 328

wafl:buf_hash_hit 16718 5.2E5 3045

testVol:wv_fsinfo_blks_used 5.4E6 8.2E6 52.1

testAggr:total_transfers 203.9 538.8 164.2

wafl:buf_hash_miss 4899 2.5E5 5027

nfs:nfsv3_op_count:write 17837 17841 0.02

wafl:bufs_kmem 32330 38413 18.8

wafl:buf_eject_time 14.72 99.88 578.4

wafl:wafl_vbufs_recycle 1.3E6 2.3E8 17464

wafl:wafl_blk_writes:active 3.3E5 4.5E5 35.92

Table 5: SIO anomaly.

6 Conclusions

We have described CLUEBOX, an unsupervised learning
methodology that analyzes performance logs to enable
semi-automated performance troubleshooting. Along the
way, we defined techniques to determine the key set of
performance counters that characterize a running sys-
tem. Using our predictive model, we were able to iden-
tify anomalous conditions that represent common perfor-
mance problems in real systems. We showed that identi-
fication of a small but significant set of plausible anoma-
lies goes a long way towards timely troubleshooting. The
main contribution of this work is the development of a
generic toolkit that can be used across disparate systems,
be they storage, servers, or networking.

References
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, andA. Muthi-

tacharoen. Performance debugging for distributed systemsof black boxes.
In Proceedings of the 19th Symposium on Operating Systems Principles,
pages 74–89, June 2003.

[2] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Online modelling and
performance-aware systems. InProceedings of the Ninth Workshop on Hot
Topics in Operating Systems, May 2003.

[3] S. Basu, J. Dunagan, and G. Smith. Why did my PC suddenly slow down?
In Proceedings of the Second Workshop on Tackling Computer Systems
Problems with Machine Learning, 2007.

[4] L. Breiman. Random forests.Machine Learning, 45:5–32, 2001.

[5] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. PinPoint: Prob-
lem determination in large, dynamic internet services. InProceedings of
the International Conference on Dependable Systems and Networks, pages
595–604, 2002.

[6] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase. Correlating
instrumentation data to system states: A building block forautomated diag-
nosis and control. InProc of the Seventh Symposium on Operating System
Design and Implementation, pages 231–244, Oct. 2004.

[7] J. Han and M. Kamber.Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2005.

[8] D. Hitz and J. Lau. File system design for an NFS file serverappliance. In
Proceedings of the Winter Usenix Conference, 1994.

[9] R. Ihaka and R. Gentleman. R: A language for data analysisand graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

[10] J. Katcher. Postmark: A new file system benchmark. Technical Report
TR3022, NetApp, 1997.

[11] L. Kaufman and P. J. Rousseeuw.Finding Groups in Data. John Wiley and
Sons, 1990.

[12] J. O. Kephart and D. M. Chess. The vision of autonomic computing. In
Computer, 2003.

[13] G. Khanna, M. Cheng, P. Varadharajan, S. Bagchi, M. Correia, and P. Veris-
simo. Automated rule-based diagnosis through a distributed monitor sys-
tem. In IEEE Transactions on Dependable and Secure Computing, pages
266–279, oct 2007.

[14] Y. Lu, I. Cohen, X. Zhou, and Q. Tian. Feature selection using principal
feature analysis. InProceedings of the 15th International Conference on
Multimedia, pages 301–304, 2007.

[15] S. Pertet, R. Gandhi, and P. Narasimhan. Fingerpointing correlated failures
in replicated systems. InProceedings of the Second Workshop on Tackling
Computer Systems Problems with Machine Learning, 2007.

[16] P. Reynolds, C. Killian, J. L. Weiner, J. Mogul, M. A. Shah, and A. Vahdat.
Pip: Detecting the unexpected in distributed systems. InProceedings of the
Symposium on Networked Systems Design and Implementation, 2006.

[17] R. R. Sambasivan, A. X. Zheng, E. Thereska, and G. Ganger. Categorizing
and differencing system behaviours. InHot Topics in Autonomic Comput-
ing, June 2007.

[18] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox.Ensembles
of models for automated diagnosis of system performance problems. In
Proceedings of the International Conference on DependableSystems and
Networks, pages 644–653, July 2005.

