
Automatic Optimization of Parallel Dataflow Programs

Christopher Olston, Benjamin Reed, Adam Silberstein, Utkarsh Srivastava

Yahoo! Research
{olston, breed, silberst, utkarsh}@yahoo-inc.com

Abstract
Large-scale parallel dataflow systems, e.g., Dryad and
Map-Reduce, have attracted significant attention re-
cently. High-level dataflow languages such as Pig Latin
and Sawzall are being layered on top of these systems,
to enable faster program development and more main-
tainable code. These languages engender greater trans-
parency in program structure, and open up opportunities
for automatic optimization. This paper proposes a set of
optimization strategies for this context, drawing on and
extending techniques from the database community.

1 Introduction

There is significant recent interest in parallel dataflow
systems and programming models, e.g., Dryad [19],
Jaql [17], Map-Reduce [9], Pig [22] and Sawzall [23].
While the roots of this work date back several decades in
the database, programming language and systems com-
munities, the emergence of new and well-funded appli-
cation areas requiring very large-scale parallel process-
ing is driving this work in somewhat different directions
than in the past. In particular, recent work concentrates
on much larger-scale systems, simpler fault-tolerance
and consistency mechanisms, and stylistically different
languages. This work is leading to a new computing
paradigm, which some have dubbed Data-Intensive Scal-
able Computing (DISC)1 [8].

The DISC world is being built bottom-up. Google’s
Map-Reduce [9] system introduced scalable, fault-
tolerant implementations of two key dataflow primitives:
independent processing of (groups of) records, and ag-
glomeration of records that contain matching values.
Then came Dryad [19], with built-in support for general
dataflow graphs, including operator chains of arbitrary
length and in- and out-bound branching. Now higher-
level languages are being layered on top of these systems,
to translate abstract user-supplied dataflow or query
expressions into underlying parallel dataflow graphs,
e.g., DryadLINQ [21], Jaql [17], Pig Latin [22] and
Sawzall [23].

These high-level languages engender a relatively high
degree of transparency in program structure. For exam-
ple, standard data manipulation operations such as join

1Previously “Data-Intensive Supercomputing.”

and filter are expressed via declarative primitives. Also,
multistep processing is explicitly broken down into the
constituent steps, e.g., join followed by filter followed
by face recognition, rather than being buried inside low-
level constructs such as Map functions.

These forms of transparency, in addition to making
programs easier to write, understand and maintain, also
open up opportunities for automatic optimization. This
paper proposes a set of optimization strategies for the
DISC paradigm. The aim is not to provide concrete or
proven results, but rather to suggest some jumping-off
points for work in this area. Our belief is that good opti-
mization technology, combined with the economics of
programmer resources becoming more expensive rela-
tive to computer resources, will trigger a mass migration
from low-level programming (e.g., direct Map-Reduce or
Dryad programs) to high-level programming (e.g., Jaql,
Pig Latin, SQL), analogous to the migration from assem-
bly to C-style languages to Java-style languages.

1.1 Background: Pig

This paper is motivated by our experience with Pig, an
open-source [4] dataflow engine used extensively at Ya-
hoo! to process large data sets. Pig compiles Pig Latin
programs, which are abstract dataflow expressions, into
one or more physical dataflow jobs, and then orches-
trates the execution of these jobs. Pig currently uses the
Hadoop [3] open-source Map-Reduce implementation as
its physical dataflow engine.

The current Pig implementation incorporates two sim-
ple but critical optimizations: (1) Pig automatically
forms efficient pipelines out of sequences of per-record
processing steps. (2) Pig exploits the distributive and
algebraic [15] properties of certain aggregation func-
tions, such as COUNT, SUM, AVERAGE and some user-
defined functions, and automatically performs partial ag-
gregation early (known as combining in the Map-Reduce
framework), to reduce data sizes prior to the expensive
data partitioning operation.

Our users are demanding more aggressive optimiza-
tion of their programs, and indeed there is room to do
much more on the optimization front.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 267

1.2 DISC vs. DBMS Optimization

In developing automatic optimization techniques for
DISC, we can draw upon many ideas and techniques
from the database community, which has studied set-
oriented data processing for decades, including parallel
processing on clusters [7, 11, 13]. While DISC systems
bear a strong resemblance to parallel query processors
in database management systems (DBMS), the context
is somewhat different: The DBMS context emphasizes
highly declarative languages, normalized data and strong
consistency, whereas DISC is geared toward procedural
code, flexible data models, and cost-effective scalability
through weak consistency and commodity hardware.

Traditional DBMS optimization techniques [18] are
model-based, i.e., they search for “optimal” execution
strategies over models of the data, operators and execu-
tion environment. In the DISC context, accurate models
may not be available a priori, because: (1) Data resides
in plain files for ease of interoperability with other tools,
and the user may not instruct the system how to parse the
data until the last minute; (2) Many of the operators are
governed by custom user-supplied code whose cost and
data reduction/blowup properties are not known a priori;
(3) DISC uses large pools of unreliable and perhaps het-
erogeneous machines, and formulating simple and accu-
rate models of the execution environment is a challenge.

Starting around 2000, motivated in part by consid-
erations related to the ones stated above, the database
community has begun studying adaptive approaches to
one optimization problem: query plan selection [6, 10].
Adaptive query planning does not rely on the a-priori ex-
istence of accurate models, and instead adopts a trial-
and-error, feedback-driven approach.

1.3 Model-Light Approach

DISC provides an interesting opportunity to revisit many
of the specifics of query optimization in a new light. In
particular, it makes sense to pursue a model-light ap-
proach, guided by the following principles:

1. Discriminative use of information. Optimization
decisions should not be made on the basis of unre-
liable information. Conversely, information known
to be reliable should be leveraged. For example, re-
liable file size metadata can typically be obtained,
and knowing file sizes can be useful in selecting
join algorithms (Section 3.2) and scheduling over-
lapping programs (Section 4.1). As another exam-
ple, although the system may not have reliable cost
and selectivity estimates for all operations, certain
ones such as projection, simple filtering and counting
are known to be cheap and data-reducing, and hence
ought to be placed early in the execution sequence
when possible (Section 3.1).

2. Risk avoidance. In cases where key optimization
parameters are missing or unreliable, the optimiza-
tion process should be geared toward minimizing the
risk of a bad outcome. For example, when select-
ing derived data to cache, in the absence of reliable
models for the size and utility of various derived data
sets, the system should construct a diverse portfolio
of cached content (Section 4.2.2). This strategy is
less risky than betting on one particular category of
derived data being the most useful, according to an
unreliable model.

3. Adaptivity. Key parameters like intermediate data
sizes and black-box function costs, which are hard to
estimate a priori, can be measured at runtime. Based
on measurements taken at runtime, the system may
be able to adjust its execution and storage tactics on
the fly, to converge to a better strategy over time. As-
pects that are, at least in principle, amenable to adap-
tive optimization at runtime include dataflow graph
structure (see [6, 10, 16]), load balancing across par-
titions (see [5, 26]), data placement (Section 4.2.1),
and caching and reuse of derived data (Section 4.2.2).

In this paper we lay out some possible optimization
strategies for DISC that align with the above principles.
Section 3 focuses on single-program optimizations that
optimize one program at a time, and highlights ideas
from the database community that may be applicable in
the DISC context. Section 4 focuses on cross-program
optimizations that amortize IO and CPU work across re-
lated programs, and proposes several novel approaches.

Before discussing these optimizations we briefly de-
scribe our Pig Latin language, as a concrete example of
a dataflow language that can be optimized.

2 Pig Latin Language Overview

Pig Latin is our high-level dataflow language for express-
ing computations or transformations over data. We illus-
trate the salient features of Pig Latin through an example.

Example 1 Suppose we have search query logs for May
2005 and June 2005, and we wish to find “add-on
terms” that spike in June relative to May. An add-on
term is a term that is used in conjunction with stan-
dard query phrases, e.g., due to media coverage of
the 2012 Olympics selection process there may be a
spike in queries like “New York olympics” and “Lon-
don olympics,” with “olympics” being the add-on term.
Similarly, the term “scientology” may suddenly co-occur
with “Tom Cruise,” “depression treatment,” and other
phrases. The following Pig Latin program describes a
dataflow for identifying June add-on terms (the details of
the syntax are not important for this paper).2

2In reality, additional steps would be needed to eliminate pre-
existing add-ons like “City” in “New York City”; due to space con-
straints we leave the additional steps as an exercise for the reader.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association268

load and clean May search logs
1. M = load ‘/logs/may05’ as (user, query, time);
2. M = filter M by not isURL(query);
3. M = filter M by not isBot(user);

determine frequent queries in May
4. M_groups = group M by query;
5. M_frequent = filter M_groups by COUNT(M) > 10ˆ4;

load and clean June search logs
6. J = load ‘/logs/june05’ as (user, query, time);
7. J = filter J by not isURL(query);
8. J = filter J by not isBot(user);

determine June add-ons to May frequent queries
9. J_sub = foreach J generate query,

flatten(Subphrases(query)) as subphr;
10. eureka = join J_sub by subphr,

M_frequent by query;
11. addons = foreach eureka generate

Residual(J_sub::query, J_sub::subphr) as residual;

count add-on occurrences, and filter by count
12. addon_groups = group addons by residual;
13. counts = foreach addon_groups generate residual,

COUNT(addons) as count;
14. frequent_addons = filter counts by count > 10ˆ5;
15. store frequent_addons into ‘myoutput.txt’;

Line 1 specifies the filename and schema of the May
query log. Lines 2 and 3 filter out search queries that
consist of URLs or are made by suspected “bots” (the
filters are governed by the custom Boolean functions
isURL and isBot, which have been manually ordered
to optimize performance). Lines 4–5 identify frequent
queries in May.

Lines 6–8 are identical to Lines 1–3, but for the
June log. Lines 9–10 match sub-phrases in the
June log (enumerated via a custom set-valued function
Subphrases) against frequent May queries. Line 11
then extracts the add-on portion of the query using a cus-
tom function Residual (e.g., “olympics” is an add-on
to the frequent May query “New York”).

Lines 12–14 count the number of occurrences of each
add-on term, and filter out add-ons that did not occur
frequently. Line 15 specifies that the output should be
written to a file called myoutput.txt.

In general, Pig Latin programs express acyclic
dataflows in a step-by-step fashion using variable assign-
ments (the variables on the left-hand side denote sets of
records). Each step performs one of: (1) data input or
output, e.g., Lines 1, 6, 15; (2) relational-algebra-style
transformations, e.g., Lines 10, 14; (3) custom process-
ing, e.g., Lines 9, 11, governed by user-defined functions
(UDFs). A complete description of the language is omit-
ted here due to space constraints; see [22].

3 Single-Program Optimizations

Optimization of a single dataflow program can occur in
two stages:
• Logical optimizations restructure the logical dataflow

graph supplied by the user. These optimizations pro-
duce a new graph that is semantically equivalent to

the original one but implies a more efficient evalua-
tion strategy. An example is to move a cheap filter
ahead of more expensive operations with which the
filter commutes.

• Physical optimizations pertain to how the logical
dataflow graph is converted into a physical execution
plan, e.g., as a sequence of Map-Reduce jobs. An
example is to encode a sequence of two filters as a
single Map operation.

3.1 Logical Optimizations
Examples of textbook [24] logical optimizations that are
consistent with our model-light optimization philosophy
(Section 1.3) include:
Early projection. Projection refers to the process of
retaining only a subset of the fields of each record, and
discarding the rest. A well-known optimization is to
project out unneeded fields as early as possible.
Early filtering. Entire unneeded records can be elim-
inated early via filtering. In view of our discriminative
information use and risk avoidance tenets, a filter should
only be moved to an earlier position if there is enough
confidence that it is cheap relative to its data reduction
power. Thus, if the filter involves a UDF, it is better
to leave the filter at the user-specified position since the
UDF might be expensive and moving it earlier may cause
it to be invocated more times than the user intended. As
a possible extension, the cost and data-reducing power of
UDFs can be discovered and exploited on the fly, using
adaptive query processing techniques [10].
Operator rewrites. Sometimes, certain operator se-
quences can be recognized and converted into equiva-
lent operators that have much more efficient implemen-
tations. For example, if a user writes a cross product of
two data sets followed by a filter on the equality of two
attributes, the cross and filter operators can be collapsed
into a join operator that can typically be implemented
more efficiently than a cross product.

3.2 Physical Optimizations
In the current Pig implementation, each logical dataflow
graph is compiled into a sequence of Map-Reduce [9]
jobs. A Map-Reduce job consists of five processing
stages:
1. Map: process fragments of the input data set(s) in-

dependently, and assign reduce keys to outgoing data
items.

2. Combine (optional): process all data items output by
a given map instance that have the same reduce key,
as a unit.

3. Shuffle: transmit all data items with a given reduce
key to a single location.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 269

4. Sort: sort all items received at a location, with the
reduce key as a prefix of the sort specification.

5. Reduce: process all data items that have the same
reduce key as a unit.

Logical operations need to be mapped into these
stages. Sometimes an efficient mapping requires splitting
a single logical operation into multiple physical ones.
For example, a logical duplicate elimination operation
that is to occur in the reduce stage can be converted into a
sort operation (which can be incorporated into the Map-
Reduce sort stage) followed by an operator that elimi-
nates adjacent duplicate data items in a streaming fash-
ion, in the reduce stage.

Join is perhaps the most critical operation, because it
can be very expensive (quadratic cost in the worst case).
There are several alternative ways to translate a logical
join operation into a physical execution plan [14], includ-
ing:

• Symmetric join: Pass both data sets through the
same shuffle-sort sequence, using the join attribute(s)
as the reduce key. Then match pairs of joining
records in the reduce stage.

• Symmetric join over prepartitioned data: If the
data is already partitioned on (a subset of) the join at-
tribute(s), do the matching in the map stage, at which
point the join is complete. (The shuffle, sort and re-
duce stages are not used.)

• Asymmetric join: Perform a map stage over frag-
ments of the larger data set, and in each map instance
read a full copy of the smaller data set to perform
matching. (This execution method avoids having to
shuffle the larger data set.)

The optimal join execution strategy in a given situation
depends on whether the data is prepartitioned, and on
the sizes of the input data sets (asymmetric join can be
best if one data set is very small relative to the other).
The cost differences among strategies can span orders of
magnitude, so it is important to choose wisely.

If the join occurs early in the dataflow and processes
data directly out of stored files, then the choice of join
method can be driven by basic system metadata such as
file sizes and file partitioning method (if any). If the join
occurs late in the dataflow, following operators whose
data reduction/blowup behavior has not been modeled
well, then there is less hope of selecting a good join
strategy in advance. In the latter case, an adaptive “wait
and see” approach may make sense, even though doing
so may incur additional materialization overhead and/or
wasted work due to aborted trials.

4 Cross-Program Optimizations

We now consider combined optimization of multiple
dataflow programs, perhaps submitted independently by
different users. This type of optimization is of interest
if the number of (popular) data sets is much less than
the number of users processing those data sets. At inter-
net companies like Yahoo!, hundreds of users pour over
a handful of high-value data sets, such as the web crawl
and the search query log. In data-intensive environments,
disk and network IO represent substantial if not dominant
execution cost components, and it is desirable to amor-
tize these costs across multiple programs that access the
same data set.

In some cases, programs that access the same data
set also perform redundant computation steps. Dataflow
programs tend to propagate among users via a cut-paste-
modify model whereby users pass around code frag-
ments over email lists or forums. In some cases users
explicitly link their dataflow graphs to subgraphs pub-
lished by other users, using tools like Yahoo! Pipes [27].
Hence it is often the case that programs submitted by
different users exhibit a common prefix. For example,
a processing prefix that occurs frequently at Yahoo! is:
(1) access the web crawl, (2) remove spam pages, (3) re-
move foreign-language pages, (4) group pages by host
for subsequent host-wise processing.

Mechanisms to amortize work across related programs
fall into two categories: concurrent and nonconcurrent
work sharing. Concurrent work sharing entails execut-
ing related programs in a joint fashion so as to perform
common work only once. Nonconcurrent sharing entails
caching the result of IO or CPU work performed while
evaluating one program, and leveraging it for future pro-
grams. We discuss each category in turn.

4.1 Concurrent Work Sharing

If a set of programs sharing a common prefix or subex-
pression are encountered in the system’s work queue at
the same time, an optimizing compiler can create a single
branching dataflow for the simultaneous evaluation of all
the programs [25]. DISC workloads are dominated by
IO-bound programs that scan large data files from end to
end. In this context the most important “shared prefix” is
the scan of the input file(s). Techniques exist for sharing
file scans among concurrent programs [12].

In the presence of opportunities and mechanisms to
share work among concurrent programs, the key open
question is how to schedule programs to maximize the
sharing benefit. In particular:

1. Given that coupling a slow program with a fast one
may increase the response time of the latter, under
what conditions should the system couple them?

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association270

2. Under what conditions is it beneficial to defer exe-
cution of an enqueued program in anticipation of re-
ceiving future sharable programs?

Typically, DISC systems do not attempt to guarantee
a fast response time for any individual program. Rather,
the aim is to make efficient use of resources and achieve
low average response time. Hence we address the two
questions above in the context of minimizing average re-
sponse time. We begin with Question 1.

Suppose a pair of sharable programs P1 and P2 have
individual execution times t1 and t2, respectively, but in-
cur a lesser total time t1+2 < t1 + t2 if merged and eval-
uated jointly. Let ts denote the sharable component of
these programs, such that t1+2 = ts + tn1 + tn2 where
tni represents the remaining, nonsharable component of
program Pi (i.e., t1 = ts + tn1 and t2 = ts + tn2).

If P1 is shorter than P2 (t1 < t2), then the serial sched-
ule that minimizes average response time executes P1

first, followed by P2. Under this schedule the average
response time is (t1 +(t1 + t2))/2 = (3ts +2tn1 + tn2)/2.

If we choose to execute P1 and P2 jointly, then the re-
sponse time is t1+2 = ts + tn1 + tn2 , which is less than the
average response time given by the sequential schedule
iff ts > tn2 . In other words, if more than half of P2’s ex-
ecution time is sharable with P1, then it benefits average
response time to merge P1 and P2 into a single jointly-
executed dataflow program. In the DISC context, where
file scan IO is often the dominant cost, it makes sense to
merge sets of programs that read the same file.

Question 2 is more difficult to answer, because it in-
volves reasoning about future program arrivals, e.g., us-
ing a stochastic arrival model based on the popularity
of each data set. We have studied this question exten-
sively [1]. Our main result is the following.

Suppose programs that read data file Fi arrive accord-
ing to a Poisson process with rate parameter λi. Suppose
also that the dominant cost of these programs is the IO to
scan Fi, which is a large file, and hence tsi ∝ |Fi|.

The quantity |Fi| ·λi represents the sharability of pro-
grams that access Fi: If Fi is large, then a substantial
amount of IO work can be amortized by sharing a scan
of Fi among multiple programs. If programs that access
Fi arrive frequently (large λi), then this IO amortization
can be realized without imposing excessive delay on in-
dividual programs.

In our formal analysis of priority-based scheduling
policies, the factor |F | · λ plays a prominent role in the
priority formulae we derive mathematically, thereby con-
firming our intuition about sharability. Our analytical
model is based on a stationary program arrival process
(Poisson arrivals), but the resultant scheduling policies
appear to be robust to bursty workloads. (The arrival
rate parameter λ can be estimated adaptively based on
recent arrival patterns, using standard techniques.) Our
scheduling policies tend to outperform conventional ones

like FIFO and shortest-job-first, in terms of average re-
sponse time, due to the ability to anticipate future sharing
opportunities.

Importantly, effective sharability-aware scheduling
does not depend on the ability to model the full execu-
tion time of a given program, which can be error prone.
Instead, it is only necessary to model the sharable time
ts, which for IO-bound programs over large files is di-
rectly proportional to the file size |F |. This quantity can
be obtained from file system metadata.

4.2 Nonconcurrent Work Sharing
We now consider ways to amortize work across programs
that occur far apart in time. The mechanisms we propose
can be thought of as forms of caching. Fortunately, in
the DISC context most data is write-once and therefore
cache consistency is not a major concern.

4.2.1 Amortizing Communication

Network IO can be amortized by caching data fragments
at particular nodes in the distributed system, to avoid re-
peatedly transferring the same data. Let us assume that a
scheduler assigns computation tasks to nodes in a man-
ner mindful of data locality and load balancing consid-
erations, as in the Hadoop scheduler [3]. Given such a
scheduler, then ideally the placement of data fragments
onto nodes should be such that the following properties
hold:
1. Popular fragments, used by many programs, have

replicas on many nodes. This property enables bal-
ancing of load across nodes without incurring net-
work overhead to transfer data from busy nodes to
idle ones.

2. Fragments that tend to be accessed together (many
programs access the data residing in a pair of frag-
ments, e.g., to perform a join) have some replicas co-
located on the same node. This property facilitates
strong locality of computation and data.

3. Popular fragments that are seldom accessed together
are not co-located, to avoid hotspots.

The data placement problem has been studied before,
with various static placement schemes being proposed
and evaluated, including a model-free “round-robin” ap-
proach [20]. The round-robin tactic is consistent with the
risk avoidance aspect of our philosophy (Section 1.3).
However, we believe it is possible to achieve the de-
sired data placement properties outlined above, while
still avoiding reliance on explicit workload models, by
making use of adaptivity (also mentioned in Section 1.3).
Our proposed adaptive data placement scheme is:
• Each time the scheduler places a computation task

on a node that does not contain all data fragments

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 271

read by the task, thereby forcing a network transfer
to retrieve the needed fragment(s), store a copy of
the newly-transfered fragment(s) at that node.

• Evict fragment replicas deemed to be of little util-
ity, according to some eviction policy, subject to a
constraint on the minimum replication level of each
fragment for fault tolerance.

The rationale is as follows.
If the scheduler was forced to place a computation task

away from its input data fragment(s), then one of three
situations has likely occurred: (a) the input fragment(s)
are so popular that all nodes containing replicas are busy,
(b) all nodes containing replicas are busy due to the pop-
ularity of other fragments that happen to be co-located
with them, or (c) no single node presently contains a
copy of every fragment required by the operation (e.g.,
a join).

In the first case, our mechanism will increase the num-
ber of replicas of the needed fragment(s), thereby mak-
ing the no-available-copies situation less likely to occur
in the future. In the second case, the number of replicas
will temporarily increase, followed by eviction of unused
replicas on the busy nodes, resulting in a net movement
of data (rather than a copy). In the third case, our mecha-
nism brings all the required fragments to one place, so if
they are accessed together again in the future full locality
will be possible. If the fragments are seldom accessed in-
dependently, the eviction policy will eventually remove
some of the non-co-located replicas, again yielding a net
movement of data rather than a copy.

The success of this scheme hinges on the degree of
temporal coherency in the pattern of programs accessing
data. We are presently investigating the extent of such
coherency in Yahoo!’s workloads. We are also studying
the choice of eviction policy and scheduling policy, es-
pecially in regards to susceptibility to thrashing.

4.2.2 Amortizing Processing

In cases where multiple programs perform the same ini-
tial operation(s), e.g., canonicalize URL strings, remove
spam pages, group pages by host, it may be beneficial to
cache the result of the common operations. (The cached
result may be stored on disk.) In databases, a derived data
set that has been cached is called a materialized view [2].

One approach is to create materialized views manu-
ally, and instruct users to use these materialized views as
inputs to their programs when possible. This approach
is problematic. For one, selecting materialized views
by hand is impractical in large, distributed organizations
where no one person has a complete grasp of how data
is being used around the organization. More importantly,
if users start referencing materialized views explicitly in
their programs, it becomes impossible to remove ones
that are no longer desirable to keep. A preferred ap-

proach is for the system to select and adjust the set of
materialized views automatically, and when applicable
automatically rewrite user programs to use these views.

Standard automated methods of selecting materialized
views [2] rely heavily on models to predict the size of a
view, and the cost saved by using the view in lieu of the
original input data. Ones that are expected to yield high
cost savings relative to their size are selected.

In lieu of reliance on models, we are pursuing an ap-
proach based on adaptation and risk minimization (as
motivated in Section 1.3). Our approach leverages the
fact that DISC architectures store large data sets as a
collection of relatively small fragments, each managed
separately by the underlying file system. The idea is
to hold small fragments of many view candidates simul-
taneously, continuously monitor their effectiveness, and
increase the number of fragments of the most useful ones
while eliminating the least useful ones. Concretely:

1. Enumerate a set of candidate materialized views,
based on identifying common subexpressions among
submitted programs. For example, if removing spam
pages from an underlying web page data set is a com-
mon operation, then the spam-free derived data set is
considered a candidate view.

2. Materialize a few fragments of each candidate view,
e.g., materialize a spam-free copy of one fragment of
the underlying web pages data set.

3. Over time, as new programs are processed by the
system, compare the execution time of branches of
the program that are able to leverage view fragments,
to the execution time for branches that do not bene-
fit from view fragments. The overall execution time
savings attributed to a particular materialized view in
a period of time is called the view’s utility.

4. Add more fragments of views whose utility is large
relative to their size, and conversely remove frag-
ments of views with a low utility-to-size ratio.

5. Continue to adjust the set of materialized view frag-
ments over time, as the workload evolves.

It is likely that a few of the candidate views are highly
beneficial, while others are of little use or take up too
much space. By materializing some fragments of each,
the system ensures that it benefits at least partially from
the “good” views. This approach mirrors the one advo-
cated in investment portfolio theory for risk minimiza-
tion in the presence of uncertainty. Since we do expect
some degree of stationarity in our context, adaptively in-
creasing the percentage of good-performing views in the
portfolio ought to cause the portfolio to converge to a (lo-
cal) optimum. Of course, the optimum may be a moving
target if the workload shifts over time,which motivates
continual adjustment of the portfolio.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association272

We are currently investigating the viability of this ap-
proach, primarily from an empirical standpoint. A the-
oretical treatment of this problem would be of signifi-
cant interest. It would likely touch upon aspects of in-
vestment portfolio theory, online learning theory (e.g.,
multi-armed bandit models), statistical sampling theory,
and submodular optimization theory (because the utility
of materializing multiple views in the same derivation
chain is subadditive).

5 Summary

In this paper we discussed optimization of data-centric
programs in the DISC context, a topic that has strong
similarities but also important differences from database
query optimization. We began by contrasting the two
contexts, and offering three principles for success in the
DISC context: discriminative use of information, risk
avoidance, and adaptivity. Then we highlighted some
database techniques that are, or can trivially be made to
be, compatible with those principles.

We then turned to cross-program optimization. We
motivated the need to optimize ensembles of interrelated
dataflow programs, and argued that existing database
techniques for this problem are insufficient in the DISC
context. We sketched some possible approaches that to
our knowledge have not been explored in either context.

Acknowledgments

We are grateful to the Yahoo! Grid team, especially the
Pig engineering leads Alan Gates and Olga Natkovich,
for their immense contributions to the engineering as-
pects of Pig. We also wish to thank Sandeep Pandey and
Jayavel Shanmugasundaram, for inspiring some of the
ideas in Section 4.2.2. Lastly, we thank Steve Gribble
and Joe Hellerstein for helpful feedback on the paper.

References
[1] P. Agrawal, D. Kifer, and C. Olston. Scheduling shared scans of

large data files, Mar. 2008. In submission.

[2] S. Agrawal, S. Chaudhuri, and V. Narasayya. Automated selec-
tion of materialized views and indexes for SQL databases. In
Proceedings of the International Conference on Very Large Data
Bases, 2000.

[3] Apache Software Foundation. Hadoop software. http://
lucene.apache.org/hadoop.

[4] Apache Software Foundation. Pig software. http://
incubator.apache.org/pig.

[5] R. H. Arpaci-Dusseau. Run-time adaptation in river. ACM Trans.
on Computing Systems, 21(1):36–86, Feb. 2003.

[6] R. Avnur and J. Hellerstein. Eddies: Continuously adaptive query
processing. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2000.

[7] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth,
M. Franklin, B. Hart, M. Smith, and P. Valduriez. Prototyping
bubba, a highly parallel database system. IEEE Trans. on Knowl-
edge and Data Engineering, 2(1):4–24, 1990.

[8] R. E. Bryant. Data-intensive supercomputing: The case for DISC.
Technical report, Carnegie Mellon, 2007. http://www.cs.
cmu.edu/˜bryant/pubdir/cmu-cs-07-128.pdf.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified data process-
ing on large clusters. In Proceedings of the Sixth Symposium on
Operating System Design and Implementation, 2004.

[10] A. Deshpande, Z. Ives, and V. Raman. Adaptive query process-
ing. Foundations and Trends in Databases, 1(1):1–140, 2007.

[11] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B.
Kumar, and M. Muralikrishna. GAMMA - a high performance
dataflow database machine. In Proceedings of the International
Conference on Very Large Data Bases, 1986.

[12] P. M. Fernandez. Red brick warehouse: A read-mostly RDBMS
for open SMP platforms. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1994.

[13] G. Graefe. Encapsulation of parallelism in the volcano query
processing system. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, 1990.

[14] G. Graefe. Query evaluation techniques for large databases. ACM
Computing Surveys, 25(2):73–170, 1993.

[15] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-
totals. J. Data Mining and Knowledge Discovery, 1(1), 1997.

[16] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satya-
narayanan, G. Ganger, E. Riedel, and A. Ailamaki. Diamond: A
storage architecture for early discard in interactive search. In Pro-
ceedings of the USENIX Conference on File and Storage Tech-
nologies, 2004.

[17] IBM Research. Jaql software. http://www.jaql.org.

[18] Y. E. Ioannidis. Query optimization. ACM Computing Surveys,
28(1):121–123, 1996.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dyad: Dis-
tributed data-parallel programs from sequential building blocks.
In Proceedings of the European Conference on Computer Sys-
tems (EuroSys), 2007.

[20] M. Mehta and D. J. DeWitt. Data placement in shared-nothing
parallel database systems. VLDB Journal, 6(1):53–72, 1997.

[21] Microsoft Research. DryadLINQ software. http:
//research.microsoft.com/research/sv/
DryadLINQ.

[22] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig Latin: A not-so-foreign language for data processing. In
Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2008.

[23] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting
the data: Parallel analysis with Sawzall. Scientific Programming
Journal, 13(4), 2005.

[24] R. Ramakrishnan and J. Gehrke. Database Management Systems,
3rd edition. McGraw-Hill, 2003.

[25] T. K. Sellis. Multiple query optimization. ACM Trans. on
Database Systems, 13(1), 1988.

[26] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J.
Franklin. Flux: An adaptive partitioning operator for continuous
query systems. In Proceedings of the International Conference
on Data Engineering, 2003.

[27] Yahoo! Inc. Pipes software. http://pipes.yahoo.com.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 273

