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Abstract

Trusted operating systems provide a number of features beyond the standard discretionary access
control policies of commercial, off-the-shelf operating systems. These include features such as fine-
grained event auditing, least-privilege design, mandatory access control policies, and extensive design
documentation. The TrustedBSD project is adding trusted operating system features to FreeBSD, an
open source UNIX-like operating system under a liberal license. However, TrustedBSD requires extensive
changes to the access control mechanisms in FreeBSD. At this point in the project, we have implemented
file system extended attributes for storing security labels on files, revamped internal handling of privilege
in the operating systems, and are working on an improved generalized access control system.

1 Introduction

1.1 Trusted Operating Systems

A number of features distinguish trusted operating systems from traditional operating systems: carefully
integrated discretionary access control policies, system mandatory access control policies for confidentiality or
integrity, fine-grained event auditing, and a least-privilege design. Additionally, trusted operating systems
must be extensively documented to describe their access control policy and design, allowing the security
features of the operating system to be evaluated. The primary reference for trusted operating systems
has traditionally been the Rainbow Series, more specifically the Orange Book [0D85] released by the US
Department of Defense. [P196]

Discretionary access control (DAC) refers to the protection specified by the owners for objects they create
and manage. In the UNIX context, this generally is limited to permissions on files and IPC objects, such as
FIFOs and UNIX Domain Sockets.

Mandatory access control (MAC) refers to system policies about interaction between classes of users and
objects, usually to limit the flow of information (confidentiality) or the integrity of information. Traditional
policies include the military-style Multi-Level Security policy (MLS), and Biba integrity policies. [BL73]
[Bib77]

Auditing of system events refers to the extensive run-time logging of system events, especially those
events related to authorization and authentication. These logs can be used to assign responsibility, monitor
information flow, as well as to research compromises. More recently, Intrusion Detection Systems (IDS) have
also made use of audit logs.

Least-privilege design refers to the principle of least privilege: subjects should have only the minimum
privilege required to perform necessary tasks. In the context of applications, this has implications for
mandatory access control policies, but in trusted operating systems, it also applies to the ability to violate
operating system policy: for example, to override DAC and MAC limits, configure system resources and
policy, shut down the system, etc.
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More recently, the Common Criteria were standardized by ISO to allow for a standard vocabulary and
evaluation criteria for trusted systems internationally. Since the release of the Common Criteria, many
trusted operating system vendors have begun to target CC protection profiles rather than the Orange
Book. [(CCO00] [ISSO99a] [ISSO99D)

Documentation also plays in important role in trusted operating systems: to achieve any formal evalua-
tions, extensive and careful documentation of the security design of the software is required. This includes
design guides documenting the authorization and authentication policies in great detail, as well as operational
guides for trusted facility management.

1.2 The TrustedBSD Project

The TrustedBSD project seeks to introduce these features in the FreeBSD operating system, providing
them under a liberal license to encourage adoption of trusted operating system features outside of the
traditional, restrictive military environment. Once the code is developed on the FreeBSD platform and in
stable condition, there are also tentative plans to consider migrating this support to other platforms, as
resources permit. Combining both practical open source, commercial, and research goals, the TrustedBSD
project is following both traditional designs for trusted operating systems, as well as improving the security
framework in FreeBSD to permit additional research into access control and system policies.

The TrustedBSD project is being implemented in a number of stages, based both on the dependencies
between components, the desire to build additional experience in the developer base, and the availability
of development resources. In early stages, initial framework and infrastructure improvements are taking
place in the base FreeBSD source code, facilitating the introduction of more advanced features. Built on
this infrastructure, features described above are added to the system in a first implementation; in a second
implementation, abstractions will be improved based on experience gained in the first pass. However, even
early in the project, the FreeBSD developer and user communities will have access to system improvements
and new features.

e In the first stage, support for security labeling and access control in FreeBSD is improved. This includes
the ability to manage and persistently store additional security labels for persistent objects, devolution
of the superuser privilege into individually assigned and managed capabilities, and clarifications and
consistency improvements in inter-process and file system access control. Additionally, support for
discretionary access control is improved through the introduction of fine-grained Access Control Lists
(ACLs) on files and directories.

e In the second stage, the kernel and user-land environments are modified to take advantage of im-
proved privilege structuring, allowing reduced privilege to be allocated to tools and daemons that take
advantage of privilege.

e In the third stage, initial support for mandatory access control is introduced, building on the improved
discretionary access control support, object labeling, and privilege management. Both confidentiality
and integrity models will be supported, as well as scalable system partitioning schemes.

e In the fourth stage, auditing of system events will be introduced, both for traditional audit log purposes,
and with the intent of introducing a pluggable host IDS interface.

e In the fifth stage, access control facilities will be reworked for improved generalization, with the intent
of allowing new security models to be pluggable, permitting easy extension and configuration. Existing
access control models and auditing support will be reworked to fit within this framework.

Throughout the project, an emphasis will be placed on cross-platform portability, standards, and docu-
mentation.

1.3 Project Status

The TrustedBSD development group has made substantial progress, including participation in the trusted
operating system community, interface portability and standardization, and the implementation of features



including file system extended attributes, fine-grained privileges through capabilities, access control lists,
and improved access control. Initial work has also begun on mandatory access control, and work leveraging
past efforts relating to even auditing is in the planning stages. The remainder of this paper is dedicated to
describing these new features, their implementation, and portability concerns.

2 Standards and Portability

Trusted operating systems have been active area of research and development since the early 1970s. A
large number of trusted operating system products have been produced, and a moderately sized developer
community exists, as well as interest in the US Department of Defense, and around the world. In the
past, efforts have been made to standardize interfaces to common trusted operating system features, using
POSIX [IEE90] as a vehicle for the standards process. Participating in this community is important, as all
members of the community have much to gain through common interfaces supporting common applications,
which are, contrary to common operating system designer beliefs, the mainstay of real-world computer use.
An important aspect to the TrustedBSD project is participating in appropriate forums, and monitoring of
other projects to understand their direction, leverage their progress, and assist in their development. As
with other areas in operating system development, a healthy combination of competition and cooperation
leads to the best results.

2.1 POSIX.le

The POSIX.1e draft standard [IEE97] from IEEE is the result of a working group within the trusted OS
community seeking to standardize API calls for common trusted operating system features. These include
auditing, access control lists, fine grained privileges (“capabilities”), information labeling, and mandatory
access control. The standardization effort failed for a variety of reasons, but the draft was released by IEEE
for public redistribution. The most recent draft version, D17, has been adopted by the TrustedBSD project,
as well as others including members of the Linux community. A number of existing commercial operating
systems include features closely resembling those in POSIX.1e, including most prominently Trusted IRIX,
as well as features in Solaris.

Interest in the POSIX.1le draft standard continues, with discussion of its feature set in a number of
forums, including a POSIX.1le mailing list maintained by the author of this paper. While some features
are of limited value to many vendors, including the information label specification, other sections of the
draft are cogently written and include detailed rationale for design choices, such as the access control list
(ACL) and capability mechanisms. Where necessary and desirable, the TrustedBSD project makes use of
these features, conforming where possible to the APIs present there. In June, 2000, SGI held a workshop on
POSIX.1e capabilities to gather together elements of the Linux community in light of weaknesses discovered
in their capabilities implementation. This forum provided a useful vehicle for resolving ambiguities in the
text, and understanding the implications for modern UNIX-like operating systems, especially in the context
of features unanticipated by the authors.

3 UFS Extended Attributes

The TrustedBSD feature set requires that new meta-data be persistently associated with files and directories
including access control lists, capability sets, and mandatory access control labels. To serve this need,
extended attributes were added to the Fast File System (FFS) [MBK'96] in FreeBSD as of version 5.0-
RELEASE.

Extended attributes permit sets of arbitrary (name, value) pairs to be associated with files and directories
in a file system, allowing the file system to support a class of dynamic extensions requiring additional meta-
data without changing the on-disk storage format. Support for extended attributes is present in a number
of operating systems; in this section, we consider the semantics of extended attributes in various operating
systems, the requirements for attributes in TrustedBSD, the implementation that is currently in the FreeBSD
5.0-CURRENT source tree, and its performance implications. As this new feature introduces new API calls,
we also consider portability issues and standards efforts in the trusted operating system community.



3.1 Requirements

TrustedBSD functionality places a fairly concise set of requirements for on-disk meta-data storage associated
with files and directories. The various features of TrustedBSD associate a fixed set of well-defined labels
with file system objects. These labels must be persistently stored across reboots and failures, and the labels
must be bound to the same object regardless of renames, linking operations, etc, much in the style of existing
file permissions. All labels need not be defined for all files: in the POSIX.1e specification, some files may
have normal permission sets rather than complete ACLs. While most TrustedBSD labels have a fixed size,
the implementation should support variable size attributes. Labels must be protected from unauthorized
inspection and modification, as the integrity and secrecy of these labels can impact system security.

3.2 Semantics
To satisfy these system and application requirements, the semantics for UFS extended attributes are:

e Extended attributes (EAs) on a file system inode are a set of (name, data) pairs. For each inode, an
attribute name may be defined or undefined, and if defined, may be associated with zero or more bytes
of data. This is similar to environmental variables in common shells.

e This attribute data, unlike the file itself, does not comprise a complete address space accessed through
an independent file descriptor: it is not a file fork. Instead, relatively inflexible APT calls are provided
to set, get, and remove the data associated with a particular named attribute on the file. These
operations are atomic for a particular name, meaning that it is not possible for a get operation to
return an inconsistent view of a particular attribute: writes and reads of a particular attribute are
serializable.

e Protection models may exist protecting particular attributes, on the basis of namespace, or discre-
tionary /mandatory access control policies. This protection mechanism should make it possible for EAs
to be used to safely store system attributes such as ACLs, mandatory access control labels, and capa-
bilities. As application writers may want to make use of attributes from user-land, it may be desirable
not to preclude this use.

e For the purposes of management, and potentially backup, it is desirable to be able to retrieve a list of
attributes defined for a particular inode.

3.3 Interfaces

The extended attribute service is exposed to userland processes through the addition of several new system
calls, providing the ability to set, retrieve, and remove extended attributes from files and directories by
name. These services are reflected in similar Virtual File System (VFS) vnode operations within the kernel,
and a VFS operation used to configure extended attributes in UFS. The interface also supports the retrieval
of defined attribute lists for a file via a special case attribute retrieval.

3.3.1 VFS

The Virtual File System (VFS) provides an abstracted file system interface for consumers within the kernel.
Vnodes represent files and directories, and are the target for most file system operations. Vnode operations
are implemented by the file system associated with the vnode.

int

VOP_GETEXTATTR(struct vnode *vp,
const char *name,
struct uio *uio,
struct ucred *ucred,
struct proc *p);

The VOP_GETEXTATTR() vnode operation retrieves a specific attribute by name from a locked vnode: the
caller provides a struct uio to specify the destination within kernel or user memory space. If non-NULL,



struct cred * identifies the credentials authorizing the attribute request; otherwise, the request is assumed
to have originated within the kernel. The name argument points to the attribute name to be retrieved; if
NULL, a list of defined attributes for the vnode will be returned within the data block as a series of NULL-
terminated strings, followed by a zero-length NULL-terminated string. This list may be limited to the list of
attributes accessible to the caller. On success, 0 is returned; otherwise, an errno value is returned identifying
the failure mode.

int

VOP_SETEXTATTR(struct vnode *vp
const char *name,
struct uio *uio,
struct cred *cred,
struct proc *p);

The VOP_SETEXTATTR() vnode operation sets a specific attribute by name for a locked vnode: the caller
provides a struct uio to specify the source within kernel or user memory space. If non-NULL, struct
cred * identifies the credentials authorizing the attribute request; otherwise, the request is assumed to have
originated within the kernel. The name argument points to the attribute name to be set. On success, 0 is
returned; otherwise, an errno value is returned identifying the failure mode.

int
VFS_EXTATTRCTL (struct mount *m,
int cmd,
const char *attrname,
caddr_t arg,
struct proc *p);

The VFS_EXTATTRCTL () VFS operation is UFS-specific, and is used to configure the extended attribute
service on a UFS file system. The cmd argument specifies the management request:

| cmd | Description |
UFS_EXTATTR_CMD_START Start extended attributes on the file system
UFS_EXTATTR_CMD_STOP Stop extended attributes on the file system

UFS_EXTATTR_CMD_ENABLE | Enable a specific named attribute
UFS_EXTATTR_CMD_DISABLE | Disable a specific named attribute

In each case, m identifies the file system on which the operation is to be performed; attrname identifies
the attribute, if any, impacted by the call. The arg argument points to call-specific information; in the case
of UFS_EXTATTR_CMD_ENABLE and UFS_EXTATTR_CMD_DISABLE it points to add additional pathname identifying
the extended attribute backing file to use. This call is UFS-specific, and non-portable.

3.3.2 System Calls

System calls allow userland processes to make requests for kernel services; for the extended attribute im-
plementation, all of the userland system calls map directly into a corresponding vnode or file system VFS
operation, with almost identical semantics.

int

extattr_get_file(const char x*path,
const char *attrname,
struct iovec *iovp,
unsigned iovcnt);

The extattr_get_file() system call maps into VOP_GETEXTATTR(), accepting a pathname path, at-
tribute name attrname, and struct iovec *iovp to scatter-gather read attribute contents into userland
buffers. If the attribute name is NULL, reads a list of attributes that may be accessible to the caller.



int

extattr_set_file(const char *path,
const char *attrname,
struct iovec *iovp,
unsigned iovcnt);

The extattr_set file() system call maps into VOP_SETEXTATTR(), accepting a pathname, path, at-
tribute name attrname, and struct iovec *iovp to scatter-gather write attribute contents from userland
buffers.

int
extattr_delete_file(const char *path,
const char *attrname);

The extattr_delete file() system call maps into VOP_SETEXTATTR() with a NULL uio argument, caus-
ing the attribute attrname on file path to be deleted.

int

extattrctl(const char *path,
int cmd,
const char *attrname,
char *arg);

The extattrctl() system call maps directly to VFS_EXTATTRCTL (), and permits an appropriately priv-
ileged caller to configure extended attributes on the UFS file system identified by path.

3.4 Existing Implementations

Before implementing extended attributes in TrustedBSD, it was necessary to consider implementations on
other operating systems, both to understand possible approaches the the problem, and to understand their
semantics from the perspective of portable application interfaces. A variety of operating systems implement
mechanisms with semantics like those described for extended attributes, binding additional information to
files and directories, beyond the normal file address space and static attributes. These implementations are
generally split into two categories: extended attributes, and file forks.

Extended attributes generally fit the semantics described here, with minor variations in the details of the
APT calls, and a fairly broad variation in underlying backing store. EAs are implemented in two forms on
the IRIX platform—first, in a form where-in each attribute name is backed to a file in the file system, treated
as an indexed array of data by inode. This technique is referred to as “Plan G,” and was used in Trusted
TIRIX to store MAC labels and other security attributes. In more recent versions of IRIX supporting the
XFS file system, EAs are built into the meta-data supported by the base file system format, and handled as
part of the journalling support of the file system, while maintaining many of the same semantics.

Support for extended attributes in Linux has been developed as a set of patches, based on earlier work
implementing Access Control Lists. In the Linux implementation, a direct block pointer in the inode is
allocated to pointed the an extended attribute block, which stores a set of variable length attribute records.
This block is not currently reference counted, nor is there a way to chain additional blocks, bounding the
size of all attributes on an inode to the block size of the file system.

The IBM HPFS file system also provides support for EAs as part of its fnode structure; the first 316
bytes will be stored in the fnode of the file; after this, EAs are accessed in a file system run via a B+ Tree.
The total size of all EAs is bounded to 64k. [Dun89]

File forks represent the extreme in association additional names and data with a file system object: a
complete additional address space. A number of file systems provide file forks, with varying semantics; some
provide additional protection for each forks, others rely on a single protection model for all forks. In many
of these environments, the file fork is accessed through an extension to the normal file system namespace,
allowing a separate file handle to be associated with access to each fork, and all of the normal file system
operations to be performed on the fork.

The Solaris file system does not provide a generic EA service, but does allow for the storage of ACLs
on file system objects via a “shadow inode,” a second inode linked to the first by an inode pointer in the
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Figure 1: Extended Attribute Backing File Layout

primary inode. This inode is reference counted, and may be referred to by multiple files with the same ACL.
While the API resembles more an extended attribute, the underlying mechanism resembles more a file fork,
in that it may potentially support far more broad semantics. Both NTFS and HFS+ support complete file
fork address spaces, returning file handles with all normal file access methods available.

3.5 Design and Implementation in TrustedBSD

The TrustedBSD extended attribute implementation was developed rapidly, and with a number of specific
goals in mind. First, it must cleanly provide a service consistent with the portable interfaces defined in
previous sections. Second, it should provide acceptable levels of performance and consistency for trusted
operating system environments, while not precluding the development of faster implementations, or those
with stronger consistency guarantees. Third, the implementation should be straight forward and quick to
implement, so that other new services could leverage the attribute service. Fourth, for the sake of an initial
implementation and ease of use, the implementation should not require substantial (if any) changes to the
underlying file store format, or low level management tools, such as the file system checker.

These goals provide for an implementation in the short term that meets application and system require-
ments, while providing a low overhead means to test and use TrustedBSD services without heavy-weight
system modifications or reconfiguration. The implementation is also tailored to the requirements of Trust-
edBSD: a relatively small set of well-known attributes, generally of a fixed maximum size per file or directory.

3.5.1 Storage

The UFS EA service, in a manner similar to that in Trusted IRIX Plan G and to the UFS Quota service,
backs extended attribute data into a per-attribute, per-fs backing file. The backing file acts as an array of
attribute data blocks, indexed by the inode number of the file each “attribute instance” is associated with.
The file is prefixed by a per-attribute header, describing the contents of the file-specifically, the version of
the file header, and maximum length of the attribute data allowing offsets into the file to be determined.
Each attribute instance is also prefixed by a header storing its current status (defined or undefined), the
generation number of the inode it is associated with for sanity checking, as well as its current length (0 or
more bytes, up to the file header-defined maximum). This layout is illustrated in Figure 1.

The inode generation number allows the implementation to determine whether the inode has been freed
and re-allocated while the attribute was disabled; if the generation number is out of sync, the attribute is
treated as undefined. This might occur if the file was lost and deleted by fsck during the boot process prior
to attributes being enabled. This layout results in the header of a particular inode’s attribute instance being



located at the following offset of the backing file:

/*
* Find base offset of header in file based on file header
* size, and data header size + maximum data size, indexed
* by inode number
*/
base_offset = sizeof (struct ufs_extattr_fileheader) +
ip->i_number * (sizeof (struct ufs_extattr_header) +
attribute->uele_fileheader.uef_size);

This allows constant-time access to the attribute of each file or directory based on a priori knowledge
(inode number) of the target. Depending on the requirements on the attribute, the backing file may start
out as a sparse file, or it may be preallocated. Sparse allocation for larger attributes substantially conserves
space, with the risk that an attribute write may fail due to a lack of disk space. Preallocation can be used to
guarantee that the space is available, at a cost of space that may otherwise be unused. In practice, for small
fixed size attributes, such as capabilities and MAC labels, this is not substantial wastage. For capabilities,
where only relatively few binaries have a defined 24-byte label, this will amount to only .50f disk space on
an average install. This space wastage can be reduced by making use of a sparse backing file, with the
understanding that running out of disk storage can result in a failure to write out attributes; fine for static
capability storage, but less appropriate for ACLs which may be allocated frequently.

The extended attribute implementation currently provides only weak consistency guarantees: in the
default implementation, writes are performed synchronously, to guarantee to the caller that updates are
written out before the call returns. As shown later in the section, this design choice can substantially impact
performance for frequently modified attributes. The risk of inconsistencies can be reduced by selecting
attribute sizes that are smaller than a single file system block, allowing the update to be atomic. Potential
remedies to this problem are discussed later in the section.

Backing files are typically stored in the “.attribute” directory off of each file system root, named after
the attribute they store. Backing files may also be stored on other file systems.

3.5.2 Initialization

Extended attributes are intended to be enabled from mount-time for a file system. The VFS_EXTATTRCTL ()
VFS call and extattrctl() system call provide an interface for privileged users to map a particular attribute
backing file to an attribute name. As each attribute is stored in “.attribute/attributename” off of the file
system root, it is possibly to easily automate the loading of extended attributes on a per-file system basis.

One down-side to this approach to attribute storage is that privilege is required to create new attribute
names in the system; while this is appropriate in the TrustedBSD environment, it may be less so in environ-
ments where application programs expect to be able to make use of arbitrary attributes for file meta-data.
For example, in SGI’'s XFS file system, applications can create new attributes in the application namespace
without intervention by an administrator, and frequently do so, storing information such as file icons for file
managers in these attributes.

3.5.3 Protection Model

The protection model selected was one similar to the XFS and Linux models: two distinct EA namespaces
are provided, “application” and “system”. System attributes are identified by a “$” symbol prefixing the
attribute name; only users with appropriate privilege are permitted to directly modify or read attributes in
this namespace. All other attribute names are interpreted as existing in the application namespace, and are
subject to the discretionary and mandatory protections on the target file or directory, permitting the owner
of the file system object to protect the attribute data as needed.

When applications need to modify the contents of a system extended attribute, such as the access ACL
for a file, they are expected to make use of existing system calls for those file attributes. This permits the file
system to hide whether or not the implementation of these labeling features is provided by the file system
itself, or through the EA service. This is distinct from the Linux implementation, where the underlying



implementation for application services retrieving ACLs on files makes use of the system attribute directly.
As such, mapping of labels into extended attributes occurs in the supporting userland libraries in Linux, as
well as in the kernel.

3.5.4 Performance

The majority of the performance impact of adding trusted operating system features to an off-the-shelf UNIX-
like operating system lies in the management of persistent labels. As such, understanding the performance
implications of the extended attribute implementation helps explain any reduced performance as a result of
other features. In this section, we analyze the performance impact of the extended attributes implementation,
as well as the cost of varying consistency requirements. In a later section, will examine the impact of the
EA implementation in the context of a specific consumer, the capability label.

For the purposes of performance measurement, we consider a set of micro-benchmarks measuring the
latency of extended attribute access on an system under low load. As there are two components to each
attribute, an attribute instance header storing attribute instance meta-data, and the attribute data itself,
we perform two sets of measurements: first, measurements on an extended attribute with a data size of zero
bytes, and second, on an extended attribute with a data size of twenty-four bytes, the size of a capability
structure (described later in this paper). An additional variable in the reading of the extended attribute is
whether or not it was defined—we refer to the situation in which the caller requests an EA and it is defined
as a “read hit”; when the EA is not defined and an error is returned, it is defined as a “read miss”. An
additional variable for extended attribute reading is whether or not the attribute was actually defined, and
therefore might require a read of attribute data as well as the attribute header. We are also interested in
comparing the costs of cached access to extended attribute data vs. cached access to traditional attribute
data (such as inode time stamps and file mode).

To this end, the following matrix of tests was performed. Each test is repeated ten times, with the first
iteration preceded by a flushing of the file system cache. Each iteration consists of the operation on a single
file, preceded by an untimed stat () system call to assure that the name and inode are in the cache.

| Name | Description |
stat Latency to stat a file
utimes Latency to modify the timestamps on a file

openclose | Latency to open and close a file

read-miss | Latency of a “read miss” on an attribute
read-hit Latency of a “read hit” on an attribute
write-sync | Latency of a synchronous write on an attribute

These performance tests were performed on an E-Machine 366i2, based on an Intel Celeron 366 chip, with
64mb of RAM, running FreeBSD 5.0-CURRENT with POSIX.le capability patches. The timing of tests
was measured using the clock gettime() function; in this environment clock getres() returns a clock
resolution of 0.000000838 seconds. In all cases, results were several orders of magnitude more coarse than
the clock resolution. No extraneous processes ran during the tests, and a reboot was performed between
each test to restore system state and flush all file system caches.



0—-Byte Extended Attribute

0.045
0.04 4%
0.035
0.03
0.025
0.02
0.015
0.01

0.005
38883004
o

1 23 456 7 8 910

Seconds per Operation

Iterations

stat
utimes
openclose
read—-miss
read-hit
write—sync

X AV > 4 ¢ B

write—async

Figure 2: 0-byte Extended Attribute, with synchronous writes

24—-Byte Extended Attribute

0.045
c 0.04%
§e]
=
@ 0.035 B stat
[} )
o 003 ¢ utimes
9 0.025 vV openclose
[} .
o 002 A read—miss
[%))] > —hi
-8 0.015 read—hit
(e} ¥ < write—sync
© 001 .
3 X write—async
9 0.005 - T
¢ < < <« <
0

123456 7 8 910

Iterations

Figure 3: 24-byte Extended Attribute, with

synchronous writes



From Figure 2 and Figure 3, it is clear that the initial latency associated with loading the extended
attribute from disk is the predominant factor in the pre-cache first iteration, at approximately 40 milliseconds,
four times as slow as the baseline stat (), utimes(), and openclose() figures, all around 11 milliseconds.
Reads and writes will both involve first reading in any supporting meta-data for the file, including indirect
pointer blocks, and the data blocks themselves: writes will in general be modifications of an existing block, or
an allocation of a new block, so a write cannot un-block until appropriate data and meta-data are available
to determine how the write will occur, and to allow it to be buffered. At this resolution, later iterations
see all extended attributes operations approach that baseline except for the synchronous extended attribute
write. In the 0-byte extended attribute, the performance of the write is fairly consistent, whereas with the
24-byte attribute, it is far less predictable.

The slow write performance past the initial iteration, once data is in the cache, is due to the I0_SYNC flags
specified as an argument to the VOP_WRITE() calls in the extended attribute implementation— one invocation
of VOP_WRITE() when only the header is written out, and two when actual data is written. As the security
labels are sensitive to file system consistency, synchronous writing guarantees that the label change is written
to disk before the attribute write returns. This is a realistic safety policy with unfortunate performance
side effects; however, there has been extensive research conducted on maintaining file system meta-data
consistency while avoiding the cost of fully synchronous operations. In FreeBSD, the Soft Updates technique
[MG99] is used to order and write-combine cached meta-data updates to always maintain a consistent and
recoverable file system on disk, resulting in equal or better performance relative to asynchronous operation.
It is easy to imagine that such techniques could also be applied to extended attribute meta-data, allowing us
to compare the performance of extended attribute writes using asynchronous writes. The write-async graph
line, therefore, represents the same write operations with the I0_SYNC flag removed. At this resolution,
the asynchronous write case appears to perform at about the same level as the extended attribute reads.
Therefore, to better understand the performance properties once the data is in the cache, we consider the
same data at a different resolution, leaving out the synchronous file write case, and the initial load from the
disk into cache.

| Name | Description |

| write-async | Latency of asynchronous write on an attribute |

In the next two graphs, Figure 4 and Figure 5, the same results are presented, with improved resolution.
When cached, the performance of all of the tests is fairly consistent: at approximately 26 microseconds per
access, the stat () vnode call represents a safe approximation of the minimum cost for VFS traversal and
locking to access the inode statistics. At 50 microseconds, openclose() reflects the same cost: two locking
vnode operations. In a best-case scenario, an extended attribute implementation would not be able to out-
perform these cases, as the EA implementation will see increased cost over retrieving data in the inode, and
scheduling an inode write, while still paying the same vnode operation costs. The utimes () vnode operation,
at around 87 microseconds per invocation, represents the minimum time to perform a meta-data update on
a UFS inode, scheduling a write or a softupdate. Both the 0-byte and 24-byte extended attribute read miss
requests perform better than the utimes operation, as does the read hit operation at 78 microseconds for the
0-byte attribute and 81 microseconds for the 24-byte attribute. If the cost of name lookup and VFS operations
is subtracted from the un-cached case, the actual cost of the EA disk operations is around 28.5 milliseconds
for all operations. The asynchronous extended attribute write hovers at 112 microseconds for the 0-byte
attribute, and 118 microseconds for the 24-byte attribute. However, both of these compare quite well with the
1.24 millisecond synchronous write for the O-byte attribute, and the 2.8 millisecond synchronous write for the
24-byte attribute. Given that a normal inode attribute update, utimes () takes 90 microseconds to complete
in cache, the cached behavior of extended attribute writes when asynchronous closely approximates that of
regular attributes; assuming that the asynchronous write operation has to go through the same procedures
as utimes (), this places the cached overhead of an EA write at 25 microseconds, around the cost of a
single stat () operation. These results suggest that this extended attributes implementation, when caching
is effective, can approximate the performance of native vnode statistics operations. In situations where
worst-case disk accesses must be made without caching, a slow-down can be experienced; however, when
overlapping elements of the EA and non-EA tests are removed, this cost is not substantial; in the context
of most TrustedBSD EA applications, the name and vnode operations on the target vnode will already be
cached, meaning that in these applications the smaller cost will be paid most often. To understand these



costs in the context of a real-world workload, benchmarks later in this paper consider the cost of a 24-byte
EA capability load at exec()-time.
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These performance tests did not attempt to measure the performance costs of concurrent access on
extended attributes. Given that the implementation involves coarse-granularity locking on the extended
attribute file, there is a strongly likelihood that frequently requested, un-cached extended attributes would
result in contention on the attribute’s lock. However, as vnode locks are required to be held on a vnode
before a VOP_WRITE() or VOP_READ () operation can take place, this contention may be unavoidable by virtue
of using a single backing file.

3.5.5 Potential Improvements

This implementation makes no attempt to reduce storage space overhead through reference counting and
singular storage of redundant data. For example, ACLs over a set of files are often identical, either by
virtue of the ACL inheritance property on newly created directory entries, or as a result of management
requirements for the files. Some implementations, such as the older Linux ACL implementation, and the
shipped Solaris ACL implementation, reference count ACL data blocks, allowing them to be shared copy-on-
write among inodes. A number of schemes exist that could make this feasible in the current implementation,
including probabilistic techniques for detecting redundant data, and introducing a layer of indirection.

Performance could be improved in a number of ways. The double VOP_WRITE() call in synchronous
operation substantially impacts performance; combining the two writes into a single invocation would improve
performance with no loss in functionality. Performance could also be improved by reducing reliance on the
file system cache to store in-memory extended attributes. Caching of attributes would benefit from being
tied to in-memory inode and vnode data, attempting to match the in-memory storage of attributes with their
respective inode/vnode data. Similarly, false sharing could be reduced, and both locational and temporal
locality could be leveraged.

Concurrent performance would also be improved via improvements to the locking model: currently, a
single lock exists per-attribute, per-file system. ILe., a single lock is present for an $acl_access attribute
instance on the /usr file system, disallowing concurrent access to multiple instances of the attribute at a
particular moment, in effect serializing reads and writes to that attribute over all files in the file system,
rather than over a single file. By pushing down lock granularity, preferably relying on vnode locks to protect
against concurrent access to attributes on a particular vnode, performance for frequently accessed and hence
highly contentious attributes (such as ACLs) might be improved.

The backing file mechanism allowed for fast implementation, and acceptable performance. However, it
imposes both performance and management limits on the use of extended attributes: storage space is wasted,
and not located optimally on the disk for simultaneous reading of associated inodes, and the initialization
model for new EAs is too restrictive if they are to be used by applications, rather than allocated by ad-
ministrators. These problems, as well as consistency concerns relating to system failure and crash recovery,
suggest tighter integration with the file store, and with the soft updates consistency mechanisms.

3.5.6 Portability

Substantial effort has been made to come to agreement on common extended attribute service semantics
across the IRIX, Linux, and FreeBSD platforms, via the POSIX.1e forum, as well as in-person meetings and
private communication. In general, the semantics are agreed upon: the atomic replacement, environmental
variable-like model seems to be widely accepted as the appropriate semantic for EA access and modification.
Similarly, the protection model relating to application and system namespaces seems well-accepted. The IRIX
EA implementation provides a namespace argument in the API calls in the form of a flag, whereas both
FreeBSD and Linux rely on an in-band “$” symbol in the attribute name to indicate a system attribute.
Actual API calls are still under negotiation, as are command line utilities, but it is expected that if not
identical, the calls will be very similar. In the mean time, interfaces on Linux and FreeBSD should be
considered experimental.

4 Process Capabilities

UNIX systems impose a system safety policy, isolating user processes based on credentials, limiting access
to files based on file permissions, and protecting system resources from inappropriate access or modification.



Typically, the root user is permitted to selectively violate these policies based on holding an effective uid of
0: root can kill any process, read or write any file in the file system, and configure system resources such as
network interfaces and hardware devices. This concentration of privilege in the uid 0 account represents a
substantial risk by violating the principle of least privilege: that subjects be given only the privileges they
require to complete a job. With the uid O policy, even simple applications such as ping, which requires
only the ability to bind a raw socket, are given complete ability to violate any system policy. Bugs in such
applications often leak privileges that they do not even require to function.

4.1 POSIX.1le Capabilities Model

The POSIX.1e draft specification from IEEE describes an alternative framework for the management of
special privilege in a UNIX-like environment. Rather than relying on a simple check of a processes effective
uid to determine privilege, each process is associated with a set of capabilities. Possessing a capability
permits the process to violate a specific part of the system protection policy when required, allowing a least
privilege policy to be implemented. In the superuser model, privileges could become elevated during the
execution of setuid and setgid programs, gaining additional credentials; a setuid-root program allows the
process to attain high levels of privilege. In the capabilities model, it is similarly possible to bind privileges
to files, but in a fine-grained manner. This permits executables to gain specific privileges required for their
functioning, but unlike the setuid model, does not wholesale grant unnecessary privileges.

Each capability is associated with several flags, determining the availability and inheritance of that
capability. The CAP_PERMITTED flag indicates whether or not the process is permitted to make use of the
capability. The CAP_EFFECTIVE flag determines whether or not the capability is currently enabled for the
process, allowing the process to selectively enable the capability only when required, limiting the scope for
damage. The CAP_INHERITABLE flag allows a process to determine whether or not binaries executed by the
process will inherit the capability, allowing a privileged process to bound the privilege of another program
it executes.

When a capability is bound to a file, these three flags are also present, indicating what rights a process
may gain through executing the binary, whether or not they are effective by default, and determining in
what situations capabilities will be inherited from the parent, and what the inheritance flags of the process
should be set to by default when the program is executing.

In the POSIX.1e model, capabilities for a process are determined using the following formulas at exec()-
time:

pI' = pI

pP' = (fP&X)|(fI&pI)
pE' = (fE&pP")

pl, pI' Process inheritable flags prior to and following exec()
pP, pP' | Process permitted flags prior to and following exec()
pE, pE' | Process effective flags prior to and following exec()
X Undefined global bounding set

The choice of capabilities in TrustedBSD is largely derived from portability concerns, although gener-
ally speaking, the set of capabilities in existing capability implementations matches the requirements for
TrustedBSD. It should be observed that in common UNIX implementations, a number of the capabilities
provide for overlapping or equivalent functionality. For example, the POSIX.le CAP_FOWNER, CAP_SETFCAP,
and CAP_SETUID flags can be leveraged to provide identical privilege. However, the selection of capabilities
reflects the type of privilege required, and that these privileges may not be equivalent in all implementations.
For example, in environments where loadable kernel modules have safety checks and properties, such as the
SPIN/Modula-3 [Ber95] environment, the ability to modify the kernel at run-time does not connote all
privilege in the system. That said, these ambiguous capabilities should be managed with care.



4.2 Capabilities Bound Extension

POSIX.1e draft 17 defines the basic CAP_EFFECTIVE, CAP_INHERITABLE, and CAP_PERMITTED flags. In the
TrustedBSD implementation, a per-process inherited privilege bound is also available. This may be used to
provide services in the style of the jail() system call, permanently limiting the capabilities acquired by any
future child process of the current process. This feature is not described in POSIX.1e, but has been actively
discussed on the POSIX.1le mailing list, and in other related forums.

Inherited capability bounds are implemented as an additional u_int64 _t reflecting a mask of capabilities
permitted for a process, and may be set using the non-portable cap_set_proc mask() system call. This
bound may be set only by processes with the CAP_SETPCAP capability effective for the process; even with
CAP_SETPCAP, the new bounding set must be a superset of the old bounding set, permitting some forms of
nested bounding. This additional bit-mask takes effect during the inheritance procedure following a call
to exec(), where the bound limits the capabilities acquirable for the process by executing the binary. If
the process setting up the bound appropriate configures its own capabilities, there is no path by which
the capability set can be expanded beyond those permitted by the bound. The capability bound, pB is
inserted into the inheritance equation to replace the undefined X, representing the starting bound prior to
the invocation of exec().

X =pB

In the Linux implementation, a slightly different substitution is used, providing support for a per file-
system bound on capabilities gained, a property of the mount options. As with the nosuid mount flag, this
allows the file system-wide disabling of capability features. Such a feature is under consideration for the
TrustedBSD implementation, also:

X = (fB&pB)

One implication of inherited capability bounding is that that programs will be less likely to correctly
predict the privileges they will end up running with on the basis of being correctly installed in the file system.
This raises the question of whether or not a binary should be executed if its resulting effective capability set
is not that predicted by the base rules or described specifically by its permitted set: i.e., that the program
requires a capability that was not permitted within the jail. Two failure modes are easy to imagine: first,
that the application is responsible for determining if it gained all capabilities it required, which is possible
through the cap_get_proc() system call. Second, the invocation of exec() might be blocked with EPERM. In
the current implementation, the application is responsible for making the determination of whether or not
it has sufficient privilege to perform the operation; this lets an application with multiple privileges maintain
some functionality, at the cost of being aware that some privileges it expects might not be present. In a
jail(), for example, this might allow an administrative tool only to inspect settings, rather than modify
them, returning a permission error as appropriate.

4.3 Mapping Privileges into Capabilities

POSIX.1e defines a base set of capabilities, each associated with the violation of a specific system policy
associated with a POSIX call. In essence, the POSIX.1e capabilities allow the term “appropriate privilege”
throughout the POSIX specifications to be replaced with a specific capability. For example, the CAP_CHOWN
capability permits a process to violate the restriction that users may not change the ownership on files—
this privilege is restricted to the superuser in BSD environments. Some of the POSIX.1le capabilities are
associated with other POSIX.le features: mandatory access control, auditing, and capability management
itself.

The Linux POSIX.1e implementation defines a set of additional capabilities, associated with sets of calls
not defined in POSIX: calls related to the sockets interface, as well as calls loading kernel modules, configuring
aspects of the kernel, and relating to System V IPC calls; similarly, each capability enables the process to
violate system policies relating to specific system calls.

The TrustedBSD capabilities implementation makes use of most of the POSIX.1e capability definitions,
with slight modifications where additional entry points and related functions exist to those described in



POSIX. Also, TrustedBSD makes use of a number of Linux POSIX.le extensions, some with identical
semantics, and others with similar semantics.

The following table lists the capabilities supported in TrustedBSD, where the definition of the capability
came from, and whether or not the TrustedBSD implementation of that capability has substantial differences
from the implementation in other operating systems, which developers using capabilities should be aware of.

| Capability Name | Portability | Description |
CAP_CHOWN POSIX.1le | Override superuser restriction on
chown()
CAP_DAC_EXECUTE POSIX.1le | Override DAC/MAC restrictions
on executing a file.
CAP DAC_WRITE POSIX.1le | Override DAC/MAC restrictions

on writing to a file.
CAP DAC_ READ SEARCH | POSIX.le | Override DAC/MAC restrictions
on reading a file/directory.

CAP_FOWNER POSIX.1le | Override checks requiring the
caller to be the file or directory
owner.

CAP _FSETID POSIX.1le | Override requirement that only

the file owner set the setuid bit,
that the owner must be a mem-
ber of the file group set the setgid
bid, and that the setuid/setgid
bits be removed when the file is

modified.
CAP KILL POSIX.1e | Override restrictions on deliver-
ing signals to processes.
CAP_LINK_DIR POSIX.1e | Override directory linking re-

striction (not implemented in
TrustedBSD.)

CAP_SETFCAP POSIX.1le | Override restriction that a pro-
cess cannot set capability state
of a file

CAP_SETGID POSIX.1le | Allow process to change process
gids (real, saved, effective, ...)

CAP_SETUID POSIX.1e | Allow process to change process

uids (real, saved, effective, ...)
CAP MAC_.DOWNGRADE POSIX.1le | Allow process to downgrade
MAC label of a file
CAP_MAC_READ POSIX.1e | Allow process to override MAC
restrictions on reading a file
CAP_MAC_RELABEL_SUBJ | POSIX.1le | Override restriction that a pro-
cess may not modify its own

MAC label
CAP MAC_UPGRADE POSIX.1le | Allow process to upgrade MAC
label of a file
CAP_MAC_WRITE POSIX.1le | Allow process to override MAC
restrictions on writing a file
CAP_AUDIT_CONTROL POSIX.1le | Allow process to modify audit
control parameters
CAP_AUDIT_WRITE POSIX.1le | Allow process to write data to

system audit trail




Capability Name

| Portability

| Description

CAP_SETPCAP

CAP_LINUX_IMMUTABLE

CAP_SYS_SETFFLAG

CAP_NET BIND_SERVICE

CAP_NET BROADCAST
CAP_NET_ADMIN
CAP_NET_RAW
CAP_IPCLOCK
CAP_IPC_.OWNER

CAP_SYS.MODULE

CAP_SYS_RAWIO
CAP_SYS_.CHROOT

CAP_SYS PTRACE
CAP_SYS_PACCT

CAP_SYS_ADMIN
CAP_SYS.BOOT
CAP_SYS_NICE
CAP_SYS_RESOURCE
CAP_SYS_TIME

CAP_SYS_TTY_CONFIG

CAP_MKNOD

Linux, TrustedBSD

Linux

TrustedBSD

Linux, TrustedBSD
Linux, TrustedBSD
Linux, TrustedBSD
Linux, TrustedBSD
Linux, TrustedBSD
Linux, TrustedBSD

Linux, TrustedBSD

Linux, TrustedBSD
Linux, TrustedBSD

Linux, TrustedBSD
Linux, TrustedBSD

Linux, TrustedBSD
Linux, TrustedBSD
Linux, TrustedBSD
Linux, TrustedBSD

Linux, TrustedBSD

Linux, TrustedBSD

Linux, TrustedBSD

Override restrictions on how a
process sets its capabilities
Allow modification of
S IMMUTABLE and
S_APPEND file attributes
Allow modification of system file
attributes

Allow binding of privileged net-
work ports

Allow broadcasting, listening to
multicast requiring privilege
Interface, firewall, socket debug-
ging, routing, multicasting privi-
leges.

Access to raw sockets.

Allow memory locking.

Allow SysV IPC ownership check
overrides.

Allow kernel module manage-
ment.

Allow direct device access.
Permit calls to chroot() and
jail()

Allow debugging of any process.
Allow management of accounting
system.

Catch-all for other privileges.
Allow invocation of boot ().
Allow modification of scheduling
parameters for all processes, use
of real time scheduling.

Allow violation of resources re-
strictions.

Allow modification of system
time.

Allow privileged configuration of
tty devices.

Allow device node creation.




4.4 Integrating Privilege Models

With the introduction of POSIX.1le capabilities, there are now two types of special privilege allotted to
processes: rights accrued through the suser() call, which returns a success if the effective uid is 0, and
rights gained through the effective capabilities of the process. There are a number of ways in which these two
privilege policies may be composed, resulting in a variety of possible end policies. However, the composition
choice must be made carefully, or the results may be hard to predict, resulting in potential weaknesses.

In SGI’s Trusted IRIX product, there are several run-time compositions possible: CAP_SYS_SUPERUSER,
in which either capabilities or superuser privilege may be used to grant a request, CAP_SYS_NO_SUPERUSER in
which only capabilities may be used, and CAP_SYS _DISABLED, in which only superuser is used (capabilities are
effectively disabled). This scope of choices allows the system to provide both a traditional UNIX environment
with superuser, that environment with the benefits of capabilities so as to reduce the number of processes
running with superuser privilege, and a highly secured environment in which the superuser simply does not
exist for the purposes of privileged access. To properly effect a system without a superuser, mandatory
access control must also be present to protect the integrity of the trusted code base; Trusted IRIX does this
through a Biba integrity model.

In the Linux capabilities implementation, an alternative integration was selected: the superuser privilege
would be emulated using capabilities. When a process gains uid 0, (at boot, or through the setuid bit on a
root-owned binary), it is provided with all capabilities. The process may selectively drop these capabilities,
and cannot normally regain them. This emulation model has a number of interesting properties, one of which
is the ability to gain some of the advantages of a least-privilege environment without having capabilities
associated with files, reflecting limitations in the Linux file system. However, this integration has a number
of limitations, some due to the lack of a mandatory integrity policy in the operating system, allowing root-
owned processes that are subverted gain to additional privileges by virtue of discretionary access control
protection in the file system. There are also a number of implications for applications that assume that uid
0 denotes privilege, yet inherit only a subset of that privilege, a limitation in all capability environments,
but particularly telling when the model for capabilities is subtraction of rights, rather than addition. The
recent sendmail/kernel interaction bug in Linux was a result of these unexpected consequences [Sec00]. In
the SGI capabilities workshop, these limitations were discussed, and there is the possibility that Linux may
migrate to the safer SGI model.

In the TrustedBSD capabilities implementation, SGI-like model is chosen: rather than integrating the
capabilities and superuser models, rights can be gained from the administrators choice of one or both of
the two models. This boolean composition of the two policies has the property that it is far easier to
reason about: when modifications were made to the Linux emulation model to attempt to improve its safety
properties, it was difficult to determine the impact of the changes.

4.5 Kernel Implementation

The TrustedBSD capability implementation consists of a number of components: kernel modifications, in-
clude files, parts of the 1libposixle userland library, and in the near future, userland tools for managing
capabilities on processes and binaries. In this section, the kernel implementation is discussed; the userland
library exists solely to provide conversion between the kernel system call API and the published POSIX.1e
API, as well as to provide text-form management, utility routines, and memory management.

Within the kernel, access to capability definitions and functions is provided courtesy of sys/capability.h,
which in turn relies on sys/types.h. In practice, many kernel files will include sys/proc.h, which includes
the capability include file due to dependencies. sys/capability.h defines a capability set via struct cap,
which stores capability flags in three u_int64_t bit-masks:

struct cap {

u_int64_t c_effective;
u_int64_t c_permitted;
u_int64_t c_inheritable;

};

The capability constants are selected to identify unique bits in each mask, permitting up to 64 capabilities
to be defined in the currently implementation. The process credential structure, struct ucred, has been



extended to include a struct cap to store per-process capability information. For kernel processes and the
init process, the capability masks are initialized from constants defined in the source code. Kernel processes
are provided with all capabilities so as to authorize their requests as required, including the inheritable bits,
such that processes spawned from existing kernel processes also gain these privileges. The init process is
also started with all capabilities, but with inheritance turned off by default. This allows init to manage the
system, and selectively pass capabilities onto children processes as appropriate. Other than for the purposes
of passing on privileges to children, init actually requires only the CAP_BOOT and CAP KILL capabilities,
allowing it to reboot the machine, as well as kill off other processes to do so.

Processes with capabilities set are protected against interference by other, inappropriately privileged,
processes, in a manner similar to current protection of setuid and setgid processes. Init is also afforded
special protection by virtue of having a process ID of 1.

All other userland processes will gain their capabilities as a result of a fork() call in their parent
process, resulting in the child receiving a precise duplicate of the parent capabilities. After the process fork,
the parent’s and child’s capability sets, as with the credential set as a whole, are managed independently.

Over the life time of the process, the capability set may change for one of two reasons: first, the process
may directly manipulate the capability set using the provided cap_get_proc() and cap_set_proc() system
calls; second, the process may invoke exec() to execute another program, in which case the inheritance rules
described earlier are applied to determine the new capability state of the process.

The cap_get_proc() call allows the process to retrieve a copy of its current capability set. The process
may then manipulate the copy in memory to its liking, possibly choosing to submit modifications of the set
via cap_set_proc(). The modifications permitted tightly bound set of capabilities that can result from such
a call; the CAP_PERMITTED flag set of the replacement capability set must be a subset of the old permitted
set; the new CAP_EFFECTIVE flag set must be a subset of the new permitted set; the CAP_INHERITABLE set
must be a subset of the old permitted set.

When a new program is executed by virtue of a call to exec() or one of its variant invocations, the
new process capability set is calculated based on the formulas defined earlier, combining the prior process
capability set and any capabilities retrieved from the program binary. This calculation is performed by
cap_inherit (), which accepts a reference the the process’s credential set, as well as to the vnode of the
new program being executed. In TrustedBSD, capability sets will be read from the $posixie.cap extended
attribute, if present. As the attribute name begins with a “$” symbol, it is in the system namespace, and
may only be set with appropriate privilege. If the attribute is not readable for the binary, either because the
EA service is not available for that file system or file, the attribute is not defined for the file, or because the
capability read is invalid, the binary will be assumed to have a capability set in which all flags are cleared.
In practice, the formulas for calculating capability inheritance dictate that this results in a new process
capability set with all capability flags are also cleared.

Capabilities on files may be modified in one of two ways: first, they may be modified directly via their
extended attribute. This is generally not recommended, as it is not clear that all file systems will back
capabilities into extended attributes, as they may have specific meta-data storage for capability sets. Using
EAs to directly manipulate capability sets on files may also not be portable to other platforms, resulting in
undesirable and unpredictable outcomes. POSIX.1e also defines two calls for directly manipulating capa-
bilities on files: cap get file() and cap_set file(). Calls to retrieve capability state require no special
privilege, but setting capability state via cap_set_file() will require appropriate privilege.

In the FreeBSD kernel, checks for appropriate privilege are generally satisfied by calls to the suser () and
suser_xxx () functions. These calls check that the effective uid of the calling subject (generally a process
but sometimes a cached credential structure) is 0. With capabilities in the credential structure, two new
calls are introduced to check privilege; in addition to accepting the process and/or credentials, the capability
calls accept a capability to check for, which is compared with the credential structure’s effective capability
flags. Throughout the TrustedBSD kernel, traditional calls to the superuser functions have been replaced
with cap_check() and cap_check xxx(). To emulate the old superuser behavior, the capability functions
can also optionally check the effective uid; the behavior of the check functions are determined by two system
MIB entries, managed using sysctl(). kern.security.suser_enabled, when set to 1, causes an effective
uid of 0 to result in a successful return. If kern.security.capabilities_enabled is 1, appropriate effective
capabilities result in a successful return. Use of independent flags allows both behaviors to coexist in the
same system, permitting use of legacy privileged software, as well as capability-enabled software, maintaining



functionality while improving security.

4.5.1 Userland Integration

The new privilege authorization model in kernel requires modification of userland applications in a number
of ways.

In the general case, applications must be modified to expect failure for any privileged operations they
might perform; in many cases, they should also check for failures on calls that do not fail in the traditional
UNIX semantics. An example of such a failure might be the inability for a process to change its uid, despite
running as root, the bug that caused sendmail to behave improperly on capability-based Linux systems.
New types of authorization checks often result in new situations in which said checks can fail.

It is also possible to characterize changes in applications based on the applications interaction with
privilege. We categorize privileged applications into three categories, based on use, determining changes in
their behavior.

First, applications requiring only a well-defined subset of superuser privilege, and currently based on
setuid root binaries, may be changed to using a capability on their binary. For example, the ping and
traceroute utilities currently require root privilege to allow them to bind a raw IP socket, so as to send
and receive ICMP messages. By replacing the setuid bit with the CAP_NET_BIND_SERVICE capability, the two
utilities can function normally with substantially less risk.

Second, the boot sequence requires substantial privilege in order to run: file systems must be checked,
kernel modules loaded, and the network configured. Rather than associating capabilities with each of the
binaries used during the boot, and relying on the utilities to enforce access policy, the privileges required
are inherited from the init process. Init and the /tt /etc/rc script are responsible for determining that only
appropriate privilege is passed on to utilities run during the boot.

Third, there are many useful aspects to a system administrator being able to acquire high levels of
privilege to work with accounts and configure system services; maintaining the ability to acquire additional
privilege is useful. In Trusted IRIX, the su command is extended to allow the acquisition of specific privileges,
permitting a normal user to acquire, for example, the CAP_DAC_READ_SEARCH privilege on demand, allowing
the user to read all files on the system for the purposes of a backup or virus scan.

The first type of integration proves relatively straight-forward. Most applications rely on the kernel to
perform authorization checks, and fail rapidly if not. For example, the ping and traceroute commands
rapidly return a meaningful error when they are unable to bind the raw socket they require. However,
other applications short-circuit the call to the kernel for these services, instead attempting to predict the
results of a bind call. For example, OpenSSH and other tools will call getuid() to determine the current
effective uid, and fail to operate if they discover that it is non-0, even though they would be able to bind
the privileged port the require or read the private files that they require to successfully operate. This raises
an important distinction: some applications, such as SSH, require privilege to operate correctly, and the uid
check should be performed in kernel. Other applications perform a uid check as part of their application
policy, preventing inappropriate use. For example, it is appropriate for sendmail to restrict activities based
on user trust, despite having the capabilities to perform them as any uid.

Both the boot process and the desire for superuser-like privilege during normal use can be addressed
through similar mechanisms: a tool to, based on appropriate privilege, acquire or drop capabilities before
executing another command, allowing that command to inherit the capabilities. In the case of the boot
process, the utility would filter existing capabilities, whereas as a user utility, the command would read a
policy file and set capabilities appropriately. In order for the superuser-like environment to work, applications
not intended to run with privilege must be able to acquire that privilege. This can be effected by setting
the appropriate privileges true in that binary’s capability set, allowing it to acquire those privileges when
inherited, but not providing them by default. Other applications without a capability set with relevant bits
set positively in their effective set will be unable to inherit privilege in such an environment. This side effect
actually makes for good policy, as it prevents applications not certified by the system administrator from
acquiring privilege.
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Figure 6: exec() and Capabilities

4.6 Performance

Capabilities generally impose little or no overhead during authorization, as the majority of checking consists
of replacing an integer comparison in the struct ucred of a process with a bit comparison. The cost of
loading capabilities from disk at exec(), however, is measurable, although generally acceptable. To measure
the cost of capability-loading, we examine the time required to execute a minimal program, consisting of
an empty main() function. Three cases are considered: first, with support for loading and evaluation of
capabilities disabled via the kern.security.capabilities_enabled flag being set to zero. The, capabilities
are enabled, and the read miss and read hit cases are examined, to determine if there is a difference in per-
formance impact for binaries with and without privilege. As with previous performance tests, ten iterations
are performed for each case, with a reboot between cases to flush all caches.

| Name | Description |

disabled | Latency to exec() capabilities disabled
cap-miss | Latency to exec() with no capability set defined
cap-hit Latency to exec() with a capability set defined

In Figure 6, the performance results are shown. As with the extended attributes, when caching can
not be leveraged, there is an observable performance difference between the baseline and capability-enabled
conditions. Without capabilities enabled, the exec() of a minimal binary requires around 37.8 milliseconds
when uncached, and on average 3.9 milliseconds when cached. The capability miss and hit cases are indistin-
guishable, as the 24-byte capability data is almost always on the same file system block as its corresponding
attribute instance header. When not in the cache, the hit and miss cases take approximately 58 milliseconds
each to complete, around 20 milliseconds longer than without capability support enabled. When cached,
3.9 milliseconds, essentially identical to the disabled capabilities case. The difference in measured extended
attribute read time from the EA micro-benchmark and the capability exec () micro-benchmark is likely due
to overlapping elements of each test case: the read-miss and read-hit EA test cases include the time for
name lookup, VFS operations, and read of the inode and file meta-data from disk. In this capability perfor-
mance test, the difference in cost was less than that measured in the EA experiment, which may reflect local
disk caching conditions during the test, or increased numbers of in-progress disk transactions allow elevator
sorting techniques to be more effective.

To understand the performance impact of capabilities on the system as a whole, and under load, we
consider the impact of capability misses on buildworld, the build of the entire FreeBSD source tree. The
majority, if not all binaries executed as part of the buildworld do not require privilege to execute; as such,



all capability costs will be associated with the capability read miss. This is in line with the normal execution
profile for performance sensitive applications. In order that the impact of concurrent capability loading
might be more visible, the buildworld is executed with the “-3” argument, permitting up to three compiles
to take place at once.

Buildworld —j 3 with Capabilities
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Figure 7: Buildworld -j 3 with Capabilities

Results from three iterations of buildworld, with and without the loading of capabilities from disk, may
be found in Figure 7. The buildworld results show no significant difference before and after capability loading
is introduced, suggesting that the overall impact on system execution is negligible due to caching, and the
low impact of loading small extended attributes for infrequent exec() operations.

4.7 Potential Improvements

A number of improvements could be made to the current capability implementation to improve its perfor-
mance and functionality.

Using extended attributes allows for convenient, rapid development and deployment of capabilities on
TrustedBSD. However, this design choice has a number of down sides, both due to the EA implementation in
FreeBSD, and the layering of capability functionality above extended attributes. Performance of capabilities
is largely limited by the extended attribute implementation: the authorization checks themselves introduce
negligible overhead in most cases. An improved extended attribute implementation, taking advantage of
disk locality with the binary’s inode, would lower the latency in executable startup.

The current layering of capabilities above the VFS layer introduces some other semantics issues: there
are two paths to modify capabilities on a binary, with different privilege requirements. Similarly, setuid
and setgid binaries enjoy certain advantages in the face of adversity: generally, when a setuid or setgid
binary is modified on disk, the file system arranges for those bits to be disabled on the binary, reducing the
opportunities for compromise due to a writable binary or race conditions.

Later in this paper, the process of integrating jail() and POSIX.le capabilities is described. This
integration of capabilities into base system functionality is still work in progress, but will substantially clean
up the existing implementation.

Currently, the backup mechanisms included with the base system understand neither extended attributes,
nor capabilities. In a real-world system, the ability to perform backups, as well as replicate file system hierar-
chies, is required for production use. This requirement could be filled either by modifying backup programs
to understand capabilities on binaries, or by modifying them to understand the backing up of extended
attributes. For portability reasons, backing up capabilities via the capability interface and generating an ex-
portable format from them makes the most sense; system extended attributes generally have system-provided



access mechanisms. Application namespace extended attributes could then be backed up directly.

Some of the strengths of capabilities are lost on the current implementation due to a lack of integrity
protection for the Trusted Computing Base (TCB), leaving capability-enabled binaries unprotected against
privileged modification. For example, possession of CAP_DAC_WRITE is sufficient to write to any root-owned
file. This privilege can, in turn, be leveraged to modify binaries that possess other capabilities, gaining access
to those capabilities. Protecting the TCB can currently be accomplished to some extent through securelevels,
but to be properly implemented requires a system integrity policy, currently slated to be implemented in the
next 6 months as part of the TrustedBSD project, but not yet available.

Userland integration is difficult, as it often requires reworking of current policies and implementations
never intended for fine-grained privilege and access control. This work is also still in progress, with a
number of binaries and the boot process still relying on a superuser. It is an eventual goal to disable
kern.suser_permitted, relying purely on capability checks to provide privilege in the system. However,
until all components of the kernel are updated to make use of suser (), a privileged uid 0 will be required.

Currently, the framework for allowing users to acquire privileges for the purposes of management, de-
scribed in the previous section, is largely unimplemented, requiring mechanisms to store policy mapping
capabilities to users. On some trusted operating systems, this is provided via a file, /etc/capabilities and
the su command. Tt is likely that much the same will be implemented in TrustedBSD, although FreeBSD
already has a user capability-assigning file, /etc/login. conf which allows classes to be assigned to users,
and capabilities to be assigned to the classes.

4.8 Portability Efforts

The POSIX.1e capability functionality has been implemented in a number of operating systems, including
Linux, IRIX, Trusted IRIX, and now TrustedBSD. As the POSIX.le draft was never standardized, and
operating systems may require local customizations to the capability sets supported, there are limits to
portability. IRIX, for example, implements draft 16 of the capability inheritance rules, which have markedly
different properties than those in the TrustedBSD and Linux draft 17 implementations.. The Linux and
TrustedBSD implementations intentionally share many properties, including custom capability extensions,
and rules. The POSIX.le and linux-privs mailing lists, and SGI-hosted workshop have proven excellent
forums for discussing the semantics of capabilities.

A number of differences remain, even between the largely identical Linux and TrustedBSD implemen-
tations, which privileged application developers should be aware of. First, some operating system specific
capabilities have marginally different definitions: CAP_LINUX_IMMUTABLE in the Linux implementation
is mapped to CAP_SYS_ SETFFLAG in TrustedBSD, reflecting the privilege to modify system file flags,
rather than purely the Linux immutable and append flags. The Linux technique of emulating uid-0 privilege
with capabilities may result in surprises in mixed-capability /setuid environments, especially when capabil-
ities on binaries are not supported. Similarly, applications written with the Linux composition model in
mind may find that despite having given up capabilities, they still have privilege when running as uid 0 with
kern.security.suser_enabled set to true. Such applications should be modified so as not to run with root
privileges, and so that they gain appropriate capabilities via their binary, avoiding the subtractive technique
employed in Linux using the setuid root mechanism.

Work also continues on a consistent bounding interface, so as to allow both TrustedBSD and Linux to
support the same semantics for inherited capability bounding.

5 Abstracted Kernel Access Control Checks and Labels

One important lesson learned in the TrustedBSD work is that the BSD kernel and userland code are designed
to enforce a very specific operating system policy. This has been largely intentional: a strong system
requires a consistent policy throughout the implementation, and the UNIX security model has satisfied the
requirements of many environments quite well. However, adding new access control models raises the need
for improved abstractions, as well as more careful and consistent use of existing abstractions. The existing
code suffers from a number of limitations when it comes to improving access control abstractions.



5.1 Coding Style Changes

e The existing code often checks credentials for specific privileges directly, rather than making use of even
the basic abstractions available now, such as suser (). This is frequently the case in the file system,
where direct checks on the effective uid are made instead of invoking suser (). Frequently, this poor
use of the suser() abstraction was justified due to suser () setting a process accounting flag, ASU,
indicating that superuser privilege had been invoked. In the capabilities implementation, this behavior
has been modified so that a separate API call, suser used() accounts for the use of privilege by a
process, allowing suser () to be called even when the use of privilege has not yet been determined.

e A number of system APIs rely on divergent behavior: that is, the behavior of the call varies depending
on the privileges of the caller. While in some situations this is fine, in other situations the access control
model breaks down from, “Is this action permitted?” into, “If this credential is found, act this way;
if this other credential is found, act in this other way.” This type of code structuring does not lend
itself to improved access control abstraction, as divergent behavior in one abstraction may make little
sense in another, especially in the presence of compound requests where some aspects of the request
may succeed, while others fail. Where possible, splitting the API into individual components, each
with a “Succeed if appropriately privileged, otherwise fail,” will allow the access checks to be more
consistent. Mapping individual requests onto individual access control decisions dramatically improves
the extensibility of the code from the perspective of security additions.

e In the networking code, privilege is often checked at one point in the code, and then used elsewhere,
several layers deeper in the call stack. For the purposes of auditing the use of privilege, this makes it
very difficult to determine if privilege was ever used. With the breaking out of the ASU flag functionality
from suser() into a separate suser_used() call, it is now possible to differentiate between a check
for appropriate privilege, and accounting for its use. When auditing is implemented, this will make
it possible to audit the use of privilege as distinct from the possession of privilege. However, a fair
amount of existing code is not structured with this distinction in mind.

e Checks for access to an object are often not ordered based on the desired semantics: typically, it is
desirable to work from the least privilege to the greatest privilege, attempting to perform the access,
so that auditing of privilege can happen correctly. In the file system code, the check for privileged
access frequently happens before the check for discretionary access to the object. In some situations,
this is hard to change, as a privileged access may provide different results than an un-privileged one:
this violates one of the earlier recommendations, suggesting that diverging behavior in APIs due to
credential differences can cause problems for generalized access control.

e The system call and service layering infrastructure in the kernel often passes down a reference to the
current process, or current credentials. At some points in the code, access to either the process or
the credential is cached for future use, such as in sockets and open file entries, so as to provide the
“authorize on open” semantics of UNIX. However, in many situations, only one of the process structure
or credentials are passed; as the relevant credential information is currently split over the two (process
authorization flags in one, uids in the other), both are often required. Moving all authorization-related
material into struct ucred would permit only the credential to be passed around for access control,
without need for reference to the process, making it easier to generalized access control based on this
credential.

5.2 Authorization Infrastructure Changes

In an attempt to improve the structuring of access control code, a number of access checks were modified
for capabilities support.

First, as described previously, separation of accounting and access control for privileged actions were
implemented, by breaking out the ASU flag from the suser () access check. This change is maintained in the
switch from suser() to cap_check().

Second, common access checks were centralized into the same permission checking routing, allowing
policies to be understood and modified more easily. In the case of direct interaction between processes,



access checks were scattered throughout the kernel, often applying different policies for the same action,
depending on the access method chosen. After the modifications, a centralized routine, p_can() is invoked
with the two processes and an operation specified as an argument. So that privilege may be properly tracked,
an optional pointer to an flag is passed, allowing the function to indicate to an interested caller whether or
not privilege was required for the call to succeed.

Similar updates were made to permission-related access checks in the file system; access control checks
were centralized in a single call, vaccess(), which was structured to order attempts to gain access to an
object based first on discretionary protections, then based on a privileged override of those protections. In
calculating the use of privilege in the revised access control check, the minimum capabilities required to
perform the operation are also calculated; when auditing is available, this permits the type of privilege to
be audited also, in the form of a capability bit-mask.

These access check improvements generally fall into a pattern: a subject (process) attempts to perform
some operation on an object (a file, process, or other kernel resource), which may be protected by dis-
cretionary access control (permissions or an access control list), or by mandatory access control (limits on
interactions between users and classes of objects). After these checks are performed, a specific capability can
be invoked to override specific limitations—in some cases, multiple capabilities may be required to perform
the action, as multiple policies may have to be violated for it to succeed. For example, in the file system
code, a one capability may be required to override discretionary checks on the file, while another privilege
may be required to override mandatory access control limits. Similarly, in the realm of signal delivery and
debugging, one capability may be required to override uid-based limits on the request, whereas another may
be required to override MAC limits.

As determined earlier, the order and relationship between the the access control mechanism invocations
is important, and constitutes a meta-policy in and of itself.

5.3 Improving the Structure of Services

If these abstractions are carried further, there are a number of goals which can help improve the cleanliness
and extensibility of the access control code:

e Structure the implementation of services such that the number of independent access control checks is
minimized. This permits meta-policies concerning the relationships between different types of checks
to be performed centrally. Typically the relationship will be an intersection of rights, or a union of
rights (only if all checks succeed, or if any check succeeds). Centralizing this policy will make it easier
to understand, and easier to change.

e Attempt to structure implementation of services such that it expresses an operation by a subject on
one or more objects. As mandatory access control policies make decisions based on security labels
on objects, this makes it easier to introduce such policies. For example, labels might be associated
with a variety of objects, including processes, files, and sockets. Labels might also be associated with
system resources, such as interfaces, packets matched by specific packet filters, and sysctl() MIB
entries. Structuring access control in this manner makes it easier to centralize and change access
control policies, as well as making it easier to reason about the behavior of the system from a security
perspective.

As these changes are made, however, it also important to, in as much as is possible, retain the current
apparent semantics of system services. While new failures may be possible when processes make use of a ser-
vice, the service itself should generally remain unchanged, allowing applications to run in both environments
with little modification.

6 Mapping FreeBSD Hacks into TrustedBSD Features

FreeBSD has a number of seemingly ad hoc security features, both inherited from BSD 4.4Lite, and intro-
duced more recently. These include the “securelevel” functionality, intended to protect system integrity in
the event of a root compromise, and the jail () host partitioning scheme. These features are, in many ways,



subsets of more general security models that will be available in TrustedBSD. Not all of the TrustedBSD
features required to express these features are currently available, so this section provides a description as
to how improvements could be made.

6.1 BSD Securelevels

Securelevels are intended to protect the system in the event of root compromise, distinguishing more clearly
the rights of the superuser and the kernel. The securelevel is maintained as a monotonically increasing
integer; as the securelevel increases, superuser privileges are gradually restricted, protecting the kernel from
manipulation, protecting key files in the file system, and preventing modification of system configuration. In
practice, securelevels afford little in the way of protection against qualified attackers, as key configuration
files, binaries, and hence directories, must be preserved from manipulation by privileged users. As a classic
example of the tradeoff between security and usability, as the restrictions are put into place, the ability
to manage the system dramatically drops: a remarkably number of files are touched during the early boot
process, including much of /boot, /sbin, and /etc.

Much of the securelevel functionality could be successfully represented using a Biba MAC integrity policy;
worked examples of such systems include Trusted IRIX, which labels system objects such that low-integrity
processes cannot interfere with them. Integrity protection is also applied to processes themselves, as well
as to system devices. Restrictions of available privilege map well into inherited capability bounds, allowing
appropriate high-integrity processes to maintain the rights required for system management, will preventing
low-integrity processes from gaining inappropriate rights. With proper integrity protection, the privileges
provided to the root user by virtue of it owning system files would also be reduced.

6.2 FreeBSD jail()

The jail() functionality was introduced in FreeBSD 4.0-RELEASE, and is described in [KW00]. The
general intent is to limit the scope of privilege acquirable by an appropriately privileged process and all
of its descendents, allowing implementation of limited system partitions. This is implemented through the
chroot () function and modifications to limit the visibility of inappropriate components of the system, such
as processes in a different partition. To prevent privileged processes within the partition from escaping, the
scope of superuser privileges is limited to only those calls unable to penetrate the jail.

In the current jail() implementation, access to superuser privilege for specific requests is specified on
a per-suser () basis, via the PRISON_ROOT flag in suser xxx(). When the flag is present as an argument
to suser_xxx(), the access check will allow an effective uid to succeed, even if the process is in a partition;
otherwise, all suser () calls within the jail will fail. With the advent of fine-grained capabilities on processes,
it is possible to describe the subset of calls permitted to occur in the jail via a inherited capability bound,
rather than per-check flags, providing a cleaner abstraction for jails, as well as more flexibility in the rights
permitted in a jail.

With capability bounds, the custom superuser checks can be replaced with normal capability checks;
capabilities within the jail must be restricted to prevent abuse of privilege allowing processes to break out
of the jail. The following capabilities are generally safe within a jail; others may also be safe subjected to
careful control, depending on requirements:



Capability Comment

CAP_CHOWN -
CAP DAC_EXECUTE -
CAP DAC_WRITE -
CAP_DAC_READ_SEARCH -

CAP_FOWNER -

CAP KILL Subject to mandatory process interac-
tion policy

CAP_SETFCAP Possibly subject to limits on what ca-
pabilities can be set

CAP_SETGID -

CAP_SETUID -

CAP_SETPCAP Subject to process capability bound

CAP_NET BIND_SERVICE | -
CAP_TPC_LOCK -

CAP_SYS_PTRACE Subject to mandatory process interac-
tion policy

CAP_SYS_NICE Subject to mandatory process interac-
tion policy

CAP_SYS_RESOURCE Subject to mandatory process interac-

tion policy
CAP_SYS_TTY_CONFIG -

With the capability implementation, these rights may be further restricted as needed. Once manda-
tory access control policies are available, special-case protection of processes and system objects may also
be replaced with a general-purpose partitioning scheme, as well as integrity and secrecy protection. One
interesting and as-yet unaddressed problem concerns use of MAC within the partitioned environments: to
what extent will administrators in individual partitions be able to administer mandatory access within their
partitions? Traditional MAC schemes have not targeted scalability in terms of the number of compartments
or partitions to be protected, as typical consumers of MAC have not required that. However, given that the
jail() functionality is a popular server tool in FreeBSD, optimizing the mandatory access control policies
for a scalable partitioning scheme makes a great deal of sense.

7 Future Directions

Future directions for the TrustedBSD project include improvements on the infrastructure described in this
paper, as well as additional feature sets; both are in progress at the time of publication, and will be on-going,
with many features targeted for the FreeBSD 5.0 release.

The extended attribute implementation is already sufficient for a developmental prototype, and even
release code, but, there are a number of performance and consistency-related improvements that can be
made to make this service more palatable for production use. A useful long-range project might be to
integrate EA storage into the underlying file store, improving interaction with consistency mechanisms such
as soft updates and journalling.

The capabilities integration into the FreeBSD kernel is largely complete; however some remaining con-
versions from superuser to capability checks remain to be implemented. Integration of capabilities support
into the userland environment is still underway: modifying existing applications that require superuser priv-
ilege to handle capabilities as an alternative, and introducing a mechanism to manage per-user privileges at
login remain to be done, but are important goals. The capabilities implementation should be ready to be
committed to the FreeBSD CVS repository for inclusion in FreeBSD 5.0-CURRENT with another month of
open testing.

The mandatory access control implementation is the next major undertaking, but may require substantial
improvement of the label handling and access control infrastructure. Integrity-based policies will allow
improvements of system security and replacement of the experimental securelevel behavior. Combined with



secrecy policies and a generalized partitioning scheme, existing security “hacks” in FreeBSD, such as jail(),
may be improved and replaced, as well as permitting FreeBSD to be used in trusted environments.

Event auditing is an important component to any trusted operating system; a number of different im-
plementation approaches have been attempted when integrating auditing into FreeBSD in the past. The
TrustedBSD auditing implementation must leverage these experiences, and emphasize cleanliness of imple-
mentation and performance if it is to be useful in common environments.

A long-term implementation goal is the development of a general-purpose kernel access control and label
management framework, Poligraph, which would allow pluggable security policies and protection mecha-
nisms. The existing TrustedBSD implementation builds experience and identifies sticking points that will
require work to implement such a system, but in a second-generation implementation, such a system would
dramatically improve the flexibility of TrustedBSD components, as well as allowing third-party security
modules to be developed and integrated easily. An important long-term goal of the project is to develop
such a system for TrustedBSD, and if the changes prove acceptable to the FreeBSD developer community,
integrate that system into the FreeBSD source base.

8 Conclusion

The TrustedBSD project seeks to introduce trusted operating features into FreeBSD through an aggres-
sive schedule of modifications: improving label management services, access models and abstractions, and
file system services. Several of these features are nearing completion, including the file system extended at-
tribute support and capabilities service described in this paper, which substantially improve security without
substantial performance degradation. Integration of these improvements into the base FreeBSD operating
system is on-going, with these services slated for inclusion in FreeBSD 5.0-RELEASE. Future directions for
the project include improved access control abstractions, mandatory access control policies, and fine-grained
event auditing.



References

Ber95]
Bib77]
BL73]

[
[
[
[(CCO0]
[Dung9)
[IEE9O]

[TEE97]

[1S5099a]
[1SSO99b)]
[KW00]
[MBK*96]
[MG99]
[oD85]

[PA96]
[Sec00]

B. Bershad. Extensibility, safety, and performance in the spin operating system, 1995.
K. Biba. Integrity constraints for secure computer systems, 1977.
D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations and model, 1973.

NIST Common Criteria Implementation Board (CCIB). Common criteria version 2.1 (ISO IS
15408), 2000.

Roy Duncan. Design goals and implementation of the new high performance file system, 1989.

IEEE. Information technology—Portable operating system interface (POSIX). Part 1, System ap-
plication program interface (API) : C language. Institute of Electrical and Electronics Engineers,
inc., December 1990. IEEE Std 1003.1-1990; revision of IEEE Std 1003.1-1988.

IEEE. Draft standard for information technology—portable operating system interface (POSIX)—
part 1: System application program interface (API)-amendment ??: Protection, audit and con-
trol interfaces: C language, October 1997. PSSG /D17, POSIX.1e.

National Security Agency Information Systems Security Organization. Controlled access protec-
tion profile version 1.d, October 1999.

National Security Agency Information Systems Security Organization. Labeled security protec-
tion profile version 1.b, October 1999.

Poul-Henning Kemp and Robert N. M. Watson. Jails: Confining the omnipotent root. In
Proceedings, SANE 2000 Conference. NLUUG, 2000.

M. McKusick, K. Bostic, M. Karels, J. Quarterman, and D. Implementation. BSD operating
system, 1996.

M. McKusick and G. Ganger. Soft updates: A technique for eliminating most synchronous writes
in the fast filesystem, 1999.

United States. Dept of Defense. Department of Defense trusted computer system evaluation
criteria. Dept. of Defense, December 1985. Supersedes CSC-STD-001-83, dtd 15 Aug 83. Library
no. S225,711.

Charles P. Pfleeger. Security in Computing. Prentice Hall PTR, second edition, 1996.

SecurityFocus.com. Linux capabilities vulnerability, 2000.
http:/ /www.securityfocus.com /bid /1322.



