
SecurityEnhanced BSD

ChrisVance,RobertWatson
Network AssociatesLaboratories

�

15204OmegaDrive,Suit300
Rockville,MD 20850

cvance@nai.com,rwatson@nai.com

July9, 2003

�

Thiswork wassupportedin partby DARPA/SPAWAR contractN66001-01-C-8035.

Contents

1 Intr oduction 4

2 Background 4
2.1 TrustedBSDMandatory Access ControlFramework 4
2.2 Linux SecurityModulesFramework 6
2.3 Framework Comparison . 7

3 SELinux 10
3.1 Flask. 10
3.2 Modified Programs . 11

4 SEBSD 12
4.1 Distribution . 12
4.2 PortingFlask . 12
4.3 SEBSDModule Initialization . 13
4.4 UserInterfaces . 14

4.4.1 SystemControls . 15
4.4.2 SystemCalls . 16

4.5 LabelManagementTools . 16
4.6 SEBSDUserSpaceApplications 17

5 SEBSDLabel Management 17
5.1 SEBSDLabels . 17

5.1.1 ProcessLabels . 18
5.1.2 Mount Labels . 18
5.1.3 File andPipeLabels . 19
5.1.4 File HandleLabels . 19
5.1.5 Network andSystemV IPC Labels 20

5.2 LabelLife-cycle . 20
5.3 Internalize/Externalize Operations 22
5.4 Persistent File Labels . 22

6 SEBSDEntry Point Implementation 23
6.1 ProcessEntry Points . 23
6.2 Mount Entry Points . 24
6.3 File Entry Points . 24
6.4 PipeEntry Points . 27
6.5 File HandleEntry Points . 27
6.6 SystemV IPC . 27

2

6.7 Network Support . 28
6.8 Miscellaneous ModuleandSystemEntry Points 28
6.9 Entry PointComparison . 29

7 Futur eDevelopment 29

8 RecentLinux Changes 30

9 Getting the Software 31

3

1 Intr oduction

Network AssociatesLaboratorieshascompletedaninitial portof theFlasksecurity
architecture[1] andother componentsof Security EnhancedLinux (SELinux)[2] to
the FreeBSD[3]operating system. This project, called Security Enhanced BSD
(SEBSD), startedwith theTrustedBSDMAC framework andintegratedtheFlask
accessvector cacheandsecurity server to make policy decisions. Then,support
wasadded to thekernel to managesecurity fieldsandenforce permissionson files
andprocesses.

To demonstrate the resulting kernel functionality, a policy compiler andfile sys-
temlabel managementtoolswereported. Also, modificationsto login, ls, andthe
ps program wereintegratedinto the corresponding FreeBSDprograms. This pa-
perdiscussestheTrustedBSDMAC framework, labelmanagement,accesscontrol
checks,anddifferencesbetween SEBSD andSELinux.

2 Background

The introduction of new access control security features into operating systems
is an expensive process,both from the perspective of development,and in terms
of long-term maintenance. A variety of approaches for security extension exist,
but all have substantial problems, ranging from specific concernsover technical
correctness to high maintenancecosts. Many operatingsystemsecurity extensions
rely on modifications to the kernel to operate,preventing mandatory protections
from being bypassed. However, this is oftendoneat theexpenseof flexibility . For
these reasons,boththeLinux andFreeBSDopensourceoperatingsystemprojects
beganthe developmentof generic, extensible security frameworks to help reduce
theselong-termcostsandto helpfosterresearchinto better operating systemaccess
controls.

2.1 TrustedBSD Mandatory AccessControl Framework

Network AssociatesLaboratories andthe TrustedBSD Projecthave implemented
an extensible and modular kernel access control framework permitting new ac-
cesscontrol policiesto be introducedinto the FreeBSDkernel[4, 5, 6, 7, 8]. The
TrustedBSDMandatory AccessControl(MAC) Framework addressesmany of the
challenges associated with introducing new access control services in operating

4

system kernels by abstracting commoninfrastructure servicesfrom the policies,
reducing the cost and complexity of policy authoring. This includes providing
policy-independent labelstoragein kernel objects,andpersistentstorageof labels
using file system extended attributes. The TrustedBSD MAC Framework com-
posesresults from simultaneously loaded accesscontrol policies in a predictable
andreliable manner, permittingappropriately craftedpoliciesto beused in concert.

TheMAC framework augments theFreeBSDkernel to provide commonlabeling
infrastructurealongwith asetof entrypointsto interceptoperationson labeledob-
jects. Theframework supportslabelson file systems,processes,IPC,andnetwork
stack elements. Eachregistered policy may reserve spacefor security labels and
implement policy-specific behaviorgoverning label content anduse.Labelsfollow
thekernel object life cycle andareinitialized, allocated,anddestroyedalong with
their object. Accesscontrol entrypointsaccept informationabout theaction being
performed,invokeeachregisteredpolicy, andcomposetheresults into asuccessor
failure.

Thefoll owing table lists theFreeBSDkernel objectsthatcontain MAC labels:

Structure Description

struct ucred Processcredential
struct file File descriptor
struct vnode VFSnode
struct socket BSDIPC socket
struct pipe IPCpipe
struct mbuf In-flight datagram
struct mount File system mount
struct ifnet Network interface
struct devfs dirent Devfs entry
struct ipq IP fragmentqueue
struct bpf desc BPFpacket sniff device

On-going work with theMAC framework is designedto increasethescope of the
accesscontrol entrypoints. Futureversionswill includesupport for theSystemV
IPC kernel subsystemaswell asbetter support for file systemmountpoints; other
kernel subsystemswill be examinedand the access control entry points will be
refinedasnecessary. Network AssociatesLaboratorieshasalsobegun work to port
the TrustedBSDMAC framework andthe SEBSD moduleto the Darwin kernel;
this will likely result in additional changes to the MAC framework to facilitate
cross-platform development.

5

2.2 Linux Security ModulesFramework

The Linux Security Modules(LSM) project was primarily developedby WireX
andNetwork AssociatesLaboratories andseeks to incorporate a general security
framework into the Linux kernel. LSM is a joint developmenteffort by several
projects,includingImmunix,SELinux,andJanus,andseveral individuals, includ-
ing Greg Kroah-HartmanandJamesMorris, to develop a Linux kernel patch that
implements this framework.[9]

While LSM wasoriginally developedasasetof patchesthatmaybeappliedto the
Linux kernel distribution, muchof the security framework is now present in the
currently distributedLinux developmentkernel (2.5.x serieskernels). The LSM
framework is primarily focusedon supporting accesscontrol modules,but maybe
extendedto support other security needssuchasauditing. TheLSM kernel patch
moved most of the capabiliti es logic into an optional security module,with the
systemdefaulting to thetraditional superuserlogic.

Much like theTrustedBSDMAC framework, LSM addedsecurity fields to kernel
datastructuresandinserted calls to hook functions at critical points in the kernel
code to managethe security fields and to perform access control. It also added
functions for registering and de-registering security modules and ongoing work
will provide a generic set of user-spaceinterfacesto set and retrieve labels on
kernel objects.

Security fields,thatmaybeusedto storelabelsor any other stateinformation, were
addedto thefoll owing kernel datastructures:

Structure Description

struct task Processlabel
struct linux binprm Binary handler
struct super block File system mountpoint
struct inode File node(alsosockets)
struct file File handle
struct sk buff Network messagebuffer
struct net device Network interface
struct kern ipc perm SystemV IPC object
struct msg msg SystemV message

By providing security fields for these structuresandby providing appropriateop-
erational hooks, an LSM modulecanprovide accesscontrol over processes,pro-

6

grams,file systems,pipes, files, sockets,packets,network devices,andSystemV
IPCobjects.

SELinuxwasoriginally developedasasetof patches,directly modifying theLinux
kernel, while morerecent versionusetheLSM framework. BecauseLinux, LSM,
SELinuxareall still under development,various versions of SELinuxareslightly
different. The Linux kernel is developed with two primary branches,a stable
branch and a current developmentbranch. As developmentcontinueswith the
Linux kernel, thestable andcurrent branchestendto diverge. While muchof the
LSM prototype hasbeenincluded in the current Linux kernel branch, it is not
complete; the LSM project still maintains patchesto incorporate the remaining
features.Sincelittle of the framework is includedin thestable kernel branch, the
LSM project maintains a completepatch.

2.3 Framework Comparison

While theimplementationdetails differ, boththeLinux andFreeBSDframeworks
seekto solve the samebasicproblems. Both frameworks permit accesscontrol
modules to be dynamically inserted into an otherwise standardsystem, either at
boot time or after boot, possibly in responseto an environmental change. By it-
self, neither framework increasesthe security of the system; they merelyprovide
theinfrastructure necessaryto support security modules.Both projectsconsidered
modularity andpolicy flexibility to be critical to the adoption of their respective
security framework by the kernel developers;neither operating systemwantedto
betied to a single security modelor implementation.

Furthermore,both LSM and the TrustedBSDMAC framework operate transpar-
ently to existing usersandapplications.Theresults of accesscontrol decisionsare
only visible to applicationsuponfailure,andin mostcases,thekernelserviceswill
return appropriateerrorcodes thatapplicationsshould expect from anunmodified
kernel. However, it is possible that security modules will return an access fail-
urewherenot previously expected; this maycauseunexpectedside-effects in user
space applications thatarenot security-aware.

While both frameworks hadsimilar goals, the resulting frameworks werelargely
shapedby therequirementsof theuser community. In thecaseof LSM, any design
thatwastoo intrusive wasunlikely to beacceptedby theLinux kernel developers,
so often sacrifices had to be madein order for the framework to be included in
the kernel. On the otherhand,the TrustedBSD MAC wasdesignedwith a goal
of integratingtightly with thekernel locking andthreading mechanismsto provide

7

U
se

r
P

ro
ce

ss

U
se

r
P

ro
ce

ss

U
se

r
P

ro
ce

ss

U
se

r
P

ro
ce

ss

U
se

r
P

ro
ce

ss

U
se

r
P

ro
ce

ssUser Processes

Security Framework

System Call Interface

Kernel Services

Policy Module(s)

V
F

S

P
ro

ce
ss

LSM Framework

System Call Interface

V
F

S

SEBSD

(Policy)

P
ip

e
IP

C

S
co

ke
t I

P
C

P
ro

ce
ss

MAC Framework

SELinux

System Call Interface

N
et

w
or

k

S
ys

te
m

 V
 IP

C

Figure1: High-level view of theFrameworks

correctness andhigh performanceon multi-cpu machines.While theLSM project
attemptedto minimizethechangesto thebasekernel, theTrustedBSDMACframe-
work wasnot developedunder this restriction,andwasableto restructureexisting
kernel codeatplaceswhereaccesscontrol decisionsneeded to bemade.TheMAC
Framework guaranteesthatsufficient lockswill beheldin orderto accessimportant
elementspassed asargumentsto accesscontrol entrypoint functions. Likewise,the
MAC Framework provideswell-definedlocking semanticsfor objectlabels, often
using existing object locks. Often, the locking semantics permit atomic checks
of both labels andexisting object properties without incurring additional locking
overhead.

Policy composition is integral to the MAC Framework, rather than leaving com-
position up to the module writers, asLSM does. LSM chose to allow maximum
flexibil ity by creating a truly generic framework that providesall the necessary

8

hooks andlabel management tools, but enforcesno semantics on how they must
be used. So, while thereis no built-in support for modulecomposition, all the
necessaryhooks arepresent to do so. Whenmultiple policies areloadedinto the
MAC Framework, their access control decisions areusefully composed in a way
thattheresults arewell-defined.However, this composition is fully controlled and
enforcedby theframework, not by thepolicy developers.

To further support policy composition, theTrustedBSDMAC framework alsopro-
videspolicy neutral interfacesanduser spacetools. TheMAC framework provides
a policy-agnostic labelmanagementAPI to provideaccess to andmanagementof
file andprocesslabels. SeveralFreeBSDcommonutilit y programshavebeenmade
label-aware(but policy-agnostic),suchasps,ls, andlogin. TheTrustedBSDMAC
framework hasinvestigatedtechniquesto provide policy-independent support for
login andother applicationswith morecomplex labeling requirements,such asla-
bel transitions at programexecution time. However, not all of thesetechniquesare
sufficient for SEBSD. The MAC framework mustbe expandedto include better
support for SEBSD-specific features,while maintaining policy flexibilit y, easeof
management,andconfiguration.

Both frameworksallow file system labelsto bebacked to persistent storage.While
neither framework enforces the semantics of particular persistent backing mech-
anism, both Linux and FreeBSDcan support both extendedattributesand cus-
tom labelbacking stores. TheLinux extendedattributekernel support is relatively
new anduntested,with little userspace managementtools. Historically, SELinux
usedit’s own persistent file label store,ratherthanany providedby the file sys-
tem. It is expected that support will improve as the extended attributesystem
matures. FreeBSD’s UFS2 file system provides robust support for extended at-
tributes,including centralized cachemanagement for persistentfile labels,aswell
as transaction-like support for consistency whenapplying labeling changesfrom
compoundoperationsacrossmultiple policies.

The TrustedBSD MAC framework providesboth label management entry points
and access control entry points. The access control entry points always pass as
parametersall information thatmaysafely beused by policy developers.Thesepa-
rametersincludetheextracteduser andprocesscredentials, whenavailable.Having
the Framework pass in explicit label pointersreducesbinary andsourcecompati-
bili ty issuesassociatedwith changesto thebasesystemstructures.Thismaylower
developmentcosts andimprove long termmaintainability. In addition, to support
high performancereliable operation on multi-CPUsystemstheexplicit credential
is alsousedby FreeBSDto permitdeferredactivity onbehalf of asubject (i.e. NFS
write-behind, ktrace to a disk file, etc.). The LSM framework typically assumes

9

that object labels may be extracted from the global current processcontext. This
hascausedsomeproblemswith theSELinux network labeling implementation, as
thecurrent processis not alwaysavailableor correct.

As an example,the TrustedBSDMAC framework entry point for performing ac-
cesscontrol checks for theswapon system event is structuredasfoll ows:

int mpo_check_system_swapon(struct ucred *cred,
struct vnode *vp, struct label *label);

WhereastheLSM framework providesthefollowing hook:

int security_swapon(struct swap_info_struct * swap);

The TrustedBSD MAC framework provides the associated usercredentials (and
corresponding processlabel), whereas the LSM hook relies upon the module de-
veloper to extractthis information from current (thecurrent processcontext).

3 SELinux

NSA Security-EnhancedLinux (SELinux) is an implementation of a flexible and
fine-grainedmandatory accesscontrol (MAC)architecturecalledFlaskin theLinux
kernel[10, 1]. SELinux can enforce an administratively-definedsecurity policy
over all processesandobjects in thesystem,basingdecisionson labelscontaining
a variety of security-relevant information. Thearchitecture providesflexibility by
cleanly separating the policy decision-making logic from the policy enforcement
logic. Thepolicy decision-making logic is encapsulated within asingle component
knownasthesecurity server with a generalsecurity interface.Thepolicy enforce-
mentlogic is implemented using the interfacesspecified by the LSM framework.
A wide range of security models canbe implemented assecurity serverswithout
requiring changesto any othercomponentof thesystem.

3.1 Flask

SELinux is basedon the Flasksecurity architecture for flexible non-discretionary
accesscontrols. The Flasksecurity architecture specifies well defined interfaces

10

to provide a cleanseparation betweenpolicy enforcementandpolicy interpreta-
tion. The Flasksecurity architecture alsoincludesan access vector cache(AVC)
component to help minimize the performanceoverhead from the access control
computation. While policy enforcementcodeis largely systemspecific, policy in-
terpretation andaccesscontrol decisionmakingcodeis platform independent. The
policy enforcement codeis tightly integrated into the kernel services it protects,
andusesthe Flask security server APIs (and the AVC) to obtain security policy
decisions.

The Flask security architecture provides two policy-independent datatypes: the
security context (context) andthesecurity identifier (SID). Thesecurity context is
astring representationof apolicy-specific security label.TheSID is a local integer
identifier thatmaybeusedasarun-timehandle to identify specific security context.
Thesecurity server will maintain a setof security classesthat identify the typeof
object being protected;eachsecurity classhasanassociatedsetof permissionsfor
controlling access to theobject. This associatedsetof permissionsis represented
asa bitmapcalled anaccessvector.

A Flaskobject manager binds SIDs to active kernel objects,andusestheseSIDs
ascontext duringaccesscontrol checks. Thepolicy enforcementprovidesasource
context, a target context, a security class, andan accessvector to the AVC to de-
termine accessto an object. Likewise,whenan object manager wishesto label a
newly createdobject, it will consult thesecurity server to obtain a label.

3.2 Modified Programs

TheSELinuxdistribution alsoincludessupport programsandmodifieduser space
applications. The support programsinclude a policy compiler, a file system la-
beling tool, role management tools, andpolicy querying tools. Severaluser space
applications were modified to make them policy-aware. In particular, SELinux
distributesmodifiedversions of GNU processandfile utiliti es, log rotation pro-
grams,the system login program, the openssh server, the tar program,andvixi e
cron. Thechangeswereprimarily madeto allow theprogramsto retrieve anddis-
play SELinux labeling information, in somecases, allowing programsto maintain
existing labels as files are modified. Othersprograms(login, sshd, cron) were
modifiedto support execution time modification of processlabels.

11

4 SEBSD

This section provides an overview of the SEBSD security modulearchitecture.
Much like the SELinux module, TrustedBSD MAC policies arebuilt asloadable
kernel modules,relying on theFreeBSDmodulefacilities for linking andloading.

4.1 Distrib ution

Thesourcecodefor SEBSD is distributed asastand-alonekernel module thatmay
be linked against FreeBSD5.x. Typically, it is desirable to include the SEBSD
sourcesdirectly in the kernel source tree, in the sys/security/sebsd di-
rectory. The SEBSD implementation consists of the samemajor componentsas
the LSM-basedSELinux implementation: the security server, the access vector
cache (AVC), new system call implementations,andthe entry point function im-
plementations. Theexception is thefifth elementof theSELinux architecture, the
SELinux-specificpersistentlabel mapping,it wasnotportedto FreeBSD,sincethe
UFSandUFS2file systemssupportedtheuseof native extendedattributesandthe
TrustedBSD MAC Framework providesintegratedsupport for handling extended
attributes. Otherwise, SEBSD literally reuses (almost verbatim) the FlaskAVC,
thesecurity server components,thepolicy compiler, andevenmuchof thepolicy
itself.

The policy configuration usedby SEBSDis roughly the sameas that provided
by SELinux. For the mostpart, pathnameswerechanged to reflecta FreeBSD
installation. It wasnot thatdifficult to configure thepolicy to support a base con-
figuration of FreeBSD,allow it to boot in enforcing mode,and permit userand
administrator login.

4.2 Porting Flask

TheAVC andsecurity serverwereonly modifiedin waysnecessaryto port themto
theFreeBSDoperating system. Compatibility with theSELinuxcomponentswas
maintainedwhenpossible. Changeswerenecessaryto:

� Replacememoryallocations anddeallocationswith a generic wrapper func-
tion that implements FreeBSDkernel-specific operations.

� Allow thebinary policy file to beaccessedfrom within thekernel. Theorig-
inal LSM-basedSELinux distribution handled policy initi alization in this

12

manner, but hassincemigrated toward a user-spacepolicy loading mecha-
nism. It is expectedthatSEBSDwill foll ow theleadfrom SELinuxandwill
bemodifiedto no longer directly look up or readthebinary policy file from
inside the kernel; the policy will be opened andreadfrom userspace and
passedasa memorymappeddata pointer to thekernel.

� Locking primitiveswereconvertedto FreeBSDequivalents.

� The AVC and the SecurityServer were separated into two corresponding
sub-directories(avc andss) within theSEBSD sourcehierarchy; this facil-
itateddevelopmentandreducedinter-dependencies.Only FreeBSD-specific
coderesidesat thetop level of thesourcehierarchy.

� Audit information wasupdatedto correctly report details of FreeBSDkernel
datastructures. Sincefull or partial pathnamesarenot readily available in
theFreeBSDkernel, file systemandfile identifiers (fsid andvnode) are
currently reportedby avc audit. Theunavailablity of completepathnamesis
a property of theVFS modelemployedby theFreeBSDkernel. While path
namesarefrequentlyavailable in theLinux kernel, it is not alwayspossible
to reconstruct thecompletepath name.

� The user space interfacesto the SEBSD modulewerere-implemented in a
generic mannerso that they could be madeavailable to all MAC modules.
This led to thedevelopmentof interfacesthatusepolicy-independent textual
representation for module namesandlabels. This providedthe opportunity
to avoid exposingSIDsoutsidethekernel, insteadpassing contexts asstring
basedidentifiers. SELinux lateradoptedthis approach.

Otherthanthechangesabove, themajorcomponentsof theFlaskarchitecturere-
mainfunctionally equivalenton FreeBSDandLinux.

4.3 SEBSD Module Initialization

TheFreeBSDmoduleinterfacesallow policy modules to belinked into thekernel
atbuild time, loadedprior to thekernel starting atboottime,or loadedat run-time.
SinceSEBSDrequires ubiquitous access to all systemobjects, it mustbe present
from systeminception; theSEBSD modulemusteither be linkeddirectly into the
kernel, or it may be built asa separatedynamickernel module andconfigured to
loadprior to kernel execution.

13

The MAC Framework is initialized early in the boot process,shortly after basic
kernel primitivesareinitialized (memoryallocation, system console, andlocking
primitives),but prior to probing devicesandstarting any kernel or userprocesses.
Oncetheframework is initialized, it will allow policy registration. Policy modules
built directly into the kernel will be registeredat this time. Likewise, modules
loadedby theboot loader prior to bootwill beregisteredat this time.

Whenpoliciesregister with theMAC Framework, they provide a numberof prop-
ertiesthat areused by theframework to properly identify andconfigurethemodule.
Shown belowaretheproperties setby theSEBSD module.

Property Value

ModuleName sebsd
Full Name NSA/NAI LabsSecurityEnhanced BSD
UsesLabels yes
Flags MPC LOADTIME FLAG NOTLATE

In addition to setting the namefor the module,the propertiesrequeststorage for
kernel object labels,andsetaflagto indicatethatthepolicy modulemustbeloaded
andiniti alizedearly in the boot process. TheNOTLATE flag alsomeansthat at-
temptsto register themoduleafterthesystembootwill fail.

4.4 User Interfaces

SEBSDusesboth the system control (sysctl) andsystem call interfacesto allow
userspace processesto accessthe state of the SEBSD module and to query the
security server. Library functions, located in libsebsd wrap the sysctls and
systemcalls, providing anAPI that is identical to thatprovidedby SELinux. The
foll owing list of SELinux APIsaresupported:

int sebsd_enabled(void);

int sebsd_enforcing(void);

int sebsd_load_policy(const char *path);

int get_ordered_context_list(const char *user_name,
const char *from_context, char ***ordered_list,

14

size_t *length);

int get_default_context(const char *username,
const char *from_context, char **default_context);

int query_user_context(pam_handle_t *pamh,
char **ordered_context_list, size_t length,
char **retcontext);

security_class_t string_to_security_class(const char *s);

int security_get_user_contexts(const char *fromcontext,
const char *username, char ***retcontexts,
size_t *ncontexts);

int security_change_context(const char *domain,
const char *ocontext, security_class_t oclass,
char **newcontext);

int security_compute_av(struct security_query *query,
struct security_response *response);

SEBSDchose not to export SIDs from the kernel; userspace applications will
only have access to context strings. TheTrustedBSD MAC framework developed
generic string-based labelmanagementfacilitiesthatarecompatible with all secu-
rity policies. By requiring textual label representationsin userspace,TrustedBSD
wasfree to develop applications conforming to a single standard, andusertools
may be both label-awareandpolicy-agnostic. The SELinux project seemsto be
moving in this direction aswell, soultimatelythis design will allow theSELinux
andSEBSDinterfacesto converge.

4.4.1 SystemControls

SEBSDusesfive systemcontrols (sysctls) to maintain module stateinformation
andto query the security server. The sysctls arewrapped by library functions in
libsebsd. Thesysctls for displaying module state informationmaybequeried
or updated with the normal FreeBSDadministrative tools suchas the sysctl
command.

15

SystemControl Description

security.mac.sebsd.enforcing Displaystateof theenforcementof policy; allows
modification to enable/disableenforcement

security.mac.sebsd.sids List SIDSin active useby thesecurity server
security.mac.sebsd.user sids Lists theSIDscurrently availablefor transition to

by a givencontext
security.mac.sebsd.change sid Report the SID to relabel to given input source

context, target context, anda security class.
security.mac.sebsd.compute av Computeaccess vectors given input source and

target contexts,security class, andaccess vector

4.4.2 SystemCalls

The TrustedBSDMAC framework includesan entry point function for a multi-
plexed system call. SEBSD is currently using this interface to support the re-
loading of security policy after boot time. It is anticipatedthat this interfacewill
beconvertedto a sysctl andthatno SEBSD-specific system callswill berequired.
Therearethreesystemcallscurrentlydefined; they arelistedin thefollowing table:

SystemCall Description

int sebsdenforcing() Boolean: is thepolicy beingenforced
int sebsdavc toggle() Togglethestateof theenforcing flag
int sebsdload policy(contchar*path) Loadthespecified policy file

4.5 Label ManagementTools

The TrustedBSDMAC Framework provides a numberof policy-agnostic inter-
faces for policy-awareapplications; theseinterfacesareavailable in the standard
C library. The framework provides interfacesto get and set labels on file sys-
tem objects (vnodes), sockets, pipes, and network interfaces. Thesegeneric la-
beling servicesareusedto make several basic system binaries policy-aware. The
FreeBSDls andps utilit ies weremodifiedto report file andprocesslabels, and
theifconfig tool wasmodifiedto support network device labels. In addition,
several new labelmanagementtools areprovided:

16

Program Description

getfmac Retrieve file label
setfmac Setfile label
getpmac Retrieve processlabel
setpmac Setprocesslabel
setfsmac Setslabels on thespecified file systemhierarchy

4.6 SEBSD UserSpaceApplications

TheSELinux policy compiler andinitial file systemlabeling tools wereported to
the FreeBSDoperating system for usewith SEBSD; thesetools wererenamedto
sebsd checkpolicy andsebsd setfiles respectively. The policy com-
piler is essentially unchanged. The file system labeling tool was re-written to
usegeneric file hierarchy traversal (fts) routinesinstead of the Linux nftw rou-
tines. This tool wasalsousedasthe basis for a generic file labeling tool, called
setfsmac, which is ableto apply policy-agnostic labels based on file specifica-
tions.

SinceSELinuxandSEBSD only permitprocesslabel transitionsatprogram execu-
tion time, theFreeBSDlogin programwasmodifiedto usetheexecve secure
system call to permit new login shells to operate in the proper domain. To show
how thismaybedonefor other applications,thecrondaemon wasalsomodifiedto
permitcronjobsto executewith thecorrect label.Thesechangeshavenotyetbeen
adoptedby the TrustedBSDMAC framework, so they areSEBSD-specific appli-
cations. In continuing work, the MAC framework will design a policy-agnostic
interfacefor login, providing compatible support.

5 SEBSDLabel Management

5.1 SEBSD Labels

SEBSDmaintains per-objectlabels on processes,pipes, files, file descriptors, and
file systems.Thelabelscontain informationthatSEBSD usesto make access con-
trol decisions.Eachof theobject-specific label structuresaredefinedin sebsd labels.h.

17

5.1.1 Process Labels

Thetask security struct, definedin sebsd labels.h, contains secu-
rity information for systemandkernel processes.TheMAC framework storesthese
labels in theprocesscredential structure.Thestructureis definedasfollows:

struct task_security_struct {
security_id_t osid;
security_id_t sid;
avc_entry_ref_t avcr;

};

Field Description

osid SID prior to thelastexecve
sid SID for theprocess
avcr AVC entryreference

5.1.2 Mount Labels

TheMAC framework maintains two separatelabels for thekernel mount structure;
SEBSDusesthemount security struct to label thefile systemmountpoint
itself; this label is intendedto beusedto authorize mount,unmount, andstatcalls.
Thesecond structure,themount fs security struct, is usedasthedefault
label for objectsin thefile system,whenthefile systemdoesnotsupport persistent
file labels. As the TrustedBSD MAC framework matures, this may be controlled
from userspacewith a mountoption. This would allow the systemadministrator
to specify aninitial labelatmounttime. Dueto locking concerns,neither label can
bechangedat run-time.

struct mount_security_struct {
security_id_t sid;
unsigned char uses_psids;
unsigned char uses_task;
unsigned char uses_genfs;
unsigned char proc;
unsigned char uses_trans;

};

18

struct mount_fs_security_struct {
security_id_t sid;

};

Field Description

sid SID for themount
usespsids Flag: this file system supportspersistentSIDs
usestask Flag: usecreating taskSID for vnodes
usesgenfs Flag: usesecurity genfs sid for vnodes
usestrans Flag: whether to call security transition sid
proc Flag: whether to call procfs set sid

5.1.3 File and Pipe Labels

Thevnode security struct, contains security information for vnodesand
representobjectswithin afile system.This labelstructureis alsousedto labelpipe
objects.

struct vnode_security_struct {
security_id_t task_sid;
security_id_t sid;
security_class_t sclass;
avc_entry_ref_t avcr;

};

Field Description

sid SID for thefile (vnode)
task sid SID of thecreating process
sclass security classof this file
avcr AVC entry reference

5.1.4 File Handle Labels

While it wasnot partof theoriginal design,SELinux’s useof file descriptor labels
providedmotivation for theTrustedBSDMAC framework to provide themaswell.
This recent addition providesbasicsupport for labeling struct file objects
within thekernel andallowsfor accesscontrol checks. Thefile security struct
containsonly a single field holding theSID for theobject.

19

struct file_security_struct {
security_id_t sid;

};

5.1.5 Network and SystemV IPC Labels

TheSEBSD moduledoesnotyetprovidelabels for network objects,andtheTrust-
edBSDMACframework doesnotcurrentlyprovidelabeling or accesscontrol entry
points for mostof theSystemV IPCsubsystem.A prototypeimplementing access
control entrypoints for theSystemV IPC subsystem is nearly complete,andwill
beintegratedinto FreeBSDaftersufficient testing.

5.2 Label Life-cycle

The TrustedBSDMAC framework manages all labels with a threestatemodel
that closely matches the life-cycle of most kernel objects; labels are initialized,
created or associated,anddestroyed. While all kernel objectswith MAC labels
have identical life-cycles, they will differ in the association andcreation phases,
since theseoften require object-specific context. For instance, the association of
labels with vnodeswill often be determinedby the capabilities of the underlying
file system,whether it is read-only or whetherit supports extendedattributes.

Label initialization occurs whenthe datastructure for a kernel object is first ini-
tialized. At initialization time, SEBSD dynamically allocatesstorage spacefor
per-object labelsandattachesthemin it’s reservedlabel slot.

At label creation or association, a label is bound to a specific kernel object and
somelabelfieldsmaybecompletedbasedon context specific to theobject. Label
creation takesplacewhenthe modulecreatesa new label valuefor a new kernel
object. This is different from association, which occurs whena previously labeled
object, suchasa file with a persistent label, hasa label associated with it. In the
caseof file objects,theassociation occurs whena persistentobject is readin from
disk; at this time thepersistent label mayalsoberetrievedandassociatedwith the
kernel object.

Labeldestruction occurs whenthekernel object is no longerneeded by thekernel
service; at this time SEBSDfreesany allocatedstoragefor thelabels.

Thefoll owing table lists thevarious label life-cycle entrypoints usedby SEBSD:

20

Entry Point Description

sebsd init cred label
sebsd init mount label
sebsd init mount fs label
sebsd init vnode label
sebsd init file label

Initialize the label for a newly instanti-
atedkernel object; memoryfor the label
is allocated

sebsd destroy label Destroy the label on a kernel object and
free any associated memory; this com-
mon function is usedfor all entry points
in the MAC framework that destroy ob-
ject labels

sebsd create cred Set the label of a newly created process
credential from theparent label

sebsd create pipe Setthe labelof a newly created pipe,us-
ing theSID from thecredentialof thecre-
atingprocess

sebsd create proc0 Createtheprocesslabel for process0, the
parent of all kernel processes; the SID is
initialized to SECINITSID KERNEL

sebsd create proc1 Createtheprocesslabel for process1, the
parent of all userprocesses(init); theSID
is initi alizedto SECINITSID INIT

sebsd create mount Fill out thelabel onthemountpointbeing
created

sebsd create root mount Initialize theSEBSD security server after
theroot partition hasbeenmounted; pol-
icy is located on root partition

sebsd create file SettheSID of this label to theSID of the
processcreating thefile handle

sebsd create devfs device
sebsd create devfs directory
sebsd create devfs symlink

Complete the file label for the
devfs dirent being created; these
entry points are called when the device
file system is mounted, regenerated, or
a new device is made available; calls
security genfs sid to generatethe
SID for thenew label

21

5.3 Inter nalize/Externalize Operations

In order to translatebetween kernelobject labelsanduserspacetextual representa-
tions, theTrustedBSDMAC framework providesentry point functionsto internal-
izeandexternalizeprocessandfile labels.SEBSD generatesastringrepresentation
of labels by composing themodulenamewith thecontext string; thesecomponents
areseparatedwith a ‘/’ character. Hence,a processlabel would berepresentedas
‘sebsd/root:user r:user t’. The internalizeentry points convertsstrings
in this formatto a SID.

TheTrustedBSDMAC framework alsosupports internalization andexternalization
of labels on network interfacesandsockets,but sinceSEBSDdoesnot yet address
thenetwork layer, these areunused.

Thefile andprocessentrypoints areasfoll ows:

Entry Point Description

sebsd externalize vnode label Producesa text representation for thefile
label, alsoused to convert pipelabels

sebsd internalize vnode label Produceaninternal file labelbasedonex-
ternalized label datain text format, also
usedto convert pipelabels

sebsd externalize cred label Producesatext representationfor thepro-
cesscredential

sebsd internalize cred label Produce an internal process label based
on externalizedlabel datain text format

5.4 PersistentFile Labels

Within the MAC framework, mounted file systemsare either marked as single-
label or multi-label; this distinction is madeat mount time. Single-label file sys-
temsderive the label for all files from the file system mount point. Labelson
single-label file systemsmaynot bemodified. For multi-labelfile systems,thefile
system is responsible for implementing a per-file source of labels. Typically this
is implementedasfile systemextendedattributes. TheFreeBSDUFS1andUFS2
file systemssupport extended attributes andSEBSD usesthese facilities to label
objects.

The devfs file system, like the Linux implementation, maintains labelsexplicitly
throughtheuseof genfs; theSEBSDpolicy specifies thelabelsto use.

22

Thefoll owing tabledescribeseachof theSEBSD entrypoint implementations that
manage persistent labels for files.

Entry Point Description

sebsd copy vnode label Copy the label information, alsousedto
copy pipelabels

sebsd relabel vnode Change the vnode label to a
new value; only called subse-
quent to a successful call to
sebsd check vnode relabel

sebsd create vnode extattr Complete the file label for the newly
created file and write out the label to
the appropriate extended attribute; calls
security transition sid to gen-
erate theSID for thenew label

sebsd setlabel vnode extattr Write the file label to an extended at-
tribute

sebsd associate vnode devfs This entrypoint is currently unused
sebsd associate vnode singlelabel Onnon-multilabel file systems,this entry

point setsthe file label based on the file
systemlabel

sebsd associate vnode extattr Attempt to retrieve the file label
from the appropriate extended at-
tribute; if an extended attribute can-
not be located, fallback to using
SECINITSID UNLABELED

6 SEBSDEntry Point Implementation

6.1 ProcessEntry Points

SEBSDprocessentry point functionsmanagesecurity fields for usercredentials
andperform access control for processoperations. Thefoll owing entry points are
usedto enforceprocessaccess control decisions.

SinceSELinux andSEBSD only allow processlabelsto changeat programexe-
cution time, the MAC Framework relabel entry point is not used. Likewise, the
relabel access control entrypoint, sebsd check cred relabel is configured

23

to alwaysdeny requests.

Thechanging of processlabelsat execution time hasprovento besufficiently dif-
ferent from thebehaviorof otherMAC policies,thattheTrustedBSDMAC frame-
work neededto bemodifiedto support it.

This execution time label modification also tends to be incompatible with large
systems,suchasKDE, which usesa custompre-binding mechanismthatmaynot
directly invoke execve(). Likewise, relying on exec-only relabeling may cause
issueswhenFlask is ported to the Darwin kernel dueto behavior of someof the
MacOSX windowcomponents; it mayneed to supporton-demandchangingof the
label. Whenpoliciesdopermitprocessrelabeling, theMAC Framework doesoffer
additional protectionsto prevent attacks againstprocessmemoryandcapabilities
foll owing thesubjectlabel change.

Thefoll owing table describesthepermissionsenforcedby processentry points.

Hook Source Target Permission
sebsd check cred relabel N/A N/A alwaysdeny
sebsd check proc debug credential process ptrace
sebsd check proc sched credential process setsched
sebsd check proc signal credential process signal, sigstop,

sigkill, or sigchld

6.2 Mount Entry Points

Thefollowing operationenforcesaccesscontrol checks whenperforming a staton
mountstructures.

Hook Source Target Permission
sebsd check mount stat credential filesystem getattr

6.3 File Entry Points

The SEBSD file entry points perform access on files. The FreeBSDkernel rep-
resentation of files anddirectoriesarestored in vnodes; this is the structure that
containsthefile label. TheTrustedBSD MAC framework addsentry points to the
VFSto control vnodeoperations,andthuscontrol file access.

File labels are protectedby the vnodemeta-data lock, which must be held for

24

these checks. This locking requirementled to thebreakup of therelabel operation
into two separate checks, from andto. It is not possible to hold all vnode locks
necessaryto perform all access control checks in a single entrypoint function.

Thefoll owing table describesthepermissionscheckedfor file operations.

25

Hook Source Target Permission

sebsd check vnode access
sebsd check vnode open

credential file read,write, search
append,or execute

sebsd check vnode chdir
sebsd check vnode chroot

credential directory search

sebsd check vnode create credential directory
file
filesystem

add name,search
create
associate

sebsd check vnode delete credential directory
file

search, remove name,
rmdir or unlink

sebsd check vnode deleteacl
sebsd check vnode setacl
sebsd check vnode setextattr
sebsd check vnode setflags
sebsd check vnode setmode
sebsd check vnode setowner
sebsd check vnode setutimes

credential file setattr

sebsd check vnode getacl
sebsd check vnode getextattr
sebsd check vnode stat

credential file getattr

sebsd check vnode exec credential file
process
file

execute no trans
transition
entrypoint

sebsd check vnode link credential dir
file

search, add name
link

sebsd check vnode lookup credential dir search
sebsd check vnode mmap credential file read,write, or execute
sebsd check vnode poll credential file poll
sebsd check vnode read
sebsd check vnode readlink

credential file read

sebsd check vnode readdir credential dir read
sebsd check vnode relabel credential file

filesystem
relabelfrom, relabelto
associate

sebsd check vnode rename from credential dir
file

search, remove name
rename

sebsd check vnode rename to credential dir

file

add name,search,
remove name
rmdir or unlink

sebsd check vnode write credential vnode write

TheSEBSD moduledoesnotcurrently implement thesebsdcheck vnode revoke.

26

6.4 Pipe Entry Points

TheSEBSDpipeentrypointsperform accesscontrol for interprocesscommunica-
tion pipes. Thepermissionscheckedfor pipeobjectsaresimilar to thosechecked
for file objects. Thesepermissionsarelisted in thefollowing table:

Hook Source Target Permission

sebsd check pipe ioctl credential fifo file ioctl
sebsd check pipe poll credential fifo file poll
sebsd check pipe read credential fifo file read
sebsd check pipe relabel credential fifo file

filesystem
relabelfrom, relabelto
associate

sebsd check pipe stat credential fifo file getattr
sebsd check pipe write credential fifo filey write

6.5 File Handle Entry Points

TheSEBSDfile handleentrypointsperform accesscontrol for file descriptor oper-
ations.Eachstruct file structurecontainsstatesuchasthefile offset andfile
flagsfor openfiles. Sincefile descriptors may be shared amongst processeswith
differentsecurity attributes, accessto themmustbecontrolled.

Thefoll owing table describesthepermissionsenforcedby file entrypoints.

Hook Source Target Permission
sebsd check file create credential fd create
sebsd check file get flags
sebsd check file get ofileflags
sebsd check file get offset
sebsd check file change flags
sebsd check file change ofileflags
sebsd check file change offset

credential fd use

6.6 SystemV IPC

The TrustedBSD MAC framework doesnot currently support labeling of System
V IPC objects or provideaccesscontrol entry points. Whenthis kernel subsystem
is fully supportedby theTrustedBSDMAC framework, SEBSD will beupdated.

27

6.7 Network Support

While the TrustedBSD MAC framework provideslabeling andaccess control for
network devices,sockets,andmessages, the SEBSDmodule does not yet imple-
mentany of theseentry point functions.

6.8 MiscellaneousModule and SystemEntr y Points

Theseentry point functionsarecalled to register andde-register the the SEBSD
module. Thefoll owing tablelists theseentrypoints,alongwith thegeneric system
call entry point.

Entry Point Description

sebsd init This entry point is currently unused;the SEBSD
moduleinitializes itself whentheroot file system
is mounted

sebsd destroy This entry point is currently unused; when the
SEBSD module registers with the MAC frame-
work, configuration parameters specify that the
framework should not permit theSEBSD module
from being unloaded

sebsd syscall This entry point provides a policy-multiplexed
system call so that SEBSD may provide addi-
tional servicesto userprocesseswithout register-
ing specific systemcalls

The following table lists the permissionsenforcedby miscellaneous system and
module access control entrypoints.

Hook Source Target Permission

sebsd check kld load
sebsd check kld unload
sebsd check kld stat

credential capability sys module

sebsd check sysarch ioperm credential capability sys rawio
sebsd check system acct credential capability sys pacct
sebsd check system reboot credential capability sys boot
sebsd check system settime credential capability sys time
sebsd check system swapon
sebsd check system swapoff

credential file swapon

28

Two system entrypoints,sebsd check system sysctl andsebsdchecksystem nfsd
arenot yet implemented; they control complex operations andrequire further re-
search.

6.9 Entr y Point Comparison

While Linux andFreeBSDboth providea similar useroperating environment, the
kernel services are ratherdifferent, and the kernel implementations aredramati-
cally different. As a result, there is no convenient way to comparethe LSM and
TrustedBSD MAC frameworks at the entry point (hook) level. Both frameworks
support labeling operationsandaccesscontrol checks on file andprocessobjects,
but theorganizationof theindividualkernel services(processandVFS)caused the
two security frameworksto diverge.However, since thesamebasicoperationsare
being performed,thesamesetof permissionswasapplicableto both SEBSD and
SELinux. OncetheSEBSD prototypeis complete (including network andSystem
V IPC support), a full analysis canbe doneto verify that the permissionsbeing
enforcedby SEBSDarecomparableto those enforcedby SELinux.

7 Futur eDevelopment

The SEBSDmoduleis still under development; labels arenot maintained on all
kernel objects supported by the TrustedBSDMAC framework, andnot all access
control entry points have beenimplemented. However, the current stateis suf-
ficient to prove that the Flask architecture is sound and that it translateswell to
theFreeBSDplatform. Going forward, SEBSD will provide labeling support and
access control checks for network objects, pipe objects, and SystemV IPC. In
addition, the following list summarizesthe itemsthat arecurrently scheduled for
inclusionin thenext majorreleaseof SEBSD:

� Provide morecomplete path information in avc audit messages. Currently
the FreeBSDVFS doesnot provide complete path information, only file
systemandfile identifiers are reported. Thereareseveral approaches that
maybetaken to improve pathidentification.

� Re-implementpolicy loading mechanisms.Takingtheleadfrom theSELinux
project, SEBSD will likely implement a userspacepolicy loading mecha-
nism.

29

� SynchronizetheAVC andSecurity Server. SinceSEBSDoriginally branched
from the SELinux developmenttree, the SELinux project hasmademany
changes and improvements; SEBSD needs to make certain all important
changesmadeto thesecurity server andtheAVC arere-integrated.

� Synchronize userspaceAPIs. Recentuserspace API changesin SELinux
needto beexamined in greater detail, andanattempt will bemadeto bring
thetwo APIsasclosetogetheraspossible.

� File system/mount point hooksare incomplete. Therearesomeremaining
technical issues with the ways the TrustedBSDMAC framework handles
mountpoints andmountpoint accesscontrol checks.

8 RecentLinux Changes

Because SELinux and the LSM framework areboth still works in progress,the
code baseoriginally adaptedfor SEBSD hasdiverged from the current SELinux
developmentbranch. Recentchangesto SELinuxinclude:

� All API calls werechangedto passcontexts rather thanSIDs. As this was
already the interfacethat SEBSD chose, there is littl e impact due to this
change – rather it bringsthetwo userspace APIsclosertogether. By having
thetwo APIsalign, it will allow easier porting of security-awareapplications
andUnix tools.

� Extendedsystem calls for passing in asecurity context atprogramexecution
timeandobject creation timewerereplacedwith asequenceof systemscalls
that first seta security context foll owed by the operation. At this point the
MAC framework (and SEBSD) only makes useof the execve secure
extendedsystemcall; theMAC framework hasaddedthissystemcall. Since
the TrustedBSD MAC framework does not yet permit atomic object cre-
ation and labeling system calls, the new SELinux interfacewill be exam-
ined in greater detail to determine whether this approachwill work well on
FreeBSD.

� Theextendedstatsystemcallswerereplacedwith separate,orthogonalsys-
temcalls thatonly obtain thesecurity context. This is already theapproach
takenby theTrustedBSDMAC framework.

30

� All calls that returncontexts or context arraysnow provide automatic allo-
cationof context buffers andcontext arraybuffers of the proper size. This
simplifiesthe interface,asuserapplications no longer mustguessan initial
sizeandretry with a larger bufferuponfailure. SEBSDimplementsmany of
theseinterfacesassysctls, so it maynot be appropriateto allocate memory
on behalf of thecaller – this issue will beexaminedin further detail.

� The policy loading API takes a (data, size) pair ratherthan a Unix
pathname.TheSELinuxmodule no longerdirectly opens files from within
theLinux kernel. With thenew interface,a user spaceapplicationwill open
the file, mmapit, and call security load policy with a pointer to
the policy data. Sinceit is preferableto avoid file accessfrom within the
FreeBSDkernel, it is likely thatSEBSD will take this approachaswell. It is
possible that the TrustedBSD MAC framework will needto be modifiedto
support this behavior.

For the mostpart, these changeswill bring the userspace APIs for SEBSD and
SELinux closer together. The otherchangesto SELinux arelikely to be adopted
by SEBSD, andwith theuseof a userspacesecurity library, remaining API differ-
ences maybeabstracted,allowing user applications to remainlargely compatible.

9 Getting the Software

TheTrustedBSDMAC Framework, aswell asanumber of samplepolicy modules,
are present in the FreeBSD5.0 distribution. This software may be downloaded
from:

http://www.FreeBSD.org/

TheMAC Framework is distributed under atwo-clauseBerkeley-styleopen source
license,permitting unlimitednon-profit or for-profit reusein bothopensourceand
closed source products. Additional information on the TrustedBSDProject and
SEBSDmaybefoundat:

http://www.TrustedBSD.org/

Much of theLSM Framework is currently includedin the current Linux develop-
mentkernel releases.This software maybedownloadedfrom:

http://www.kernel.org/

31

Additional informationabout theLSM Framework is availableat:

http://lsm.immunix.org/

TheSELinuxsoftwareanddocumentation is available at:

http://www.nsa.gov/selinux/

References

[1] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lep-
reau, “The FlaskSecurityArchitecture:SystemSupportfor DiverseSecurity
Policies,” in 8th USENIX Security Symposium. Washington, D.C., USA:
USENIX, Aug. 1999, pp.123–139.

[2] P. Loscocco andS.Smalley, “Integratingflexible support for security policies
into theLinux operating system,” U.S.National SecurityAgency, Tech.Rep.,
Oct.2000.

[3] “FreeBSDhomepage,” FreeBSDProject,http://www.FreeBSD.org/.

[4] TrustedBSD Project, “TrustedBSD home page,”
http://www.TrustedBSD.org/.

[5] R.Watson,“IntroducingSupporting Infrastructurefor TrustedOperating Sys-
temSupportin FreeBSD,” in BSD Conference, Monterey, CA, USA,October
2000.

[6] ——, “TrustedBSD: Adding Trusted Operating System Features to
FreeBSD,” in Proceedings of the USENIX Annual Technical Conference, June
2001.

[7] R. Watson,B. Feldman, A. Migus, andC. Vance,“Design andImplementa-
tion of theTrustedBSDMAC Framework,” in DISCEX III, Washington,DC,
USA, April 2003.

[8] R. Watson,W. Morrison, C. Vance,andB. Feldman,“The TrustedBSDMAC
Framework: Extensible KernelAccessControl for FreeBSD,” in Usenix An-
nual Technical Conference, SanAntonio, TX, USA, June2003.

[9] “Linux Security Moduleshomepage,” LSM Project, http://lsm.immunix.org/.

32

[10] P. A. Loscocco andS.D. Smalley, “Integrating Flexible Support for Security
Policies into the Linux Operating System,” in Proceedings of the USENIX
Annual Technical Conference, June 2001.

33

