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a b s t r a c t

Wepresent a signed particle computational approach for theWigner transportmodel and use it to analyze
the electron state dynamics in quantumwires focusing on the effect of surface roughness. Usually surface
roughness is considered as a scattering model, accounted for by the Fermi Golden Rule, which relies
on approximations like statistical averaging and in the case of quantum wires incorporates quantum
corrections based on the mode space approach.

We provide a novel computational approach to enable physical analysis of these assumptions in
terms of phase space and particles. Utilized is the signed particles model of Wigner evolution, which,
besides providing a full quantum description of the electron dynamics, enables intuitive insights into the
processes of tunneling, which govern the physical evolution.

It is shown that the basic assumptions of the quantum-corrected scattering model correspond to the
quantum behavior of the electron system. Of particular importance is the distribution of the density:
Due to the quantum confinement, electrons are kept away from the walls, which is in contrast to the
classical scatteringmodel. Further quantum effects are retardation of the electron dynamics and quantum
reflection. Far from equilibrium the assumption of homogeneous conditions along the wire breaks even
in the case of ideal wire walls.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Quantum mechanics progressively captures the physics of
modern electronic nanostructures, designed around the concept
of spatial confinement, where electrons are not any more point-
like particles. Processes related to the superposition property,
such as coherence and entanglement, provide a foundation for
novel engineering disciplines, such as entangletronics [1], while
the finite electron size introduces the need to take the Heisenberg
principle into account for the proper description of the transport
processes. Indeed, the momentum component of the electron in
the direction of confinement is not any more a well-determined
physical quantity. This requires to reconsider the models of the
transport theory derived for a bulk crystal and in particular the
mechanisms for electron interaction with the variety of deviations
from the periodicity of the ideal crystal structure, ranging from
atom vibrations to effects introduced by interfaces and edges.

* Corresponding author.
E-mail address: josef.weinbub@tuwien.ac.at (J. Weinbub).

Especially important for the behavior of nanoscale structures is
the interface responsible for the confinement in one ormore spatial
directions , such as in quantum wires (also frequently referred to
as nanowires). Already phenomenological considerations prompt
that the properties of such interfaces should affect the evolution
of the electron system in the structure. Surface roughness (SR)
should impede the evolution of the electron system, compared
to ideal surfaces. Theoretical and experimental studies show that
SR is a dominant low-field electron mobility limiting mechanism
in confined structures [2]. Models for both, pure bulk and con-
fined structures, usually treat the electron–SR interaction as a
scattering process, causing an instantaneous change of the electron
momentum component (which is local in space) in the direction
of transport: Namely, the usual models assume a decomposition
of the problem into an eigenvalue task due to confinement and a
transport task along the unconfined direction(s), where the elec-
tron momentum is well defined [3].

Electron evolution processes in quantum wires incorporate a
major part of the transport phenomena governing the operation
of actual nanoelectronic devices like FinFETs and quantum wire
transistors [2–4]. In such structures the transport is along thewire.
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https://doi.org/10.1016/j.cpc.2018.03.010
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2018.03.010&domain=pdf
mailto:josef.weinbub@tuwien.ac.at
https://doi.org/10.1016/j.cpc.2018.03.010


M. Nedjalkov et al. / Computer Physics Communications 228 (2018) 30–37 31

The transverse confinement gives rise to an eigenvalue problem
posed in terms of eigenfunctions and energy subbands.Within this
approach shape variations are treated as perturbations. Scattering
probability models based on the Fermi Golden Rule depend explic-
itly on the transverse eigenfunctions, while the subband energies
appear in the energy conserving delta function. The latter cap-
tures the electron dynamics in the long-time limit of the electron-
surface potential interaction process. The eigenvalue problem can
be solved either for an ideal wire or with account for the rough
interface [5]. Statistical averaging is performed, which gives rise to
a model that is roughness-aware, and can be considered indepen-
dent of the position along the wire.

In Section 2, we present the main assumptions and approxi-
mations inherent to this approach. The goal of this work is to use
first principle quantum descriptions to analyze the physical effects
caused by SR, and then draw a comparison with the assumptions
inherent for a scattering model approach. The evolution of Wigner
states [6] corresponding to minimum uncertainty wave packets,
which are periodically injected through the source end of the
simulation domain, are simulated in the cases of ideal or rough
two-dimensional wire surfaces.

Of central importance is Section 3, which presents the numeri-
cal aspects of the utilized signed particles, computational model.
The derivation of the latter is based on stochastic weights [7]
obtained by applying the numerical Monte Carlo theory to an
integral formulation of the Wigner transport problem. It has been
shown that stochastic weights give rise to particles carrying posi-
tive or negative signs [8]. In the stationary transport case the cor-
responding numerical algorithm has been called pair-generation
method [9]. The approach has been generalized recently for evo-
lution problems and has been termed signed particle method. It
has been shown that the continuous particle acceleration – ac-
cording to Newton’s second law – can be reproduced by the gen-
eration/annihilation of unaccelerated signed particles [10]: This
may be considered as a major validation of the method, which
provides a transition from a force to a potential description of the
electron dynamics. Furthermore, signed particle attributes provide
not only a simulation approach, but a particle picture, which can
be regarded as an alternative formulation of Wigner phase space
quantummechanics. The model offers a high level of intuition and
offers a profound apparatus for physical analysis.

Simulation results of the most important physical characteris-
tics of semiconductor devices, namely the electron density and the
current, along with an analysis of their evolution is presented in
Section 4. Section 5 discusses certain computational aspects.

In summary, this manuscript makes the following three core
contributions:

(1) Analysis of the physical factors which make the quantum-
corrected SR scattering model a relevant replacement for the stan-
dard scattering model widely used in classical device simulators;

(2) Novel two-dimensional signed particles, simulation ap-
proach based on injection of coherent states from the boundary;

(3) An advanced view of the signed particle approach as a set of
concepts which may be combined into different methods suitable
for both stationary and transient physical problems in the presence
of initial and/or boundary conditions.

2. Surface roughness scattering model

The Fermi Golden Rule, obtained within the time-dependent
perturbation approach is the basic theoretical notion, giving the
probability S for a transition per unit time from an initial state |k⟩

defined by quantum numbers k and energy Ek, to a state k′ under
the action of a perturbing Hamiltonian H ′:

S(k, k′) =
2π
h̄

⏐⏐⟨k′
|H ′

|k⟩
⏐⏐2δ(Ek′ − Ek ± h̄ω) (1)

Here the δ function is a result of a long time limit of the action of
H ′ and ω is the frequency (if any) of the perturbation. This limit
introduces the first essential assumption for a completed collision,
which furthermore poses certain requirements about the energy
and time scales of the electron evolution [11], which characterize,
e.g., the Boltzmann transport model.

To obtain the matrix element ⟨k′
|H ′

|k⟩, we need the electron
states in the wire and the perturbing Hamiltonian H ′ correspond-
ing to the SR type of scattering. For convenience, we consider a
two-dimensional wire with a length L, a transport direction along
y, and a direction of confinement in x. The eigenfunction set is
secondly assumed to be:

⟨x, y|l, k⟩ = ξl(x)
eiky
√
L
; El,k = ϵ(k) + El , (2)

where ϵ(k) =
h̄2k2
2m is the kinetic energy of the electron, El is the

energy corresponding to the eigensolution ξl(x) of the Schrödinger
equation defined by the potential V , determined by the transverse
properties of thewire. In the ideal case the potential V = V0 is zero
inside the wire, between points x = a and x = b, defining the wire
width, and V0(a, y) and V0(b, y) are straight lines. SR is defined by
the stretch∆(y), along x, so that the potential becomes V0(x+∆, y)
The perturbation H ′ is then given by

V0 + H ′
= V0 +

∂V0(x)
∂x

∆ = V0 + eE(x)∆ , (3)

which may be justified by a heuristic, ‘linear response’ considera-
tion: The perturbation of the energy is proportional to the force eE
pressing the electron to the interface, and the deviation from the
ideal shape.

The state representation (2) prompts that the electron states
correspond to the ideal case where the potential does not de-
pendent on y. This basic, second assumption for the mode space
approach allows to decompose the problem into transport and
confinement tasks.

Furthermore, it is important to note the character (which is local
in space) of the third assumption given by (3), where the potential
variation is replaced by its unperturbed derivative.

The dependence on y enters the perturbation via the offset
∆, however, it will be further averaged by taking the stochastic
nature of the random function ∆ into account. The statistically
averaged square of thematrix element can be expressed after some
calculations by the autocorrelation function ∆(y)∆(y′).

|⟨l′, k′|H ′|l, k⟩|2 = e2|N(l, l′)|2
∫

dy
L

∫
dy′

L
∆(y)∆(y′)ei(k−k′)(y−y′)

(4)

with

N(l, l′) =

∫
dxξ ∗

l′ (x)E(x)ξl(x) . (5)

This result depends on the distribution of the random function ∆.
We assume that the autocorrelation function can be decomposed
into a component slowly depending on the position y, and a com-
ponent that drops rapidly with the distance |y − y′

|.

∆(z)∆(z ′) = D2(z)R(|z − z ′
|) = D2(z)e−

√
2|z−z′|/λ (6)

We use D2 to indicate that the autocorrelation becomes the vari-
ance for y = y′. The last equality introduces the fourth assumption
about the shape of R [12]. This leads to the final expression of the
averaged matrix element:

|⟨l′, k′|H ′|l, k⟩|2 = e2|N(l, l′)|2D2 1
L

2
√
2λ(

2 + λ2q2
) ;

D2
=

∫
dy
L
D2(y) , (7)
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where the mean offset, D, is the averaged variance along the wire.
The autocorrelation function has been effectively averaged to

∆(y)∆(y′) = D2e−
√
2|y|/λ . (8)

In this way SR effects are captured by the two parameters D
and λ which do not depend on y. They are usually determined
by the methods of reverse engineering, e.g., by a comparison of
experimental and simulation results.

The above assumptions are critical: They allow to consider the
interaction of the electron with the wire surface as a stochastic
process of scattering, described by a model similar to the models
used in the case of impurity or phonon scattering.

We end up with the conclusion that the efforts to account for
SR effects, which characterize inhomogeneous wires, lead to an
entirely homogeneous model, where all involved physical pro-
cesses are described by two statistical parameters. It is thus note-
worthy to have a more detailed picture of the underlying physics
related to these assumptions. Thus our goal is not to explore the
engineering and application aspects of the above model, which is
actually widely used in device simulations. Indeed, the model can
be plugged into different approaches based on Boltzmann,Wigner,
or Non-Equilibrium Green’s Functions. However, a comparative
study of surface roughness-aware transport approaches is beyond
the scope of this work. Here, our goal is to obtain a deeper un-
derstanding of the underlying physical processes which make the
model a feasible add-on to first principle quantum simulations.
In a first principles treatment surface roughness is part of the
boundary conditions. Thus, the above assumptions are explored
here by using a Wigner particle picture in the case of a concrete
surface, randomly generated by using typical values for the two
parameters. This surface represents one of themany possible sam-
ples accounted for in the average given by Eq. (8).

The associated signed particle picture of theWigner theory does
not only lead to numerical methods for stochastic simulation, but
also to heuristic models for physical analysis in terms of particles
and phase space. It has been shown that the signed particle picture
provides an independent formulation of quantum mechanics [13]
and has been applied to simulations of a variety of physical prob-
lems including many-body systems [14] and density functional
theory [15].

The concept of signed particles and the numerical aspects of
their application to the SR aware transport problem are discussed
in the next section.

3. Wigner signed particles

We present the main ideas giving rise to different models and
algorithms which have the concept of signed particles in com-
mon. Theoretical studies about the possibility to develop parti-
cle approaches for the Wigner equation were developed in the
past [16] and were first implemented for a stationary transport
problem [17]. The core idea is to apply the numerical theory of
the MC method for solving integral equations to different inte-
gral forms of the transport equation. Our presentation follows
the historical evolution of the concepts, which offers a rather
heuristic way to introduce the attributes of the signed particles.
The development of these attributes has begun already 15 years
ago for the stationary transport problem, defined by boundary
conditions: This problem is especially focused on this section, in
order to show that there is not a single, unique signed particle
model, but rather a set of attributes whichmay be combined into a
variety of algorithms suitable for particular tasks. It is then shown
how these concepts can be modified and completed, as it has been

recently done for the transient task of evolution from an initial
condition [10].

In the next section, we first summarize the numerical aspects.

3.1. Numerical aspects

Let us consider a Fredholm integral equation of a second kind,
with a kernel K and a free term f0:

f (Q ) =

∫
dQ ′f (Q ′)K (Q ′,Q ) + f0(Q )

Q ∈ Ω , Ω is domain from Rn, called simulation domain and K ∈

L2(Ω ×Ω), f0 ∈ L2(Ω) are known functions [18]. The solution f (Q )
is given by the series

f (Q ) =

∑
i

fi(Q ); fi(Q ) =

∫
dQ ′fi−1(Q ′)K (Q ′,Q ) (9)

obtained by the iterative replacement of the equation into itself.
The convergence of the Neumann series (9) is analyzed in [19].

A multi-dimensional integral can be presented as the expecta-
tion value

fi(Q ) =

∫
dQ ′P(Q ,Q ′)

fi−1(Q ′)K (Q ′,Q )
P(Q ,Q ′)

of the randomvariable given by the term in the fraction distributed
by the term P , called transition probability for any fixed Q , which,
except from some constrains, can be freely chosen. The expansion
of this equation presents fi as a product of probabilities P with the
quantity P

K ·
P
K if0(Qi) called weight. The consecutive applications of

P give rise to a numerical trajectory Q ,Q1, . . . ,Qi. The trajectory
links the initial point, where the solution is evaluated, with the
point Qi, where the contribution of f0 is evaluated.

As applied to physical problems, where f plays the role of a dis-
tribution function and f0 to the initial or boundary condition [20],
the above fundamental algorithm is modified to compute mean
values ⟨A⟩ givenby the integral of f with generic physical quantities
A, like electron density or velocity. In this case it is convenient to
consider the adjoined equation with a solution

g(Q ′) =

∫
dQK (Q ′,Q )g(Q ) + A(Q ′) ,

where A is assumed also from L2(Q ). An important result is that
physical averages can be expressed via g .

⟨A⟩ =

∫
dQ ′A(Q ′)f (Q ′) =

∫
dQf0(Q )g(Q ) =

∑
i

⟨A⟩i (10)

Now, by applying the fundamental algorithm, we obtain a tra-
jectory which is constructed in the opposite direction: It begins
from a point, where f0 is evaluated and consists of consecutive
points Qi, which are used to evaluate the consecutive weights
sampling the terms ⟨A⟩i. The first pointQ can be chosen by another
probability p, called initial probability sampling the random vari-
able f (Q )/p(Q ), which is the first term in the product giving the
consecutive weights.

Finally the value of the physical average is obtained by the
statisticalmean ofN trajectories givingN independent realizations
of ⟨A⟩.

We conclude that in order to formulate a MC method it is
sufficient to specify the transport equation in terms of variables,
kernel, and free term, as well as the initial and transition proba-
bilities. Our ambition is spread beyond the numerical aspects of
the stochastic formalism: We intend, by choosing a proper set of
probabilities P and p, to add a physical interpretation of the process
of construction of the numerical trajectories. We begin with the
simpler, stationary task.
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3.2. Stationary transport particle attributes

In the stationary case the point Q corresponds to a multi-
dimensional phase space point with coordinates r, k. The kernel
is [17]:

K (r′, k′, r, k) =

∫ 0

−∞

dt ′Γ (r′, k′, k)e−
∫ 0
t′ γ (r(y))dyδ(r′ − r(t ′)) θD(r′)

(11)

where the fieldless Newtonian trajectory r(t ′) = r +
h̄k
m t ′ is

initialized by r, k at time 0,m is the effective mass, θD is the spatial
indicator of the simulation domain,

Γ (r, k′, k) = V+

w (r, k′
− k) − V+

w (r, k − k′) + γ (k)δ(k − k′) (12)

V+

w = Vwξ (Vw); γ (r) =

∫
dkV+

w (r, k) (13)

with ξ the Heaviside step function. Finally,

Vw(r, k) =
1

ih̄(2π )3

∫
dse−ik·s

(
V (r −

s
2
) − V (r +

s
2
)
)

(14)

is theWigner potential, obtained from the electric potential V . The
free term

f0 = fb(r(tb), k(tb))e
−

∫ 0
tb

γ (r(y))dy (15)

which accounts for the boundary conditions fb via the boundary
time tb - the value of the time for which r(t) becomes a boundary
point. fb appears to be the same as in the Boltzmann transport
case [21], which is related to the fact that classical and Wigner-
quantum equilibrium functions coincide.

A reformulation of the problem with the help of the adjoined
equation offers several advantages: Thenumerical trajectories now
begin from the boundaries, moreover the classical algorithm for
injection of particles can be used for selection of the initial point.
Second, the backward parametrization of the trajectory r(t ′), t ′ < 0
becomes a forward one, t ′ > 0. The terms in the series (10) are
obtained by the iterative application of the following term:

K̃ (r′, k′, k, t) = e−
∫ t
0 γ (r′(y))dyθD(r′(t))Γ (r′(t), k′(t), k) . (16)

The next step is to decompose (16) into conditional probabilities.
By multiplying and dividing by γ it is obtained:

K̃ (r′, k′, k, t) = pt (t, r′, k′)θD(r′(t))
{
P+

w − P−

w + Pδ

}
(r′(t), k′, k)3

(17)

with

pt = γ (r′(t))e−
∫ t
0 γ (r′(y))dy

; (18)

P±

w (r′(t), k′, k) =
V+

w (r′(t), ±
(
k′

− k
)
)

γ (r′(t))
; Pδ = (k′

− k) . (19)

These conditional probabilities can be used to construct the transi-
tion probability P(r′, k′, k, t) from point r′, k′ to point r = r′(t), k.
pt coincides with the Boltzmann probability for finding the next
scattering time with the power of the Wigner potential γ playing
the role of a scattering rate. This provides t and thus the spatial
coordinate r = rv′(t) of the next phase space point. At this step
the indicator θD kills the numerical trajectory, if r(t ′) is outside
the simulation domain. Here we conclude that a trajectory begins
by an event corresponding to a boundary injection of a classical
particle and survives until evolving inside the simulation domain.
In the latter case the wave vector coordinate k is generated by the
probabilities enclosed in the curly brackets.

However, we first need to choose which of the terms to be the
generator of the particular point. We have two options:

(a) To associate three probabilities ξi for choosing randomly
which one continues the trajectory. In this case the successive
iterations contribute to the weight by a factor Pi/ξi. For example, if
ξi = 1/3, the total weight accumulated on a trajectory becomes a
factor ±3 with any new point added to the trajectory. Considering
computational implementations, this, however, easily leads to a
high memory demand, since the total weight grows exponentially
with the simulation time. The approach works unfortunately only
for electric potentials or simulation domains which are several
orders of magnitude smaller than the values posed by realistic
problems.

(b) The second option is to leave part of the weight in the phase
space points, which can be used to initialize novel trajectories
aiming to remove the residual weight. An important property
which will be further exploited is that a weight with a given sign
can cancel the same amount of weight with the opposite sign if
stored at the same place.

Now the dilemma is what should be the next step after the
numerical trajectory leaves the domain: (i) To begin a new one
from the boundaries or (ii) to take care of the residual weight. The
problem has been solved by an algorithm, where (i) and (ii) are
alternating. The algorithm provides an unbiased estimator of the
expectation value of interest [17].

The next step is to abandon the scattering comprehension of
the terms in the curly brackets in favor of a generation compre-
hension: All three terms generate a value of k which leads to a
maximal randomization of the weight. At this point we are ready
to formulate the basic interpretation of the stochastic algorithm
for construction of a numerical trajectory, which introduces the
concept of particle sign:

1 The trajectory begins with a boundary injection of an initial
particle at a point r′, k′ (r′ belongs to the boundary). The
particle weight is set to unity.

2 A free flight over a Newtonian trajectory initialized by r′, k′

at time 0 continues until time t selected according to a
scattering rate given by γ , which determines r = r′(t).

3 A generation of three wave vector values ki follow ed, e.g.,
by the scheme: k3 = k′, as determined by Pδ . Then q is
generated according to P+

w (k′, q), so that k2 = k′
− q and

k3 = k′
+ q.

4 The three phase space points r, ki become initial points for
novel numerical trajectories in the next iteration step. The
genuine particle survives and two novel ones are generated:
Particle 2 retains the genuine weight, while particle 3 mul-
tiplies it by −1. The weights are taken into account in the
computation of the physical averages of interest at any step
of the iterative procedure.

This creates a picture of classical-like particles which are in-
jected from the boundary with a positive sign and evolve over
a Newtonian trajectory until leaving the simulation domain. Ac-
cording to rules determined by theWigner potential they generate
couples of secondary particleswith± sign,which, in turn, continue
over their own Newtonian trajectories, generating ternary parti-
cles , and so forth. Positive and negative particles with a common
phase space coordinates annihilate each other. Here it is important
to note the role of the time integral in (11). After accounting for
the delta functions, only a single time integration survives in the
estimator of ⟨A⟩. It is, however, sufficient to ensure the ergodicity of
the task and to replace the ensemble average overN trajectories (in
the new language:N particles) by a time average. Thismeans that a
single particle is followed during the simulation. After leaving the
simulation domain it is re-injected from the boundary or a point
with a residual weight.

It is important to note that this picture is not unique. There are
many options to modify the probabilities so that, e.g., a positive
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or negative single particle is generated at a time. The advantage
of the presented method is that the charge is strictly conserved as
it generates particles pairwise with opposite sign. However, even
this method is not unique [22].

3.3. Transient transport particle attributes — initial condition

In the transient case the time becomes an active variable and
the point Q corresponds to a phase space — time point with
coordinates r, k, t . The kernel is

K (r′, k′, t ′, r, k, t)

= Γ (r′, k, k′, t ′)e−
∫ t
t′ γ (r(y),y)dyθ (t − t ′)δ(r′ − r(t ′))θD(r′) . (20)

Integration variables are the primed ones, in particular the time
integral is in the limits 0, ∞. The free term f0 involves the initial
condition fi which is defined via the Newtonian trajectory r(t ′) at
time 0.

f0 = fi(r(0), k)e−
∫ t
0 γ (r(y),t)dy

; r(t ′) = r +
h̄k
m

(t − t ′) (21)

The functions Γ and γ now depend on time via the electric po-
tential V (r, t). The general structure of the kernel resembles the
stationary counterpart, in particular the models for free flight se-
lection and the generation of particles remain the same. However,
in this case, we can no more rely on the ergodicity of the system.
The time averaging provided by a single trajectory is now replaced
by an ensemble average. N particles are associated to the initial
condition. Their evolutionmust be followed synchronously in time.
The ensemble provides the physical averages at certain time fixed
for all particles — initial and generated. As the number of the latter
grows exponentially in time, the particle annihilation continues to
be of crucial importance for reducing the computational burden.
However, now annihilation is seriously hindered by the lack of
ergodicity: It is no more sufficient for two particles with opposite
sign to meet in the phase space in order to annihilate, they must
have evolved to the same evolution time.

The problem has been solved due to the Markovian character
of the evolution: At periodic time steps particles are recorded
(i.e. summing the signs which results in annihilation) in phase
space, which gives rise to a reduction of their number. To facilitate
this process, a discretemomentum space has been introduced [23].

From a numerical point of view this considerably reduces the
numerical error, since the iterative action of the kernel onto itself
can be viewed as a forth and back Fourier transform. Discrete mo-
mentum is also motivated from a physical point of view: Physical
systems like nanoelectronic structures are usually bounded by a
maximal length where coherence exists. The momentum offset
∆k is directly linked to the coherence length Lc by the relation
∆k = π/Lc . In this way all spatial integrals are bounded by
Lc , while the momentum integration is replaced by a summation∫
dk →

∑
∞

m=−∞
m∆k.

Now an important question arises: How can a discrete mo-
mentum space be compatible with Newtonian acceleration? This
question has been addressed as a general test and verification of
the particle sign concepts [10]. For convenience a one-dimensional
problem is considered. The classical evolution of an initial peak
f (x, k, 0) = Nδ(k)δ(x) corresponds to a continuous acceleration
by E of the particles over a Newton trajectory. According to the
quantum model, positive or negative particles are generated and
annihilate each other on the discretemomentum space pointswith
a spacing ∆k = π/L.

Simulations show that this happens in such away, that particles
on the initial node gradually decrease in favor of an increase on
the node to be occupied next. This results in a consecutive trans-
lation of the peak between the adjacent nodes. The instances ∆t
of full transfer between the nodes are consistent with Newton’s

law: h̄∆k = eE∆t . Certain quantum effects are observed and
associated to the discrete picture. The analysis shows that they
disappear in the limit ∆k → 0 [10]. This is consistent with
the fact that classical and quantum evolution are equivalent for
linear potentials V (x) = Ex, which is expressed by the equality:∫
dk′Vw(k − k′)f (x, k′, t) = −eE∂ f (x, k, t)/h̄∂k, obtained with the

help of generalized functions and thus holds in the case L → ∞.
This establishes the transient signed particle concepts as an alter-
native to the continuous process of Newton acceleration, which it
approaches asymptotically as the resolution of the discrete k-space
increases.

3.4. Transient transport particle attributes — boundary conditions

We are finally ready to utilize the developed concepts of signed
particles for constructing an algorithm appropriate for the SR sim-
ulation task.We compare the evolution of current and density in an
ideal wire and a wire characterized by surface potential variations,
as dependent on the periodic injection of electron states from the
source contact.

This means that we have to use the evolution concepts from
Section 3.3,while the approach to the boundary conditionsmust be
adopted from Section 3.2. As discussed in Section 3.2, adjoined MC
trajectories begin from the boundaries, where fb, (15), is defined.
Since fb is zero outside, a transformation fromadomain to a bound-
ary integral is possible, which gives rise to a velocity weighted
term fb|vb|, where vb(kb) is the normal component of the inward-
directed velocity.

Within a formal stochastic approach fb|vb|must be used to con-
struct a probability for the choice of the initial boundary point [17].
Here we use a peculiarity of the physical task, allowing to replace
the boundary term by an initial term, which ensures indirectly the
velocity-weighted boundary condition. We wish the trajectories
initialized on the boundary to correspond to the process of injec-
tion of a minimum uncertainty Wigner state

φw(r, k) = Ce
−(r−r0)

2

σ2 e−(k−k0)22σ2
(22)

with C a normalization constant and σ is the variance, which for
simplicity is assumed the same for both spatial directions x and y.

Nowwe assume a particle distribution initialized with the help
of the two Gaussian functions in (22). The flux of such particles
through any boundary initially placed outside the region of initial-
ization is fb|vb| with fb given by the value of φw on that boundary.
Therefore any such particle obeys the distribution corresponding
to the velocity-weighted boundary term and becomes a legitimate
initial point of an adjoinedMC trajectory in themoment of crossing
the boundary.

We note that in contrast to Section 3.2 now fb is a time-
dependent function, determined by the distance between r0 and
the boundary. Thus if we wish the injection to begin at time 0, the
Wigner state must be detached to the boundary, which ensures
that the first particles penetrate into the domain without a delay.
This consideration must be taken into account especially in the
case of consecutive injection of states with varying σ as required,
e.g., in the case of equilibrium.

4. Simulation results and analysis

The aim of the presented simulations of electron transport in
quantum wires is to analyze the physical processes as well as
to evaluate the magnitude of certain characteristic quantities in
conjunction with the four assumptions of the stochastic model
(cf. Section 2). The Wigner particle approach ensures a first prin-
ciples treatment of quantum transport, which directly challenges
the last three assumptions of Section 2. Indeed, first the mode
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Fig. 1. Thewire is defined by two 0.8 eV high and 5 nmwidewalls, which smoothly
drop to zero within a few nanometers towards the middle of the channel.

space representation of the electron state (2) is now given by
the two-dimensional evolution of the Wigner equation solution.
Furthermore, the local force in (3) is now replaced by the complete
electric potential which determines theWigner potential operator
in the equation. Finally, the surface roughness must be considered
as a part of the electrostatic boundary conditions, since stochas-
tic processes cause irreversibility in the system evolution which
contradicts the first principle origin of the description. A concrete
surface is randomly generated by using typical values for the two
parametersD and λ. As discussed earlier, such a surface represents
one of themany possible counterparts accounted for in the average
given by Eq. (8).

The above considerations concern also the typical equilibrium
conditions commonly applied to semiconductor structures in the
injecting contact. They need to be abandoned in favor of a coherent
injection approach: The fundamental representation of a particle in
the pure state Schrödinger mechanics is the minimum uncertainty
wave packet. The corresponding Wigner pure state is given by
function (22). Injection of states with a constant σ is a necessary
condition for a coherent evolution: Indeed, injection of mixed
states, e.g., according to Fermi–Dirac or Maxwell–Boltzmann dis-
tributions, already introduces decoherence in ballistic devices [24].
Thus, in the case of coherent injection, σ does not vary according
to a given distribution, but is kept constant.

The aim is twofold: Firstly, to avoid smearing of the results
due to the thermal averaging which helps to outline the quantum
effects, and secondly, to allow the imposition of conditions far from
equilibrium.

Based on our computational approach, we focus on the electron
density, velocity, and current. We note the lack of dissipation
processes: The total energy is conserved in the electron–potential
interaction. In general, the chosen values of the physical quantities
and parameters are typical for semiconductor electrons.

Fig. 1 shows the simulation domain and the potential profile.
The ideal wire is defined by two 0.8 eV high, 5 nm wide walls,
which smoothly drop to zero within a few nanometers towards
the middle of the channel. Smoothing is necessary to avoid arti-
ficial frequencies which are otherwise introduced in the system by
Fourier transforms of abrupt potential changes. A Tukeywindow is
used for the smoothing, details are given in [25].

Equivalent Wigner states with σ = 2 nm, corresponding to
the mean equilibrium electron energy at room temperature, are
regularly injected through the y = 0 boundary of the wire with a
period of 5 fs (Fig. 1).

They are initialized several σ below the point x = 10, y = 0:
Fig. 2 shows the density after 50 fs evolution, which corresponds
to the injection of 10 boundary states with central wave vector

Fig. 2. Density (in arbitrary units) after injection of 10 states (left). The potential
walls and themiddle of the wire are denoted by white lines. The current just begins
to increase, which outlines the transient regime of the evolution (right).

Fig. 3. Density (in arbitrary unit) after 400 fs evolution (left). The system enters into
a stationary regime after 200 fs, as seen from the current which remains constant
during the next 200 fs (right).

values of k0x = 0, k0y = 7∆k. The square mesh in the momentum
space (∆k = π/Lc) is determined by a coherence length Lc;x,y =

45 nm and corresponds to an energy of 1 meV for an effective
mass of 0.19. With this choice of the coherence length all points
of the simulation domain, but these belonging to the two 7.5 nm
wide y-strips adjacent to the source and drain regions and left to
decouple the injection from absorption regions, are correlated via
the Fourier transform for the Wigner potential kernel. Since the
electron density outside of the device domain is zero, the action
of the Wigner kernel is restricted to the inside of the domain, so
that a further augmentation of Lc , besides the reduction of ∆k,
has no physical effect. On the contrary, a reduction of Lc causes
decoherence and transition to classical behavior: It can be shown
that the effect of a stochastic scattering (e.g by phonons) causes an
effective reduction of the coherence length [26].

We note that the governing physical process is tunneling, as
there are no artificial boundaries to reflect the particles. Addition-
ally, all particles leaving the simulation domain are absorbed, c.f.
Section 3.

An initial spread towards the walls is clearly visible, until the
potential redistributes the electron density along the channel. The
current, calculatedwith the Ramo–Shockley theorem [27], linearly
increases due to the periodic injection of electron states. After
200 fs, steady-state conditions are reached, as suggested by the
behavior of the current in Fig. 3.

The initial spread of the density near the injecting contact re-
mains until the quantum repulsion establishes control by squeez-
ing the electron system away from the walls. One can easily create
a reference picture with a classical evolution, where electrons are
reflected only by a contactwith thewalls and thus are spread to the
white lines marking the walls. Furthermore, the effect of the con-
tacts is well pronounced, so that the density is homogeneous along
the middle of the wire in y-direction. The abrupt change of the
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Fig. 4. Density (in arbitrary unit) after 400 fs evolution of the ideal (left) and the
rough wire (right). Here k0y = 5∆k, corresponding to an energy of 0.25 meV.

Fig. 5. Current evolution in the ideal and rough wires for three different values of
k0y , corresponding to kinetic energies of 100 meV, 50 meV, and 25 meV.

physical conditions near the injecting and the absorbing contacts
modifies the electron distribution. The simulation provides useful
information about the approximate length scale where the density
may be considered as piecewise homogeneous. The effect depends
on the boundary conditions and should vanish near equilibrium, as
expected from physical considerations.

The assumptions related to the mode space approach are ex-
pected to be seriously challenged in the case of a rough surface. The
latter is obtained by superimposing variations of the potential with
the autocorrelation function (8) on the ideal geometry. Values of
mean offset of 0.5 nm and a correlation length of 5 nm are chosen.
Since the variations are imposed independently on each wall, the
local change of the diameter can reach 1 nm. Fig. 4 compares
densities of the ideal and the rough wire.

Here we again invoke as a reference the classical electron den-
sity, which follows the pattern of the walls, since the latter rigidly
reflect the impinging electrons. In the quantum case the density
smoothly follows the change in shape of the wire: The scale of
local potential and thus of classical density variations differs from
the scale of the quantum density variations. The latter appears as a
distance quantity averaged over a few nanometers. This provides a
strong argument in favor of the mode space approach which may
be applied piecewise on the same scale.

The electron path in the rough wire is longer as compared to
the ideal case, which should be reflected by a reduction of the
current.

This is indeed the case in Fig. 5, showing the current evolution
in the ideal and rough wires for three different values of k0y of
the injected states, corresponding to kinetic energies of 100 meV,
50meV, and 25meV. It is seen that stateswith lower kinetic energy
need more time to establish stationary conditions. Furthermore,
the effect of the roughness on such states is more pronounced,
giving rise to a higher reduction of the current.

Fig. 6. Difference of the ideal and rough marginal k distributions in transport
direction.

These current evolution simulations provide practical infor-
mation about the relevance of the stochastic model of Section 2
for surface roughness aware transient approaches. As discussed,
the first assumption requires sufficient time for establishing the
energy conserving delta function. As seen from Fig. 5, the tran-
sient time until the establishment of the stationary current in the
simulated structure and injected electrons with kinetic energy at
and above the equilibrium energy kT = 25 meV is in the range of
100–200 fs. For a typical semiconductor the time for establishing
the energy conserving delta function is less, but of this order [9]. For
faster transitions any stochastic model based on the Fermi Golden
Rule must be replaced by a non-Markovian approach [28].

Useful information is provided by the comparison of the ky
distribution (which is proportional to the y-component of the
electron velocity h̄ky/m) in the rough and in the ideal wires.

Fig. 6 shows a histogram of the difference between the ideal
and the rough marginal ky distributions. Here again the ideal case
serves as reference picture. Since there is no reflection in the
transport direction, all velocities point in the positive direction. The
difference of the wave vector probability distributions shows both
a reduction of the probability for high values and the existence of
negative values due to the quantum reflection caused by the rough
potential.

5. Computational aspects

The simulations discussed in this work have been generated by
using the free open sourceWigner Ensemble Monte Carlo (WEMC)
simulator shippedwith ViennaWD.1 WEMC is a C-based simulator
controlled by a Lua script frontend for simulator control, support-
ing quantum transport simulations of one- and two-dimensional
nanoelectronic structures. The simulator solves the semi-discrete
Wigner equation, using the signed particle MC approach. Access
to a development repository is available upon request. The tool
supports single and continuous injection of minimum uncertainty
wave packets as well as arbitrary shapes of potential barriers and
other various parameters. The simulator offers parallel execution
in a distributed-memory environment based on the message pass-
ing interface and a domain decomposition approach.

The simulations were performed on VSC-32 which represents
the currently largest supercomputer in Austria. The system con-
sists of 2020 nodes, each equipped with 2 Intel Xeon E5-2650v2
(total of 16 physical and 32 logical processors per node) and 64
GB of main memory. The network is based on a fat tree topology
powered by an Intel QDR-80 dual-link InfiniBand fabric.

1 http://viennawd.sourceforge.net/.
2 http://vsc.ac.at/systems/.

http://viennawd.sourceforge.net/
http://vsc.ac.at/systems/
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6. Conclusions

Wigner signed particles provide both a comprehensive and
intuitive computational approach for analyzing the physical effects
induced by surface roughness in quantumwires. The major effects
are caused by a combination of the fluctuation in the surface poten-
tial caused by the rough surface, and the quantum repulsion from
the potential walls. This is in contrast with the classical behavior,
and thus explains the failure of surface roughness models which
rely on a classical picture where particles interact with the wall,
to adequately describe the electron transport in quantum wires.
Advanced models, such as the one derived in this work, correctly
account for this phenomena via solutions of the Schrödinger equa-
tion in the confined direction. Suchmodels rely on approximations
like the mode space approach and statistical averaging to avoid
the problem of having to simulate a statistical ensemble to gain
a meaningful average.

From a classical point of view these approximations conflict
with the existence of surface roughness. However, the behavior
of the quantum density supports their application: In a numerical
treatment the wire is decomposed into slices considered as homo-
geneous. In general, the physical conditions along the wire must
vary smoothly in order to both, allow the statistical treatment of
the surface imperfections and to avoid contact effects, which may
be caused, e.g., by highly nonequilibriumconditions along thewire.

Based on the presented simulations we analyze the physical
aspects of the electron transport in rough quantum wires. How-
ever, we have also shown that signed particle algorithms provide
a rigorous and convenient approach for analyzing a variety of
engineering problems related to confined electron transport.
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