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Abstract. The control of coherent electrons is becoming relevant in
emerging devices as (semi-)ballistic transport is observed within nanome-
ter semiconductor structures at room temperature. The evolution of a
wave packet – representing an electron in a semiconductor – can be
manipulated using specially shaped potential profiles with convex or
concave features, similar to refractive lenses used in optics. Such elec-
trostatic lenses offer the possibility, for instance, to concentrate a single
wave packet which has been invoked by a laser pulse, or split it up into
several wave packets. Moreover, the shape of the potential profile can be
dynamically changed by an externally applied potential, depending on
the desired behaviour. The evolution of a wave packet under the influence
of a two-dimensional potential – the electrostatic lens – is investigated by
computing the physical densities using the Wigner function. The latter
is obtained by using the signed-particle Wigner Monte Carlo method.

1 Introduction

Analogies often serve as a source of inspiration to advance research in science and
technology. An example is the electrostatic lens, inspired by concepts from geo-
metrical optics, which can be used to steer and control coherent electrons. The
term electrostatic lens refers to a specially shaped potential with convex/concave
features, as found in optical lenses, used to steer electron waves. The concept
was first demonstrated experimentally in 1990 in [1,2], in low-temperature, high-
mobility semiconductors, which ensured that the coherent electrons had a suffi-
ciently long mean free path to conduct experiments with structures made with
the lithographic capabilities at the time. The astounding decrease of the feature
sizes in semiconductor devices, along with novel materials like graphene, has
made (semi-)ballistic electron transport applicable at room temperatures [3].
This has sparked new interest in applying concepts from optics in semiconduc-
tors: electrons can be guided in a channel using total internal reflection as in
optical fibres [4] or focused towards the centre of nanowires, using electrostatic
lenses, to increase their mobility by avoiding rough interfaces [5].

Scanning probe microscopy allows the flow of coherent electrons in semicon-
ductor structures to be measured and visualized with a subnanometer resolu-
tion [6,7], however, a concurrent temporal resolution to visualize dynamics on
the femtosecond time scale still remains out of reach [8]. Computer simulations
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can provide insight into the temporal dynamics of wave packets, which cap-
ture the physics of single electrons in mesoscopic structures. Here, we apply the
two-dimensional (2D) Wigner Monte Carlo method to demonstrate its suitabil-
ity as a simulation tool to investigate wave packet dynamics in the context of
electrostatic lenses (and beyond).

The Wigner formalism [9] has re-emerged in recent times as a convenient
formalism to consider quantum mechanical phenomena on the mesoscopic scale,
since semi-classical transport models can be augmented to the coherent quan-
tum evolution. Multi-dimensional simulations have been made computationally
feasible by the signed-particle Wigner Monte Carlo method, as described in
Sect. 2. Section 3 shows examples of electrostatic lenses, and their influence on
the behaviour of wave packets.

2 Wigner Monte Carlo Method

The Wigner formalism expresses quantum mechanics, normally formulated with
the help of wave functions and operators, in terms of functions and variables
defined in the phase-space. This reformulation in the phase-space facilitates the
reuse of many classical concepts and notions.

The Wigner transform of the density matrix operator yields the Wigner func-
tion, fw (x, p), which is often called a quasi-probability function as it retains
certain properties of classical statistics, but the negative values which appear
demand a different interpretation than the classical probability [10]. The associ-
ated evolution equation for the Wigner function follows from the von Neumann
equation for the density matrix, which for the illustrative, one-dimensional case
is written as

∂fw

∂t
+

p

m∗
∂fw

∂x
=

ˆ
dp′Vw (x, p − p′) fw (x, p′, t) . (1)

If a finite coherence length is considered, the implications and interpretation
of which is discussed in [11,12], the semi-discrete Wigner equation result, the
momentum values are quantized by Δk = π

L , and the integral is replaced by
a summation. Henceforth, the index q refers to the quantized momentum, i.e.
p = � (qΔk).

Equation (1) is reformulated as an adjoint integral equation (Fredholm equa-
tion of the second kind) and is solved stochastically using the particle-sign
method [13]. The latter associates a + or a − sign to each particle, which carries
the quantum information of the particle. Furthermore, the term on the right-
hand side of (2) gives rise to a particle generation term in the integral equation;
the statistics governing the particle generation are given by the Wigner potential
(i.e. the kernel of the Fredholm equation), which is defined here as

Vw (x, q) ≡ 1
i�L

ˆ L
2

−L
2

ds e−i2qΔk·s {V (x + s) − V (x − s)} . (2)
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A generation event entails the creation of two additional particles with com-
plementary signs and momentum offsets q′ and q′′, with respect to the momen-
tum q of the generating particle. The two momentum offsets, q′ and q′′, are
determined by sampling the probability distributions V +

w (x, q) and V −
w (x, q),

dictated by the positive and negative values of the Wigner potential in (2),
respectively:

V +
w (x, q) ≡ max (0, Vw) ; (3)

V −
w (x, q) ≡ min (0, Vw) . (4)

The generation events occur at a rate given by

γ (x) =
∑

q

V +
w (x, q) , (5)

which typically lies in the order of 1015 s−1 in numerical experiments where
potential differences in the order of 100meV are encountered. This rapid increase
in the number of particles makes the associated numerical burden become com-
putationally debilitating, even for simulation times in the order of femtoseconds.

The notion of particle annihilation is used to counteract the exponential
increase in the number of particles, due to particle generation [14]. This concept
entails a division of the phase space into many cells – each representing a volume
(ΔxΔk) of the phase space – within which particles of opposite sign annihilate
each other. This is justified since particles of opposite sign, within the same cell,
have the same probabilistic future – their contribution to the calculation of any
physical quantity would be equal in magnitude, yet opposite in sign.

3 Electrostatic Lenses

The following experiments consider a minimum-uncertainty wave packet, which
captures both the particle- and wave-like physical characteristics of an electron.
The associated Wigner function representing this initial condition is given by

fw (x,q) = N e− (x−x0)2

σ2 e−(qΔk−k0)2σ2
, (6)

where x0 and k0 are two-dimensional vector quantities representing the mean
position and the mean wavevector, respectively; σ is the standard spatial devi-
ation and N represents a normalization constant. The wave packet travels in a
two-dimensional plane towards a potential barrier, which forms the electrostatic
lens. This setup is representative of a physical system where a 2D electron gas
is formed at the interface between two semiconductors, e.g. GaAs/AlGaAs; the
potential barrier can be induced by an appropriately shaped gate contact at the
surface of the semiconductor (parallel to the interface).

A law of refraction, equivalent to Snell’s law in optics, can be derived for
electrostatic lenses by considering the principle of energy conservation. A particle
with a wavevector k has a kinetic energy

Ek =
�

2 |k|2
2m∗ , (7)
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which is reduced as the particle transverses the potential step, while its potential
energy increases. The change in kinetic energy is attributed only to a change of
the momentum component normal to the interface; the momentum component
parallel to the lens interface (potential step) is maintained, therefore

|k| sin θ = |k′| sin θ′, (8)

where θ (θ′) is the angle of incidence (transmission) with respect to the normal
(of the interface) and k’ is the wavevector of the particle within the lens region.
The law of refraction follows:

sin θ′

sin θ
=

|k|
|k′| =

√
Ek√
E′

k

. (9)

Therefore, the square root of the kinetic energy of a particle is analogous to the
refractive index used in geometrical optics.

The interaction of a wave packet with two different electrostatic lens shapes
will be investigated in the following.

3.1 Wave Packet Focusing with a Double-Concave Lens

Optical lenses typically operate in a medium (air) with a lower refractive
index, where the familiar double-convex shaped lens is used to focus light.
A positive potential step is used here, however, making the refractive index
of the electrostatic lens lower than the surrounding regions (due to a decrease in
kinetic energy). Therefore, a double-concave shaped profile is needed to form a
converging lens for focusing the wave packet. The potential shape used to form
the electrostatic lens is shown in Fig. 1 along with the corresponding genera-
tion rate. The free evolution of a wave package is compared to the case where
it interacts with the proposed lens in Fig. 2. The electrostatic lens has a peak
potential of 0.04 eV and the wave packet is initialized with a kinetic energy of
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Fig. 1. Two-dimensional potential (represented in black) with a double-concave shape
forming a converging electrostatic lens for electrons propagating in the y-direction.
The potential value of the lens is constant; it has no three-dimensional features. The
corresponding particle generation rate γ is shown on the right.
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Fig. 2. Wave packet evolving freely (top sequence) and interacting with a double con-
cave electrostatic lens (bottom sequence); the time steps (from left to right) correspond
to 40 fs, 100 fs and 150 fs.

0.18 eV, moving upwards. The electrostatic lens clearly focuses the wave packet
(density) after 150 fs of evolution, compared to the case without a lens. If such a
lens is added within a quantum wire (say), the focused wave packet suffers less
from the surface roughness at the boundaries when compared to the spread-out
wave packet in the case without a lens.

The refractive index of the lens, and thereby its focal length, can be modified
by varying the magnitude of the potential with which it is formed. Figure 3
compares the effect of different potential values: It can be clearly seen that the
higher potential focuses the wave packet more sharply (at the distance observed
at the time instance shown). The applied potential can thereby control, when
and at which distance, a wave packet is focused (on a detector, for instance).
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Fig. 3. Comparison of the density of a wave packet evolved for 135 fs in the presence
of an electrostatic lens (Fig. 1) at various potential values to show different focussing.

Fig. 4. Two-dimensional potential (left) with rhomboid-like shape and concave-shaped
rear edges, forming an electrostatic lens to scatter an electron wave packet in various
directions. The potential value of the lens is constant; it has no three-dimensional
features. The corresponding particle generation rate γ is shown on the right.

3.2 Wave Packet Splitting with a Rhomboid-Like Potential

An electrostatic lens can also be used to split a wave packet into parts. Figure 4
shows a rhomboid-like potential, along with the corresponding generation rate,
which forms a lens to perform such a splitting. Figure 5 illustrates the effect of
the lens at different potential values. It should be noted that the electron is not
split; it is a single electron in an entangled state. The density peaks indicate
regions with a higher probability to find an electron. In Fig. 5a (peak potential
70meV) the wave packet is almost fully transmitted and split into two parts.
The same lens shape, but with a potential of 120meV, splits the wave packet into
four parts (Fig. 5b): The front edges splits off a portion of the wave packet by
reflection, while the concave-shaped rear edges focus the transmitted parts again.
In the first case, with two peaks (the most-probable components of the state),
the y-component of the wavevector remains positive, whereas for the second case,
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Fig. 5. Wave packet is split either (a) into two or (b) into four parts, after 90 fs evolu-
tion, by a rhomboid-like potential profile with concave rear edges with a peak potential
of 70 meV and 120 meV, respectively.

at a higher potential, the wavevector of the scattered state also has a negative y-
component. This example clearly illustrates how specially shaped potentials can
be used to influence the scattering pattern of an electron wave packet. By varying
the potential the electron can be guided in a certain direction with a controllable
probability. This can be of use in the field of quantum computing to generate a
(modifiable) entangled state and direct it to other computing elements.

4 Conclusion

It has been shown that 2D Wigner Monte Carlo simulations, using the signed-
particle method, can be applied to investigate the dynamics of wave packets
interacting with electrostatic lenses formed in mesoscopic semiconductor struc-
tures. The concept of electrostatic lenses enables the control of coherent electrons
by focusing or splitting wave packets in a controllable fashion. This ability can
be utilized in emerging mesoscopic semiconductor devices, where (semi-)ballistic
transport at room temperature becomes feasible.
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