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Abstract. The development of novel nanoelectronic devices requires
methods capable to simulate quantum-mechanical effects in the carrier
transport processes. We present a deterministic method based on an inte-
gral formulation of the Wigner equation, which considers the evolution of
an initial condition as the superposition of the propagation of particular
fundamental contributions.

Major considerations are necessary, to overcome the memory and
time demands typical for any quantum transport method. An advan-
tage of our method is that it is perfectly suited for parallelization due
to the independence of each fundamental contribution. Furthermore, a
dramatic speed-up of the simulations has been achieved due to a precon-
ditioning of the resulting equation system.

To evaluate this deterministic approach, the simulation of a Resonant
Tunneling Diode, will be shown.

1 Introduction

To describe the carrier transport processes in novel nanoelectronic devices the
effects of quantum mechanics have to be considered. The Wigner formulation of
quantum mechanics challenges deterministic methods due to difficulties in the
discretization of the diffusion term in the differential equation. Even high-order
schemes show very different output characteristics because of rapid variations of
the Wigner function in the phase-space [1]. However, the high precision of this
methods makes them a desirable approach in cases where physical quantities
vary over many orders of magnitude. To overcome these problems, an adaptive
momentum discretization scheme has been proposed [2]. Alternatively, the devel-
oped approach, shown here, uses an integral formulation of the Wigner equation
so that the differentiation can be avoided.

We consider the evolution of an initial condition described by a phase-space
superposition of particular fundamental solutions. To calculate the distribution
at desired time-steps, the Wigner equation has to be solved for each such solution
and all “fundamental evolutions” have to be summated.

Unfortunately, the usual approach to solve at sequential time-steps is not
practical due to the huge memory consumption: during the time evolution the
complete history of all fundamental solutions in phase-space has to be stored in
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parallel. To overcome this drawback, the calculation order is modified in such a
way that for each solution its specific time evolution is calculated separately.

As the particular calculations are independent from each other, this method
is well suited for parallelization using MPI and OpenMP.

2 The Deterministic Approach

The Wigner equation [3,4]
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describes the evolution of the function f(z,k,t) under the action of the Wigner
potential V,,(z, Ak) which is obtained as a Wigner-Weyl-transform of the elec-
trostatic potential [5].

Our approach uses the integral formulation of the Wigner equation. The
integral form of (1) is obtained [6,7] by considering the characteristics of the
Liouville operator on the left-hand-side of the equation, which are the Newtonian
trajectories z(-,t) initialized with «/, k', ¢’ [8]:
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A weak formulation of the numerical task is used
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which calculates the mean value fg — the integral of the solution inside a partic-
ular domain with indicator ©. 7 is the evaluation time, f; the initial condition,
x;(t) is the trajectory, initialized by (z, k,0), and gg is the forward solution of
the adjoint integral equation:
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Within (4) v(z) = Zk: Vi (z, k),

C(z, b, k) =V, (0, k — k) + VoF (2, K — k) +~v(x) §(k, k),

and z(t) initialized by (z,k,t). The time integration in Eq. (3) can be carried
out, delivering the new equation system

= /defz(x,k) p@(x,k,O), (5)



Optimization of the Deterministic Solution of the Discrete Wigner Equation 271

po(@ K 1) = e I WIW (! (r), k) +

+ / dt Y e o@D P (1), kK pe (a (1), k. 1)

t

(6)

without time dependency in (5). The trajectories z/(y) are initialized by
(2, K, 1).

3 Discretization

The numerical procedure is developed by first discretizing the variables of the
equation by:

x=nAz, n€[0,N]; k=mAk, me[-M/2,M/2]; t=IAt [€][0,L]

In the same way, the considered domains are discretized and correspond to a
point in phase-space (u,v). Also the trajectories 2/(t) are replaced by a discrete
version, depicted by N'(1), delivering the new equation system:

fuv 'r szlnm Qu,v,l, (an) (7)

— S AN )AL,
Qui, (0',m' 1) =e = S(N'(7),u) §(m,v)+

(8)

l
ki - Z Y(N'(4)Atw
+3 At Y e "N @) m ) G, (N(1) 1)

= m

with the discrete trajectory N'(j) initialized by (n',m’,l’).
The obtained discrete equation system brings several challenges in its imple-
mentation, which will be solved in the following.

Re-insertion of Old Values. At each time step [ only the new values
g(n’,m’,0) have to be calculated. The values for different I’ can be reused from
the previous calculations. In this case, the main computation time shifts from
solving the equation system to assembling the equation system. However, by
elimination of the time integration it is also possible to reinsert the already cal-
culated values as initial values for the new calculations. In this case the equation
system (8) changes to:
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where gy .1, (N'(T),m',T) is the solution T time-steps ago.
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Time Integration. The time integration from (6) has to be approximated by
numerical integration. This may be done by several methods, which is depicted
by the different weights w; and w; in equation (9). A detailed examination of the
summation shows that the first term with [ = I’ contributes to the unknowns
g(n’,m’,0) — the system matrix of the equation system. Left-handed or right-
handed approximations of the integration lead to a big under- or overestimation
of the results. The iteration may result in an unstable system behavior; at least
a trapezoidal approximation of the integration has to be performed.

Interpolation. The proper discretization of the trajectory presents a big chal-
lenge. As the space coordinate can only take discrete values, the trajectory may
be discretized by

hmAkAt
N/ /, /’l/" — /+- t ._l/ ) 10
(U, G) =l it | T (- 1) (10)
For common device dimensions, the contribution in the int|...] expression stays

nearly constant for a long number of time-steps. Especially for low m the shifting
value is always 0, which results in a non-moving distribution. This aspect can
be accounted for by manipulation of the integer contribution depending on the
accumulated error of the trajectory discretization.

Another issue can be identified by examining the first part in Eq. (9)

Quwt. (n',m'0) = ... quoi, (N'(T),m',T)+..., (11)

which shows a difficulty in the discretization of the initial condition. Even with
the proposed manipulation of the calculation of N, the discrete values of N’ stay
constant for a wide range of -, which results in a stepwise moving wavefront. As a
consequence this stepwise movement may cause increasing amplifying oscillations
in the solution, especially near corners in the potential distribution.
A correction is introduced by interpolation of the initial conditions between
the left-side and right-side integer values N, s and N/, oht'
Nl/eft SNlleft—’—AN/ :N/(n/amlv()?T) S‘N'lleft—’—l = 'r/‘ight (12)
and insertion into (9)

Qu,v,l. (n', m', 0)=... [qu,v,lT (Nl/eft)(l - AN,) + Quyv,i, (N;ight)AN/] o
(13)

4 Parallelization Issues

A direct implementation of the algorithm is to assemble and solve the equation
system (9) of rank N-M (the number of points in phase-space) and then to
back-insert the solution into (7).

This requires

— the assembly of (9) with effort O(M-T-T),
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Fig. 1. Used time for simulation runs in dependency of the number of parallel processes.
The values are compared to the theoretical limit without an overhead tyseq ~ 1/n.

— solving a system with rank N-M,

— back-insertion in (7) with effort O(N-M),

— the storage of all gy, (n',m',1'), and

— the temporary storage for the equation system (9).

This equation system has to be computed for all time steps for each particular

indicator, leading to solve N-M-L times Eq. (9).
Concerning memory and computation time demands this offers special pos-

sibilities for parallelization purposes.
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Fig. 2. The considered RTD device is specified as follows: z1 = 55nm, z2 = 65 nm,
drift region from x=40nm to 70 nm. The ramp height varies between 0 and 0.2eV.

If the solution has no feedback to the Wigner potential, the different equa-
tion systems are independent from each other and, therefore, they are very well
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suited for parallelization. The different tasks for (u,v) can be split over the com-
putation nodes. Ouly the final results f(u,v, ;) have to be transmitted. An MPI
parallelization without communication can be used.

Also on a single node it seems feasible, not to parallelize the solver, but
to share the common resources to split the different tasks (u,v) in parallel by
OpenMP on the nodes, which also does not require synchronization. Even the
system matrix is common for all equation systems and may also be assembled
in parallel on the nodes.

In Fig.1 the relation between execution times and number of parallel
processes is shown. They are compared to the theoretical limit. The differences to
this value at higher number of processes arises due to a nearly constant overhead
of calculating the Wigner potential, which is performed on each machine.

5 Preconditioning and Inversion of the System Matrix

Analyzing the computational costs of the method, it can be seen that the order
is higher than (N - M)?2. Looking at the system matrix of the equation system,
which has to be solved,

A-q=b, (14)

the matrix A can be expressed as:

1—Aty(n)wy, m' =m
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A(n',m’,n',m) = {

The matrix is sparse and, for sufficiently small At, of good dominance and
the solutions may be calculated iteratively. A main speedup is achieved by Jacobi
Over-relaxation Methods like

qit1 = I—eD'A)q; + D 'b (16)

with D the diagonal part of the matrix A and e the over-relaxation factor.
For the resulting equation systems this method shows better performance than
common gradient based techniques. The simulation procedure implies solving
N - M - T times an equation system of rank N - M. The solving method (16) is
used for each calculation

A-q; =€y, (17)

with e; the i-th unit vector, obtaining the final solution vector

a=> a;b;=Q"b. (18)
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Fig. 3. The wave package evolving after 300fs for different bias voltages.

6 Application to a Resonant Tunneling Diode

As an application we consider a resonant tunneling diode (RTD) [2] schemati-
cally shown in Fig. 2. The device consists of two 3 nm wide 0.1eV high potential
barriers as described in the figure caption. Depending on the bias, the transmis-
sion of electrons through the barriers is influenced [9]. The transmitted part of
the packet has a maximum if its mean energy coincides with the resonant energy
of the structure.
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Fig. 4. Wave package passing through a double barrier. The transmitted portion as
dependent on the bias potential demonstrates the typical for RTDs dipping region.
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The initial wave-packet is accelerated by the voltage drop [10]. The depen-
dency of the density distribution on the applied bias is shown in Fig.3. To
calculate the amount of passed signal, the distribution in the right device area
with 200 nm length is integrated. The portion of the transmitted part as depend-
ing on the bias is shown in Fig.4. The typical region for RTD devices can be
observed. This gives rise to negative differential resistance which can be utilized
as negative feedback in transistor circuits, like Terahertz oscillators.

7 Conclusion

In this paper the technique for a deterministic Wigner solver in its integral for-
mulation has been shown. A modified simulation approach was discussed regard-
ing scalability and the performance due to optimization was investigated. The
method is capable to correctly simulate physical effects of typically quantum
devices.
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