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The Wigner function was first derived by E.P. Wigner
around 1931 as an exotic outcome of the wave mechan-
ics which, being defined in the phase space, does not favor
either coordinate or momentum variables. Pioneered by H.J.
Groenewold and J.E.Moyal theWigner formulation of quan-
tum mechanics evolved until the end of last century, to a
fully autonomous, independent alternative to Hilbert space
mechanics and path integral formulations. As S. MacLane
put it (Ladies and) gentlemen: There is lots of room left in
Hilbert Space, the same holds true for the phase space, where
Wigner and alternative approaches, likeHusimi andBohmian
distributions, are easily accommodated.

Applied to challenges in computational electronics, the
Wigner approach offers the unique ability to describe tran-
sient problems for open systems by simultaneously account-
ing for different levels of approximation for the effects of
the degrees of freedom associated with the environment. For
example, the Wigner–Boltzmann equation enables the for-
malism with the efficient Boltzmann model of collisions
(local in position/time) with phonons and impurities fea-
turing the classical era of microelectronics. The equation
bridges the gap between classical and quantum electron
dynamics, ensuring a seamless transition between coherent
and scattering dominated modes of transport. This approach
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has been applied to simulate stationary and transient behavior
of nanostructures, superlattices, to investigate processes of
decoherence, quantum chaos, and recently beyond transport
tasks in density functional theory andmany body effects. The
continuous accumulation of knowledge results in increased
publication activities. A good example is the fact that two
books by C. Jacoboni as well as D. Querlioz and P. Doll-
fus have been published in the year 2010, summarizing the
theoretical and applied achievements of theWigner research.
Nevertheless, critics claim that, although various groups pick
up the work, they abandon it again, never delivering a com-
pelling research result. This criticism has been addressed
by the Wigner community with the founding of the Wigner
Initiative1 in 2015, bringing all research in this area closer
together, thereby increasing synergy effects and fostering
knowledge transfer.

This special issue is the first effort of the Initiative in
this direction and comprises theoretical analysis, numerical
aspects, and recent applications of the Wigner formal-
ism, as well as comparisons with alternative phase space
quasi-distribution functions and other quantum-mechanical
approaches. In contrast to books, the purpose of which is
to provide a systematic description, the contributions in this
special issue rather highlight selected achievements in the
field along with important logical and philosophical points
in the phase space formulations of quantum mechanics. In
particular, this special issue contains nine contributions char-
acterized in the following:

I. Dimov et al. investigate the role of boundary conditions
for the existence and the uniqueness of the solution of the
stationary and transient formulations of theWigner equation.

1 http://www.iue.tuwien.ac.at/wigner-wiki/.
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D.K. Ferry provides an overview of different phase-space
approaches with a special focus on quantum properties,
such as entanglement, complemented by identifying core
strengths of the Wigner approach.

B.J. Hiley discusses the close relationship between the
Wigner-Moyal algebra and the original noncommutative
quantum algebra introduced by von Neumann.

O. Jonasson et al. employ the Wigner function formalism
to simulate partially coherent, dissipative electron transport
in biased semiconductor superlattices, underlining the prac-
tical capabilities of Wigner function approaches.

M. Nedjalkov et al. introduce an analysis of formulations
of the Wigner equation under a general gauge for the electric
field, striving to develop alternative computational methods
applied in the Wigner formalism.

E. Colomés et al. compare the Wigner, Husimi, and
Bohmian distributions with respect to constructing a well-
defined phase space distribution, providing a critical view on
the properties of the individual formulations.

J.M. Sellier et al. analyzed a harmonic oscillator from the
Wigner perspective. A brief review on utilizing a phase-space
approach is given as well as the feasibility of the so-called
signed particle Monte Carlo method is shown.

B.J. Spisak et al. apply the Wigner function to the
description of the dynamics of conduction electrons in finite
one-dimensional systems with randomly distributed scatter-
ing centers.

J. Weinbub et al. investigate parallelization strategies
for two-dimensional Wigner Monte Carlo method based on
the signed particle approach, enabling to utilize large-scale
computing resources to stem the significant memory and
computing demands.

As the guest editors of this special issue we would like to
thank all authors for their contributions.
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