Memory-efficient Particle Annihilation Algorithm
for Wigner Monte Carlo Simulations

P. Ellinghaus, M. Nedjalkov, and S. Selberherr
Institute for Microelectronics, TU Wien, GuB3hausstralle 27-29/E360, 1040 Wien, Austria
E-mail: {ellinghaus | nedjalkov | selberherr}@iue.tuwien.ac.at

Abstract—The Wigner Monte Carlo solver, using the signed-
particle method, is based on the generation and annihilation of
numerical particles. The memory demands of the annihilation
algorithm can become exorbitant, if a high spatial resolution is
used, because the entire discretized phase space is represented
in memory. Two alternative algorithms, which greatly reduce the
memory requirements, are presented here.

I. INTRODUCTION

The roughness of the interface between materials significantly

influences the electrical performance of modern device ar-
chitectures, like gate-all-around nanowires, due to increased
scattering. Therefore, it is of interest to model rough interfaces
to investigate their effect in quantum transport simulations.

Interface roughness can be modeled by adding random
perturbations to a smooth interface. The perturbations are
statistically characterized by an autocorrelation function with
parameters signifying the mean offset and the correlation
length. An example is shown in Fig. 1. The mean offset can
range between 0.1 nm and 0.3 nm for a Si/SiO, interface [1],
[2]. To appropriately resolve such perturbations requires a very
fine spatial resolution for the potential profile. The latter leads
to very high memory demands for the annihilation algorithm,
which is fundamental to the signed-particle Wigner Monte
Carlo (SPWMC) method.

The following section will introduce the SPWMC method,
used to solve the Wigner transport equation. Thereafter, two
alternative annihilation algorithms will be presented, which

7
6 Oxide
5
€4
£
= 3
2
1 Oxide
0
0 2 4 6 8 10

x [nm]

Figure 1: The geometry represents a 3 nm wide silicon channel
between two oxide layers at a resolution of 0.1 nm. The rough-
ness of the Si/SiO» interface is characterized by an exponential
auto-correlation function with a mean displacement, obtained
from experiments in [1].

significantly reduce the memory demands associated with the
current version of the algorithm.

II. SIGNED-PARTICLE METHOD

The SPWMC method has enabled the investigation
of transient and stationary processes in multi-dimensional
semiconductor structures, ranging from quantum-coherent to
scattering-dominated transport. The simulations are based on
the semi-discrete Wigner transport equation, which assumes a
finite coherence length (L) leading to a discretized k-space
with a resolution of Ak = ¥, and for the one-dimensional

T’
case is given by
Ofw . haAkdfy, , ,
. = w 4 =4, w yqd50). 1
e —— q;Kqu ¢st) fu (2.4 ,1)- (D

Here, ¢ is an index which refers to the quantized momentum,
ie. p = h(qAk).

Equation (1) can be reformulated as Fredholm integral
equation of the second kind and solved using the Monte Carlo
technique with the signed-particle method [3]. Each particle
carries a + or — sign which conveys the quantum information.
The particles evolve freely according to their momentum and
generate additional particles in pairs with + and — signs
with different momenta. This generation process captures the
effects of the potential profile and the statistics (generation rate
and momentum offsets) are dictated by the Wigner potential,
defined as

1 ik —12qAk
= — g S 1x) 2
Vw (l‘,q) ZhL _L/2d5€ (5V (S,l’)7 ()
oV (s;z) = Vie+s)—V(x—s).

This is akin to a Fourier transform of the potential differences
within the coherence length L around a point . The Wigner
potential encapsulates the higher-order derivatives of the po-
tential and not only its first derivative, i.e. the electric field, as
in the classical Boltzmann equation.

For potential differences in the order of 100meV, the
particle generation rate typically lies in the order of 101 s~ 1.
This fast rate makes the exponential increase in the number
of particles become numerically debilitating after evolving the
system for only a few femtoseconds. The concept of particle
annihilation is used to counteract the dramatic increase in the
number of particles and is discussed in the next section.

978-0-692-51523-5/15/$31.00 (© 2015 IEEE

Ay
Ay

(+) (+])

o © o ©
’5 """""" P 1"1 """""" o~ |
(a) (b)

o il
O i
A+ O i
e ° ilio ©
T, - ——_——,

(c) (@

Figure 2: Illustration of the pair-wise annihilation of particles
in a cell of the phase space (a) - (d), representing a two-
dimensional area AzAy and a fixed momentum p = AqAk.
All particles within a cell are considered indistinguishable.

III. ANNIHILATION ALGORITHMS

The annihilation concept entails dividing the phase space
into many cells; in the case of a simulation with two spatial
dimensions and a three-dimensional k-space, each cell repre-
sents a volume of AzAyAk3. Within each cell particles with
opposite signs annihilate each other and cease to exist. This
is justified as every particle pair has the same probabilistic
future, but their contributions to the calculation of any physical
quantity will cancel out. Consider a cell with A particles with
a positive sign and B particles with a negative sign, which are
summed up to yield a remainder of particles, R = A — B;
|R| particles, each carrying the sign of R, are regenerated
within the cell and the evolution continues. The annihilation
procedure is illustrated in Fig. 2.

The |R| particles which survive the annihilation proce-
dure should, ideally, recover the information represented by
the(A + B) particles before the annihilation took place. Since
the momenta are quantized and a single value is shared
amongst all particles within a cell, the distribution in the
k-space is recovered after annihilation. The positions of the
particles, however, are real-valued and require additional con-
sideration. To avoid a numerical diffusion taking place in the
regeneration process, the mean position of all particles in a cell
should be recorded before the annihilation [4]. The particles
are uniformly regenerated around the mean of each cell over
an area AxAy.

In the following, three different annihilation algorithms

are presented, starting with the conventional implementation,
which serves as a reference to compare the two newly intro-
duced algorithms against.

A. Reference implementation

The conventional annihilation algorithm represents the en-
tire phase space using an array of integers in order to record
the sum of signs in each cell. Additionally, arrays are needed to
record the absolute number of particles and the sum of position
values in each cell in order to calculate the mean position
before the annihilation. The associated memory requirements
quickly become exorbitant in multi-dimensional simulations.
This especially holds true, if a high spatial resolution is
required, since the number of cells in the phase space increases
with the power of the dimensionality of the phase space
(the spatial resolution also affects the number of k-values
which must be retained to ensure a unitary Fourier transform
in (2)). As an example, a 10nm X 10nm domain and a
three-dimensional k-space with a coherence length of 10 nm
results in an array size exceeding 80 GB at a resolution of
0.1 nm. This clearly exceeds the memory available on common
workstations and even single computation nodes in high-
performance computing cluster. A distributed-memory (MPI)
approach addresses these large memory requirements through a
spatial domain decomposition [5], which allows several nodes
to share the computational load. However, the computational
demands of the SPWMC simulator allow it to be run on a
typical workstation, therefore, its memory demands should also
follow suit.

B. Distribution fitting

A possibility to reduce the memory requirements of the
annihilation algorithm is to reduce the spatial resolution of
the grid on which the particles are recorded for annihilation;
the resolution of the k-values and the potential mesh remain
unaltered. The concept is depicted in Fig. 3. To counteract
the loss in resolution, the spatial distribution of the particles
in the enlarged cell is fitted to a statistical distribution before
annihilation ensues. The obtained distribution is then used to
regenerate the particles which remain after the annihilation.

Fig. 4 compares the regeneration of particles, annihilated
on a coarsened grid, using a uniform distribution or a Gaussian
distribution around the pre-annihilation mean position of par-
ticles. The former follows the true solution much better than
the Gaussian distribution which provides a poor approximation
of the distribution in each cell; this is consistent with the
observations made in [4]. The use of a Gaussian distribution
artificially re-introduces information which conflicts with the
assumption made to perform annihilation, namely that all parti-
cles in a cell are considered to be indistinguishable regardless
of their position. The uniform distribution best reflects this
state of information. Irrespective of the distribution used, both
approaches reduce the memory consumption in the example
roughly by a factor of 16; the Gaussian distribution requires
some extra memory and computation to calculate the additional
moment of the distribution (the standard deviation).

C. Ensemble sorting

The representation of the phase-space as an array to record
the signs of particles is a direct reflection of the physical con-

Okt

Figure 3: A distribution of + and — particles in four spatial
cells (dashed lines). The gray cell, encapsulating all four cells,
represents a cell of the coarsened phase-space grid used to
perform annihilation. It is enlarged by a factor 2 in both
directions, reducing the array size by a factor of four.

0.0002

T T T
True solution

Uniform

Gaussian

0.0001 |

Probability density

0 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 90
x-Position [nm]

Figure 4: A slice of the two-dimensional probability density
of a wave packet, evolving freely in a domain with a spatial
resolution of 0.25 nm, after 80 forced annihilation steps. The
annihilation is performed on a coarsened grid with a 1nm
resolution and the particles are regenerated using uniform and
Gaussian distributions. The ’true solution’ — the evolution,
when the annihilation step is omitted — is followed the best,
when particles are regenerated by a uniform distribution around
the mean particle position in each cell.

cept underlying particle annihilation. However, the annihilation
concept can be also realized with an algorithm which avoids
representing the phase space by an array, thereby completely
avoiding the huge memory demands associated with it.

An integer index can be associated to the position and mo-
mentum attributed to each particle. These indices are mapped
to a single integer H, uniquely identifying the cell of the phase
space in which the particle resides:

(iw’ijQJaan(h) — H. 3)

All the particles with the same value of H are in the same cell
of the phase space and their signs must be accumulated. To

\/ Calculate H for all N particles \

v

\: Sort ensemble according to H \

v

\ n=1;matches =1 |

Yes No

\ A
\matches++ ; active,, = 0 | | position, /= matches |

v | v

position,,, += position,, \ matches = 1 |
sign,,,; += sign,
> nt+t
No
n==N?

iYes

Perform regeneration

Figure 5: Flow-chart of annihilation algorithm based on en-
semble sorting.

search an ensemble consisting of N particles, to find particles
with matching values of H, requires an algorithm with an
@ (N 2) time complexity. As N can be several millions, the
additional computation time is not tolerable.

The situation is greatly improved by first sorting the array,
representing the particle ensemble, according to the values H.
This can be efficiently performed by a quicksort algorithm
which has a O (N log, V) time complexity [6]. In the sorted
particle ensemble, all particles in the same cell of the phase
space (i.e. the same value of H) now appear consecutively in
the array — this is also beneficial for the memory access speed.
The sorted array allows the sum of signs and mean positions of
the particles to be calculated in-place without the need of any
additional memory. A flow-chart of the algorithm is shown in
Fig. 5. The sorted array is iterated, if the value of H for particle
n and n + 1 are identical, a *matches’ counter is incremented,
particle n is deactivated (by a flag), and its sign and position
is added to the values of particle n+ 1. This process continues
until H,, # H, 41, then the mean position of all the particles
in the cell corresponding to H,, is calculated by dividing the
sum of the positions by the counter which is then reset.

Once the entire ensemble has been covered, the regen-
eration process commences. The information required for
regeneration is stored in the fields for position and sign for

Table I: Simulation parameters for benchmark examples

Al A2 B.1 B.2

Max. ensemble size [X 106] 20 10 5 5
Annihilations performed 23 210 24 33
Simulation time [fs] 100 100 100 100
Domain [nm] 100 x 150 100 x 150 100 100

Az (= Ay) [nm] 1 1 1 1
Coherence length L [nm] 30 30 30 60

Table II: Simulation times for different annihilation algorithms

Reference [s] Sort-based [s] Change
Al 2041 2425 +19%
A2 1717 2028 +18%
B.1 427 455 +7%
B.2 508 548 +8%

particles which are still marked active (active,, = 1; c¢f. Fig. 5).
The new particles are regenerated and stored in the original
array, overwriting the particles in the array, which have been
deactivated during the annihilation process. This allows the
entire annihilation and regeneration process to be completed
with an insignificant amount of additional memory.

The trade-off for the small memory footprint of this anni-
hilation algorithm is the additional computation time required
to sort the array of the particle ensemble. The calculation
of the indices and the regeneration of particles is essentially
identical between all the annihilation algorithms presented
here. The impact of the sorting on the overall computation
time of a simulation depends on i) the regularity of the
annihilation (the generation rate) and ii) the threshold value
for the number of particles in the ensemble (/N) at which
annihilation (sorting) occurs. To characterize the performance
impact of the algorithm, the simulation time of two simulation
examples are compared with different parameters, as listed
in Table I. The results in Table II reveal the sorting-based
annihilation algorithm increases the computation time between
7% and 19%. If sufficient memory is available, there are
no advantages to using this algorithm. However, it should
be noted that in certain cases the memory demands of the
conventional annihilation algorithm exceed the capacities of a
workstation. Therefore, this algorithm makes two-dimensional
Wigner Monte Carlo simulations accessible to users without
extensive computational resources.

IV. CONCLUSION

The debilitating increase in the memory requirements to
perform the annihilation step in SPWMC simulations with a
fine spatial resolution can be effectively remedied by alterna-
tive annihilation algorithms.

A reduction of the spatial resolution of the phase space
grid used for annihilation reduces the memory requirements.
By fitting the pre-annihilation spatial distribution of particles
in a cell to a statistical distribution, the loss in resolution can
be mitigated. Under the assumptions made for annihilation the
uniform distribution is the best-suited; other common statistical
distributions, like Gaussians, are ill-suited for the fitting.

The annihilation algorithm based on ensemble sorting
eradicates the memory demands almost entirely. The trade-

off is a slight increase in computation time, which depends on
the parameters of the particular simulation problem.

The presented advancements in the annihilation algorithm
allows two-dimensional Wigner Monte Carlo simulations to
be performed on conventional workstations, also when using
high-resolution meshes, which greatly improves the accessi-
bility of multi-dimensional time-dependent quantum transport
simulations.

REFERENCES

[11 S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy,
and O. L. Krivanek, “Surface Roughness at the Si(100)-SiO2 Interface,”
Phys. Rev. B, vol. 32, pp. 8171-8186, 1985.

[2] D. Vasileska and D. K. Ferry, “Scaled Silicon MOSFETs: Universal
Mobility Behavior,” Electron Devices, IEEE Transactions on, vol. 44,
no. 4, pp. 577-583, 1997.

[3] M. Nedjalkov, P. Schwaha, S. Selberherr, J. M. Sellier, and D. Vasileska,
“Wigner Quasi-Particle Attributes - An Asymptotic Perspective,” Applied
Physics Letters, vol. 102, no. 16, pp. 163113-1-163113-4, 2013.

[4] P. Ellinghaus, M. Nedjalkov, and S. Selberherr, “Optimized Particle
Regeneration Scheme for the Wigner Monte Carlo Method,” in Lecture
Notes in Computer Science, Vol. 8962, pp. 27-33, Springer International
Publishing, 2015.

[5] P. Ellinghaus, J. Weinbub, M. Nedjalkov, S. Selberherr, and I. Dimov,
“Distributed-Memory Parallelization of the Wigner Monte Carlo Method
Using Spatial Domain Decomposition,” Journal of Computational Elec-
tronics, vol. 14, no. 1, pp. 151-162, 2015.

[6] C.A.R. Hoare, “Algorithm 64: Quicksort,” Commun. ACM, vol. 4, no. 7,
pp. 321-322, 1961.

