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Abstract. The Wigner formalism provides a convenient formulation
of quantum mechanics in the phase space. Deterministic solutions of
the Wigner equation are especially needed for problems where phase
space quantities vary over several orders of magnitude and thus can not
be resolved by the existing stochastic approaches. However, finite differ-
ence schemes have been problematic due to the discretization of the dif-
fusion term in this differential equation. A new approach, which uses an
integral formulation of the Wigner equation that avoids the problematic
differentiation, is shown here. The results of the deterministic method are
compared and validated with solutions of the Schrödinger equation. Fur-
thermore, certain numerical aspects pertaining to the demanded parallel
implementation are discussed.
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1 Introduction

An accurate description of carrier transport in nanoelectronic devices neces-
sitates quantum mechanics to be considered. The Wigner formalism presents a
convenient formulation of quantum mechanics in the phase-space, thereby allow-
ing many classical notions and concepts to be reused [3,4].

Basis for the following considerations is the Wigner equation

∂f(x, k, t)
∂t

− � k

m∗
∂f(x, k, t)

∂x
=

∑

m

Vw(x, k − k′) f(x, k′, t), (1)

which describes the evolution of the Wigner function f(r, k, t), under the influ-
ence of the Wigner potential Vw. A detailed explanation to the aspects of the
Wigner formalism can be found in [6] for instance. Deterministic solutions of the
Wigner equation have huge memory requirements, which has hampered practi-
cal implementations in the past. Stochastic methods avoid this problem, albeit
usually by trading memory requirements for computation time. A further diffi-
culty with deterministic methods lies in the discretization of the diffusion term
in the differential equation, due to the the highly oscillatory nature of Wigner
functions in the phase-space. Indeed the commonly used higher-order schemes
show very different output characteristics. However, the precision of the deter-
ministic methods make them the only possible approach in cases where physical
quantities vary over many orders of magnitude in the phase space.
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2 Solution Approach

The developed deterministic approach uses the integral formulation of the evo-
lution Wigner equation. The integral form [5,7] is obtained by considering the
characteristics of the Liouville operator on the left-hand-side of (1), which are
the Newtonian trajectories x(·, t) initialized with x′, k′, t′:

x(x′, k′, t′, t) = x′ +
�k′

m∗ (t − t′). (2)

This approach has already been used for development of stochastic solvers, which
rely on the corresponding Neumann series of the integral equation [1].

Here, we develop an alternative procedure by first discretizing the variables
of the equation by:

x = nΔx, n ∈ [0, N ]; k = mΔk, m ∈ [−M,M ]; t = lΔt, l ∈ [0, L]

The numerical task is to calculate the mean value fΘ – the integral of the solution
inside a particular domain indicated by Θ. The indicator function Θ is unity if
the phase-space argument belongs to the domain and zero otherwise.

fΘ(τ) =

τ∫

0

dt
∑

n

∑

m

fi(n,m) e− ∫ t
0 γ(xi(y))dy gΘ(xi(t),m, t), (3)

where τ is the evaluation time, fi the initial condition, xi(t) is the trajectory,
initialized by (nΔx,mΔk, 0), and gΘ is the so-called forward solution of the
adjoint integral equation:

Fig. 1. Density after 10 fs and 30 fs for a wave package propagating through a 4 nm
wide and 0.1 eV high potential barrier.
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gΘ(n′,m′, t′) = Θ(n′,m′) δt′,τ

+

τ∫

t′

dt
∑

m

e− ∫ t
t′ γ(x(y))dy Γ(x(t),m,m′) gΘ(x(t),m, t) (4)

Within (4) γ(n) =
∑
m

V +
w (n,m),

Γ(n,m,m′) = V +
w (n,m − m′) + V +

w (n,m′ − m) + γ(n)δm,m′ ,

and x(t) initialized by (n′Δx,mΔk, t). All operations involving the time variable
are also discretized. In particular, (2) may be expressed as

x(n′,m, l′, l) =
(

n′ + int

(
�mΔkΔt

m∗Δx
(l − l′)

))
Δx. (5)

For the moment we assume that the integral can be simply substituted by a
summation and will return to the problem in the sequel.

3 Numerical Aspects of the Method

The value of fΘ depends on the particular forward solution gΘ and the initial
condition fi. The various values forming the initial condition evolve indepen-
dently from each other in time and then are summated according to (3). Hence,
to account for any arbitrary specified initial condition fi, Eq. (4) must be solved
for each domain Θ = δn′,uδm′,v associated to each point (u, v) of the region and
evolution time τ = lτΔt. The simulation task entails solving

fu,v(lτ ) =
lτ∑

l=0

Δt
∑

n

∑

m

fi(n,m) e−∑l
j=0 γ(xi(j))Δy gu,v,lτ (xi(l),m, l), (6)

Fig. 2. Density after 50 fs and 70 fs for a wave package propagating through a 4 nm
wide and 0.1 eV high potential barrier.
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with

gu,v,lτ (n′,m′, l′) = δn′,uδm′,vδl′,lτ

+
lτ∑

l=l′
Δt

∑

m

e−∑l
j=l′ γ(x(j))Δj Γ(x(l),m,m′) gu,v,lτ (x(l),m, l). (7)

For simplicity of the formulas we skip the initialization point in the notation of
x and keep only the running variable.

Complexity of the Method
A direct implementation of the algorithm is to assemble and solve the equation
system (4) of rank L·N·2M (the number of spatial, momentum and time points)
and then to back-insert the solution into (6).

This implies that the following algorithmic steps have to be repeated L·N·2M
times (for each particular indicator):

– assembly of (7) with effort O(2M ·L·L),
– solving a system with rank L·N ·2M ,
– back-insertion in (6) with effort O(L·N ·2M),
– the storage of all gΘ(n′,m′, l′)
– the temporary storage for the equation system (7).

This analysis presents the upper bound for the estimated computational com-
plexity. We suggest some optimizations to reduce the complexity in the following.

Fig. 3. The k-distribution at initial time and after 100 fs corresponding to Fig. 1. The
transmission and reflection of the initially located wave around k0 = 12Δk can be seen.
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Aspects of the Time Integration
An important improvement of the computation scheme is made by observing
that the time-related quantity δl′,lτ may be accounted for analytically. Indeed,
it may be shown that Eq. (7) becomes

gu,v,lτ (n′,m′, l′) = e
−∑lτ

j=l′ γ(x′(j))Δt
δx′(lτ ),uδm′,v

+
lτ∑

l=l′
Δt

∑

m

e−∑l
j=l′ γ(x′(j)) Δt ωj Γ(x′(l),m,m′) gu,v,lτ (x′(l),m, l) ωl, (8)

with x′(l) initialized by n′,m′, l′. With this technique the time dependency in
the back-insertion can be omitted and its complexity can be reduced. We note
that Eq. (8) corresponds to a newly introduced higher-order integration scheme,
since a detailed analysis has shown that higher-order discretization schemes have
to be used. The used weights ωl depend on the discretization of the integration.

Furthermore, examining the equation system (8) enables a recursion scheme
where the already obtained forward solution is used to calculate the solution
of the next time step. This allows a simplification in the rank of the equation
system to N ·2M .

Fig. 4. Density after 10 fs and 30 fs for a wave package propagating through a 4 nm
wide and 0.3 eV high potential barrier.

Computational Demands
The process step demanding the most computation time is the assembly of the
equation system. The latter weights more heavily as evolution time increases,
as the time steps to be summated and the summands in the exponent increase
accordingly.

We further utilize the fact that the procedure, applied for each point (u, v, lτ ),
depends only on the initial location in phase-space. Therefore, the calculation of
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a certain point is independent on the processes associated with the rest of the
points, making this method well-suited for parallelization as it proceeds without
communications between the particular tasks. This enables an easy possibility
of combining OpenMP on each node with Message Passing Interface (MPI) over
several nodes. The communication overhead is only occasionally incurred when
collecting the particular results fu,v(lτ ) – this is reflected in the excellent scala-
bility of the parallelization.

The increase of the evolution time brings a corresponding increase of the
memory required to retain the history. Thus a serial implementation running on
single node quickly reaches its memory limit, thereby limiting both the achiev-
able resolution and simulated time for the simulation. Additionally, a parallel
implementation has the advantage of splitting the memory demands between the
particular nodes, thereby allowing acceptable time and phase-space resolution
to be achieved.

4 Application to a Wave Packet

The time evolution of a wave packet, which captures both particle- and wave-
like physical characteristics, is an effective tool to study quantum transport in
nanoscale semiconductor devices [2].

As a benchmark problem a minimum uncertainty wave packet [3]

Ψi(x, t = 0) = e− (x−x0)2

2σ2 eik0x (9)

is chosen, traveling to the right towards a square potential barrier. To apply this
setting to the Wigner equation, the distribution of the potential barrier V (x)
has to be transformed by

Fig. 5. Density after 50 fs and 70 fs for a wave package propagating through a 4 nm
wide and 0.3 eV high potential barrier.
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Vw(x,m) =
1
i�

1
Lcoh

Lcoh/2∫

−Lcoh/2

e−i2mΔks [V (x + s) − V (x − s)] ds (10)

to Wigner space. This formula is very general for the Wigner formalism, e.g.
any wave function Ψ or any potential give their Wigner counterparts by such
integral transform [6]. Here Lcoh describes the desired coherence length of the
system.

The parameters of the simulation are

– x0 = −29.5 nm the initial position of the peak of the wave packet,
– σ = 10nm the standard deviation in space of the initial wave package,
– k0 = 12Δk the speed of the wave packet,
– Δk = π/Lcoh is the chosen spacing in phase-space, with
– Lcoh = 100 nm the coherence length for the Wigner transformation.

To validate the results of the developed deterministic method, they are com-
pared to the numerical solution of the one-dimensional Schrödinger equation [8]

i�
∂Ψ(x, t)

∂t
=

[
− �

2

2m
∇2 + V

]
Ψ(x, t). (11)

Figures 1 and 2 show the solutions of the Wigner equation, solved by the
deterministic method, compared to the solution of the Schrödinger equation for
a wave packet traveling through a 4 nm wide, 0.1 eV high barrier at various time
steps. A good accordance between the results can be seen. The corresponding
distribution in k-space can be seen in Fig. 3. Here, the transmitted and reflected
parts of the wave can be clearly observed. The simulations were performed using
a 200 × 50 grid in the phase-space, with a spatial resolution of Δx = 0.5 nm

Fig. 6. The k-distribution at initial time and after 100 fs corresponding to Fig. 4. The
nearly total reflection of the initially located wave around k0 = 12Δk can be seen.
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and Δk = π/100 nm. The time discretization used a step-with of Δt = 0.5 fs to
maintain a good accuracy for the transmitted part of the wave packet.

Figures 4 and 5 show the same initial wave approaching a 0.3 eV high barrier.
Here, the wave is almost completely reflected. The corresponding k-distribution
can be seen in Fig. 6 for 0 fs and 100 fs, which shows nearly the same shape as the
former but reversed sign in k-space. Both examples show an excellent accordance
between the numerical solution of the Schödinger equation – the mainstay for
quantum transport simulations – and the deterministic solution of the Wigner
equation.

5 Conclusion and Outlook

A novel method for deterministically solving the Wigner equation has been
shown and validated by a comparison with the Schrödinger equation. Several
improvements of the history calculation and interpolation schemes seem feasi-
ble and offer the most potential for speed-up. In the future the method will be
applied to scattering processes and may be useful as pre-conditioner for stochas-
tic Wigner methods.
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