Efficient Calculation of the
Two-Dimensional Wigner Potential

P. Ellinghaus, M. Nedjalkov, and S. Selberherr
Institute for Microelectronics, TU Wien, GufB3hausstralle 27-29/E360, 1040 Wien, Austria
E-mail: {ellinghaus | nedjalkov | selberherr} @iue.tuwien.ac.at

I. INTRODUCTION

The solution of the two-dimensional (2D) Wigner equation
has become numerically feasible in recent times, using the
Monte Carlo method [1] fortified with the notion of signed
particles [2]. The calculation of the Wigner potential (WP)
in these 2D simulations consumes a considerable part of the
computation time. A reduction of the latter is therefore very
desirable, in particular, if self-consistent solutions are pursued,
where the WP must be recalculated many times. An algorithm
is introduced here — named box discrete Fourier transform
(BDFT) — that reduces the computational effort roughly by
a factor of five.

The semi-discrete WP is defined as

1M :
Vi (I', PAk) = ZHT / y ds 6*22PAk.S§V 1))
—L/2

V(s;r)=V(r+s)—V(r—s),)
where s is bounded by a finite coherence length, L. The

momentum vector PAk is discretized in steps of Ak = .
The length and position vectors are discretized and defined as

r=(z,y)
s = (mAs,nAs)
L= (MAs, NAs) €)
™ ™
Pak= (pMAs’qNAs> ’

in the following. This yields the 2D computational domain, as
depicted in Fig. 1, for which the fully discretized WP,

M-1N-1
1

Vw (9571%107 Q) = ihMN Z Z 67i2(pm%+Qn%)
meo e o)

oV <x:|: <m—‘]\24> As,y + (n—];f) As),

must be calculated at each node of the mesh.

Eq. (4) is akin to a 2D DFT of (2), conventionally calcu-
lated using a row-column decomposition scheme, which entails
the successive application of a one-dimensional (1D) DFT
algorithm: With reference to Fig. 2, consider a M’ x N’ matrix
of values representing the calculated potential differences, as
per (2). First the 1D DFT of each row of values is calcu-
lated, which yields a M’ x N’ matrix of Fourier coefficients.
Thereafter, the 1D DFT of each column of the latter matrix is
calculated, the result of which corresponds to the 2D DFT.

The fast Fourier transform (FFT) algorithm has a compu-
tational complexity, for a problem size N, of O(N log, N)
and presents the de facto standard algorithm for calculating
ID DFTs, thanks to flexible, highly optimized implementa-
tions, which are freely available in libraries, like FFTW3
[3]. Algorithms which directly calculate multi-dimensional
DFTs exist, e.g. [4], [5], and have a reduced computational
complexity, which should theoretically result in superior com-
putational performance. However, these advantages are most
often completely eroded in practical implementations, which
can be attributed to the fact that the cache complexity of algo-
rithms implemented on modern hardware architectures plays
an equally important role as the computational complexity.
Moreover, these multi-dimensional algorithms require exten-
sive ’tailoring’, e.g. to the dimension or transform size, making
general purpose implementations difficult, thereby hampering
a wide-spread adoption of such algorithms.

Y CONTACT REGION

x [] e O — 0 —o— 0 o o [[] []
[] L o [] [(] [] + [[] []
. [] [] o [] o o [] (] o [] []
L (xy) L 3
® L] O [] L] [] ° g
z -
o
8 [[] L] [] L] L] [] (] L] [] []
& i i
= [] () ° ° [[] [[] []
8]
&
% o *—0 *— o o *—0 [] [] []
O
Lcoh

Fig. 1. Coherence box of size Lo, = (M'Az, N’'Ay), centred at node
(z,y) in the discretized domain, of size Lge, = (M Az, NAy), surrounded
by semi-infinite contact regions.

II. ALGORITHM

To derive our BDFT algorithm, we adopt the idea of the
1D sliding DFT [6], [7]: The algorithm calculates the Fourier
coefficients of a sequence {z...x.ny_1} using the coefficients
calculated for {2._1..TcrN_2}:

Xo(p) = €% (Xe1(p) + Teosnot — Tee1). (5)

Each application of (5) consists of two real additions and
two complex multiplications, which have to be repeated for

978-1-4799-5433-9/14/$31.00 (© 2014 IEEE

e e e o po ® e)) e ® @
e e o po...0 > © o o o o e
Py e po e 'Y -] ® [] e ® e @
OO0 > © o o o o e
e e po e ® o ° ° ° e o e
(@) (b)
b 9 o o o o > © o o o o o
b 9 o o o o > o o o o o o
> ¢ o & ¥ ¥ 1 > o o o o o o
> o & o o o > © o o o o o
J “ D ® 4 4 o) [) [) [] [] [] L
(© ()
Fig. 2. Illustration of the calculation of a 2D DFT using the successive

application of a 1D DFT: (a) the 1D DFT is calculated for each row, yielding
(b) a matrix of Fourier coefficients (red). The (¢) 1D DFT of each column of
the prior result yields (d) the final result (blue).

each value of p. Therefore, the sliding DFT has a computa-
tional complexity of O(N). To apply the sliding DFT, as in
(5), the two sequences under consideration must differ by only
a single value; the potential values of each row (column) of the
coherence boxes associated with two horizontally (vertically)
adjacent nodes in the domain also differ only by a single value.
This observation is exploited to calculate the 2D WP in an
efficient manner.

Unlike the potential values, all the values of the potential
difference (2) change between adjacent nodes. To allow a direct
application of (5) to calculate (4), (1) is reformulated using a
substitution of variables (Fourier shift theorem), such that

2 t/ ,
Viv (r, PAK) = -—Im / A5),
— 2

This formulation has the further advantage that it avoids the
calculation of the potential difference, saving further computa-
tion time. We also note that (5) allows, unlike the FFT, to easily
compute only selected momentum (p, ¢) values, which do not
have to be uniformly spaced. This can be of interest under
certain physical considerations, e.g. uniformly spaced energy
grid, and offers a further possibility to reduce computational
costs.

The BDFT algorithm is applied to calculate the WP at
each node in the domain, using the following procedure (as
visualized in Fig. 3): First, the 1D DFT of the first N’ potential
values of all M rows in the domain are calculated, using an
FFT algorithm (Fig. 3(b)); the resulting Fourier coefficients
are retained in an array of size N’ x M. Thereafter, the 1D
DFTs of the first M’ Fourier coefficients of each of the N’
columns are calculated (Fig. 3(c)), which yields an M’ x N’

| FFT B
(@) (b)
rror ot
T T T T T
S | S
Pror e 3|
T T T :
L FFT = Slldlng =
DFT
© @
Sliding = M Sliding =
3 DFT - DFT
© ®
FFT E Sliding B
® DFT
(€9))
Fig. 3. Initialization and application of the BDFT algorithm, used to

sequentially compute the WP at every node in the computational domain by
successively applying the FFT and sliding DFT algorithms.

matrix of Fourier coefficients representing the WP for the top-
left node, Vi (0,0, p,). After this initialization, the coherence
box is moved downwards to the next node for which the WP
is calculated by simply applying (5) to calculate the DFTs of
the columns (Fig. 3(d),(e)). Once the WP has been calculated
for each node in the first column of the domain, the N/ x M
array is developed to the right (Fig. 3(f)), again using (5),
and the same procedure is repeated for the second column of
nodes (Fig. 3(h)) etc. until the entire domain has been covered.
Variations of the initialization approach can be envisioned, but
the presented procedure shows favorable serial performance
and cache complexity; a parallelized implementation would
require multiple (modified) initializations.

TABLE 1. BENCHMARK AND SETUP SPECIFICS TABLE II. COMPUTATION TIME OF 2D WIGNER POTENTIAL
Hardware Intel Core 3110M; 8 GB (dual channel) Lges, [au] Leon [au] BDFT [s] FFT [s] Speed-up [1]
oS Ubuntu 13.10 (64 bit)

100 100 0.12 0.75 6.3

Compiler gee 4.8.1 200 100 0.47 2.53 5.4

flags -O3 -fastmath -march=native 300 99 0.96 10.66 11.1

) 300 100 1.00 5.77 5.8

FFT library FFTW 3.3 (SIMD enabled) 300 101 1.04 61.25 55.9
interface \ flags dft_r2c_2d \ FFTW_MEASURE 400 100 1.78 10.27 58
500 100 2.80 17.84 6.4

8 T T T 3
7 L /,/ 1 2.5 g
b
a e //] 2 @
S 6 e N e o
ko] o - - 7 IS
5 e 115 =
g s
@» or S
11 g
2

4l

105 §

3 1 1 1 0

12 22 32 42 52

One-dimensional Transforms (x1 08)

Fig. 4. Speed-up (as per Table II) of the BDFT algorithm versus a (pure)
FFT implementation, to calculate the 2D WP for devices of various sizes,
using a coherence box containing 100 X 100 potential values.

III. RESULTS

The BDFT algorithm was benchmarked against an FFT
implementation using the FFTW library [3], with a setup
detailed in Table I. The FFT implementation was optimized by
exploiting the fact that (2) is real-valued and anti-symmetric
and therefore must yield a purely imaginary output with
conjugate symmetry.

Table II makes it evident that the BDFT reduces the compu-
tation time by at least a factor of five over a range of (plausible)
domain sizes, as visualized in Fig. 4. Table II also reveals
that the performance of the FFT implementation strongly
depends on the transform size (coherence length), because the
algorithms selected by the FFTW library perform best with
transform sizes that are products of small prime numbers.
The BDFT algorithm, on the other hand, is insensitive to the
transform size and scales at a constant rate with size.

IV. CONCLUSION

The presented box discrete Fourier transform (BDFT)
algorithm is shown to be an efficient approach to compute
the WPs in a two-dimensional domain, with a significant
reduction in computation time, thereby making self-consistent
simulations of the Wigner equation more feasible. Moreover,
this algorithm can easily be extended to three dimensions.

ACKNOWLEDGEMENT

This work has been supported by the Austrian Science Fund,
project FWF-P21685-N22.

REFERENCES

[1] I. T. Dimov, Monte Carlo Methods for Applied Scientists. ~ World

Scientific, 2008.

[2] M. Nedjalkov and D. Vasileska, “Semi-discrete 2D Wigner-particle
approach,” Journal of Computational Electronics, vol. 7, no. 3, pp. 222—
225, 2008.

[3] M. Frigo and S. Johnson, “The design and implementation of FFTW3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216-231, Feb 2005.

[4] H.-Y. Huang, Y.-Y. Lee, and P.-C. Lo, “A novel algorithm for computing
the 2D split-vector-radix FFT,” Signal Processing, vol. 84, no. 3, pp. 561
— 570, 2004.

[S] Z. Chen and L. Zhang, “Vector coding algorithms for multidimensional
discrete Fourier transform,” Journal of Computational and Applied
Mathematics, vol. 212, no. 1, pp. 63 — 74, 2008.

[6] E. Jacobsen and R. Lyons, “The sliding DFT,” Signal Processing
Magazine, IEEE, vol. 20, no. 2, pp. 74-80, Mar 2003.

[71 ——, “An update to the sliding DFT,” Signal Processing Magazine,
IEEE, vol. 21, no. 1, pp. 110-111, Jan 2004.

