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Abstract. The theoretical equivalence of the Wigner and ballistic Boltz-
mann equations for up to quadratic electric potentials provides the con-
venient opportunity to evaluate stochastic algorithms for the solution of
the former equation with the analytic solutions of the latter equation
- Liouville trajectories corresponding to acceleration due to a constant
electric field. The direct application of this idea is impeded by the fact
that the analytic transformation of the first equation into the second
involves generalized functions. In particular, the Wigner potential acts
as a derivative of the delta function which gives rise to a Newtonian
accelerating force. The second problem is related to the discrete nature
of the Wigner momentum space. These peculiarities incorporate unphys-
ical effects in the approximate Wigner solution, which tends to the Boltz-
mann counterpart in a limiting case only.

Operator mechanics are the established representation of quantum mechanics,
where the evolution of expectation values of physical quantities are given by oper-
ators Â along with a commutator bracket and an Hamiltonian operator. This
is a departure from the classical descriptions of phase spaces where the Hamil-
tonian and the Poisson bracket impress the space’s geometry on the equations
of motion. The Wigner formalism [1] is a return to a phase space description of
quantum systems and their evolution. In the case of quantum systems the phase
space accommodates features not found in the classical case. Where the Liou-
ville component of the Boltzmann equation is governed by the first derivative of
the electric potential - the electric field, quantum evolution is determined by the
Wigner integral, which accounts for the entire potential in a nonlocal manner.
By performing a Taylor expansion of the Wigner integral it is possible to link
derivatives of the potential to powers of �. Classical systems then appear by a
limit of � ∇ 0, which in this case causes only the linear component, the electric
field, to remain. This also means that in the case of a linear potential the Wigner
equation reduces to the ballistic Boltzmann equation and the nature, classical
or quantum, is determined purely by the initial condition. From the multitude
of purely mathematically available solutions only a subset is physically viable.
In classical systems this requires all states to be nonnegative, which also allows
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for a direct interpretation as densities. In the case of a quantum system, on the
other hand, this means that a legitimate quantum state must conform to the
uncertainty relation [2,3].

Since the nature only depends on the initial state, it offers a test facility
where simulations for quantum simulations may be examined and tested. The
generalized functions required for the treatment of the Wigner transport have
made application difficult in direct numerical treatment.

Here, an ensemble particle algorithm for general transport regimes determined
by initial and boundary conditions and transients is presented. It uses annihilation
of indistinguishable particles at consecutive time steps and is rooted in the use
of a quantized momentum space. Force effects are introduced exclusively using
the Wigner potential, so that individual particles are unaccelerated as they evolve
according to the fieldless Liouville operator of the Wigner equation.

1 Monte Carlo Algorithm

The foundation of the algorithm is the reformulation of the problem as a Fred-
holm integral equation of the second kind, which can be solved by a Neumann
series. The series is evaluated using a Monte Carlo approach. Newton trajecto-
ries link the individual terms of the series, where the integral kernel is applied
repeatedly. Thus the scheme can be presented as comprised by the two major
components

– Evolve along a Newton trajectory
– Apply the kernel as a scattering event
– Record

The Newton trajectories used are exactly the same as in a purely classical setup
without force.

A representation of the kernel responsible for the scattering transitions, is
needed. We employ a discretized version [4] of the originally continuous Wigner
potential. Choosing a finite coherence length L also fixes a finite delta in
momentum space proportional ∈ 1/L. When using wave numbers to represent
momentum space, as is customary in the field of solid state physics, this yields
Δk = π/L. This discrete approach allows for the identification of momenta with
integers. The scattering introduced in this manner deviates greatly from classi-
cal transport simulations. Where the kernel in classical transport descriptions is
positive definite, this is no longer the case in the quantum setting. This requires
the introduction of opposing signs for the particles to accommodate the action of
the kernel on a particle. Where in a classical case the kernel will act on any given
particle and simply may change its state in a possibly discontinuous manner, the
Wigner kernel will spawn a pair of new particles from the initial particle. The
interaction with the Wigner potential occurs after traversing the trajectory for
a certain time. The interaction can be expressed as:

Γ (r,m,m∗) = V +
W (r,m − m∗) − V −

W (r,m∗ − m) + γ(r)δm,m′ (1)
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Fig. 1. The signs of the generated particles depend not only on the sign of the original
particle, but also on the sign of the Wigner potential at the generating location.

m and m∗ are integers representing the initial and final nodes in momentum
space, respectively. The antisymmetry of the Wigner integral, which acts as the
scattering source, enforces

V +
w = max

(
Vw, 0

)
, V −

W (m) = V +
W (−m) (2)

so that the generation of the two new particles is actually linked. A single choice
l remains, which is the offset of the new states from the original momentum
node m. When choosing the signs of the generated particles, the sign of VW

must be considered. In case VW is positive, the particle at the position of the
final node m + l retains the sign of the generating particle, while the particle
at m − l is constructed with the inverted sign. In case the Wigner potential is
negative, the signs of the newly spawned particles are flipped. This process of
generation is depicted in Fig. 1. The left side shows the case of VW > 0, while
the flip of the generated signs is shown in the right part of the figure.

The particles are of opposite signs and each moved in momentum space from
the original particle’s momentum. In addition to the two newly spawned particles
due to interaction with the Wigner potential, the original particle continues
along the original trajectory unperturbed, due to the δ function in Eq. 1, as is
also depicted in Fig. 1. Thus, after such an scattering event, instead of the single
original particle, now three particles must be processed, each of which not only
needs to be processed further but can also generate new particle in the same
manner. Thus the total number of particles increases exponentially. This makes
it essential to have a means of reducing the number of particles again.

The mechanism counteracting the generation of particles employed in the
presented algorithm is annihilation at the time of recording; which marks the
end of any chosen time step. Two particles at the same position at the same time
but of opposite sign not only have no net contribution to the value of a recording
estimator, they also annihilate each other. This means that neither of the two
opposing particles will continue to evolve. Thus the number of overall particles
is reduced by two. Since it is necessary for two particles to be at the same place
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at the same time, the phase space must be subdivided into cells in order to make
annihilation feasible, as otherwise the probability of two particles meeting would
be zero. The discrete momentum space is already inherently subdivided into a
finite set of cells identifiable by the integer indexed nodes. The number of nodes
in the momentum component is linked to the resolution selected in space. The
number of nodes required to fill the characteristic length L used to obtain VW

is identical to the number of nodes required for momentum quantization.

2 Numerical Analysis

The outlined algorithm for quantum transport is applied to a test configuration
consisting of a single peak in the centre of the phase space. It thus is a discrete
and finite model of a delta function. From a physical point of view this setting
violates the uncertainty relation inherent to quantum phenomena, but since
the setting is such that the nature of the system is determined entirely by the
condition placed within it, it is expected that this classical initial state should
also yield classical results, even as it is subjected to quantum evolution.

Figure 2 shows how the number of particles depends on the length of the
time step and how particles are generated not only from the initial particles.
The initial particles, comprising Generation 0, create an avalanche of subsequent
particles. As the time step is increased the number of generated particles and
with it the computational burden increases drastically. This can be attributed
not only to the fact, that for a fixed probability of interaction with VW , more
particles will be spawned by the primary particles, but also to the circumstance,
that the generated particles themselves have a long time span to again generate
new particles. The maximum of particles is reached in the 7th generation, after
which the number of new particles declines, since the average time remaining
until the end of the time step makes generation less probable.

Since the computational burden increases so dramatically when extending
the time step, the question arises, if calculations using a series of several shorter
time steps will produce results matching a single longer one. As can be seen in
Fig. 3, the agreement between the different strategies to reach an absolute time
is excellent.

This indicates that by substituting one long time step by several shorter ones
it is possible to save considerable computational effort, as after each time step
the number of particles is reduced by annihilation.

Figure 3 also shows oscillations of the distribution including negative values.
This nonphysical behaviour is attributed to the fact that the initial condition
used here is in violation of the uncertainty principal required in the quantum
setting.

Furthermore, Fig. 3 also shows the process of transition from the initially
occupied node at 0 to the node at 1. The transition is worth examining in more
detail, since it reveals that the transition now occurs as in cellular automata [5].

Figure 4 shows a particle’s transition from one node to another node. The
intermediate time regime, where the initial peak has already decreased, while
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Fig. 2. The length of a time step determines the number of generation before annihila-
tion. When tripling the length of the time step, the shorter time step’s number appears
almost negligible.

Fig. 3. Choosing a single long time step yields the same results as choosing several
shorter time steps, as can be observed for the case of a single 0.6 ps time step vs two
0.3 ps and three 0.2 ps time steps.
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Fig. 4. The densities at the Node 0, which holds the initial condition, and Node 1,
which is the first to be occupied. Particles are not transferred continuously from node
to node until all reach the destination node. Instead the node occupancy is controlled
by a generation of positive and negative particles.

the target has not yet fully formed, is entirely controlled by generation of pos-
itive and negative particles and a subsequent annihilation. An analysis of this
process will be presented in the sequel. We now point to Fig. 5 which shows the
reconstitution of the initial distribution at the target node: the momentum of
the particles increases, which corresponds to acceleration but this time without
an explicite action of the field. Another interesting physical aspect of the density
is the substantial reduction of the spurious oscillations observed in Fig. 3. The
quantum system is closest to the classical counterpart at dicrete points in time
and momentum. At the limit Δk ∇ 0 which corresponds to infinite L and thus
the continuous case the behaviour becomes classical.

Investigating the manner in which the algorithm moves particles in more
detail it is possible to elucidate how the force term is accommodated by purely
relying on the mechanism of the Wigner potential VW . Given a number of par-
ticles N0 located at a given node of a phase space grid a certain number will be
scattered as they evolve along a Newton trajectory. Even without knowing this
number it is possible to examine the ratios of how they will be distributed if we
know VW . In the case under investigation, VW at the nodes was calculated for a
constant electric field to the form of:

VW (n) =
(−1)n+1

n
⊂n →= 0, 0 n = 0 (3)
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Fig. 5. At times corresponding to Newton’s law, the peaks not only reappear but also
the nonphysical oscillations are dampened to a minimum.

By following the described algorithm the following table is obtained, which shows
how many particles are assigned to which node. The common factors are denoted
by Nx, where x gives the generation of the particle. The sign of the factor
indicates the signs assigned to the particles generated for the particular node.
The table reveals several peculiarities: The signs of the contribution to the
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originating node are negative, while they are all positive for the first node to
the right. For the remainder of the nodes, the signs are mixed. This supports
the conjecture that the algorithm indeed allows to model the effects of force
by purely relying on the interaction with VW . The initial peak is moved by
being annihilated by the particles of opposing sign and reconstructed at the
neighbouring node.
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3 Conclusion

An algorithm for quantum transport has been presented. Its main features
include the use of a quantized momentum space and discrete selection rules
for the scattering. The discrete nature of the momentum component works very
well in conjunction with the employed annihilation scheme, which helps to reduce
the number of generated signed particles.

It was shown numerically that it is possible to utilize short time steps to
iterate to a longer duration in a stable manner. This is important due to the
significant increase of particle generation with the extension of the time step.

Furthermore, an explanation has been provided, how this algorithm acceler-
ates particles without explicitly incorporating a force term.

Finally an interesting mixture of quantum and classical phenomena have
been observed in the behavior of the modeled transport process.
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