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The Wigner formalism is a convenient reformulation of the Schr€odinger equation that allows the

simulation of transient behavior of quantum systems in the presence of general boundary conditions.

Recently, a Wigner Monte Carlo technique, based on particles signs, has been generalized to two-

dimensional evolution problems. In this paper, we apply this technique to study the time reversibility

of the quantum evolution of a wave packet colliding with a potential wall in the presence of interface

roughness, elastic, inelastic, and diffusive interactions with the environment. We show that a wall

surface roughness does not necessarily involve time irreversibility. The dynamics of the packet is

indeed influenced, but remains coherent, until the boundaries of the system begin to absorb

information from the system. Finally, it is shown that in the presence of inelastic scattering or

diffusive processes, the time-reversibility of a quantum system is destroyed, whatever the shape of

the wall interface is. In particular, we show that the random nature of a process, elastic or inelastic, is

responsible for the appearance of quantum decoherence. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4828736]

I. INTRODUCTION

As today nanometer scaled semiconductor devices are

becoming part of our everyday life, quantum transport of

charged particles is gradually getting importance in the field

of engineering and practical applications. Many aspects of

quantum transport are still not well understood, both from an

experimental and theoretical point of view. For example, as

recently demonstrated, the coupling of classical boundary

conditions (BCs) to stationary quantum models may lead to

non-unique solutions having no physical sense.1 Research to

understand the effects of BCs on full quantum models is, as a

matter of fact, still a work in progress. Many other problems

related to the simulation of quantum phenomena are still

open, among them is the phenomenon known as quantum

decoherence. We focus on this phenomenon in the presence

of open BCs.

The emergence of classical dynamics in initially pure

quantum systems is a process that can be explained in terms

of quantum decoherence. Indeed, when this process occurs,

the coherence between the eigenstates is destroyed along

with the quantum information of the system so that time re-

versibility cannot happen any longer. Only a few states will

survive to the environment and the vast majority of the cor-

responding Hilbert space states is simply ignored from the

physics of the quantum system. Despite this description

may sound very theoretical, it is a very tangible effect that

can be observed in experiments and occurs in technologi-

cally relevant situations such as in nanometer scaled devi-

ces. The study of this quantum phenomenon has practical

implications. For example, it explains why certain nanode-

vices cannot operate at room temperature. In order to inves-

tigate these particular systems, a full quantum model must

be utilized.

A good candidate for a full quantum model is the

Wigner formalism which is a generalization of the time-

dependent Schr€odinger equation in terms of a phase-space.

The model is general enough to naturally include open BCs,

general initial conditions, and also the effects of lattice pho-

non scattering. It has been already applied to study the

emergence of decoherence in a variety of situations ranging

from atomic physics,2,3 to quantum electronic transport.4–6

In this paper, we apply the Wigner formalism to two-

dimensional (2D) situations and study the quantum dynam-

ics of the system in the presence of general random (elastic

and inelastic) processes (theoretical models) in order to

understand the nature of quantum decoherence and the tran-

sition to classical mechanics.

The first attempts to simulate quantum transport with

the Wigner equation were based on the finite difference

method which introduces some numerical problem.7–9 The

challenge is posed by the diffusion term of the Liouville op-

erator, since the solution of the Wigner equation is rapidly

oscillating around the regions of the phase space, where

quantum interference is dominant. During the last decade,

Monte Carlo particle models which avoid the calculation of

the diffusion term were developed. Furthermore, decoher-

ence effects of boundaries and phonon scattering can now

be included at equal footing, in a similar fashion to the

Boltzmann MC method, which is hardly achievable with

other full quantum models.

One of these implemented MC methods introduces the

concept of particle affinity,10,11 a real number that carries the

quantum information of the system. This method has shown

to be successful in many aspects and has been applied to

self-consistent simulations of actual nanometer sized devi-

ces. However, the required amount of computational resour-

ces precludes multi-dimensional applications. Another
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model introduced the concept of signed particles, generated

by the Wigner potential, which may annihilate each other in

the phase-space. This method needs ergodic conditions and

is relevant for stationary problems posed by BCs.12

Recently, this approach has been generalized to time-

dependent transport determined by general boundary and

initial conditions.13 It exploits the notions of momentum

quantization and indistinguishable particles. These con-

cepts, proper to quantum mechanics, entangled with the

classical notions of trajectories, particle ensemble, and par-

ticle annihilation at consecutive time steps allow imple-

mentations beyond one-dimensional evolution. Indeed,

even if sophisticated computational resources are welcome,

they are not imposed by this MC approach. As a matter of

fact, we are able to simulate two-dimensional numerical

experiments in order to study the evolution of quantum

systems.14

In this paper, we present five numerical experiments to

show how inelastic, diffusive, and random processes can

trigger quantum decoherence. We interchangeably use the

(equivalent) concepts of coherent regime, time reversibility,

and quantum purity.15 We start by simulating a time reversi-

ble situation consisting of a Gaussian wave packet interact-

ing with a flat wall or, equivalently, a flat interface. This

shows that the method utilized is reliable and relevant for

our analysis. We then proceed by introducing roughness at

the interface and show that the system is time reversible

even in this case. Then, an inelastic process at a flat interface

is introduced, which reduces particle energies by a constant

amount. The system is shown to be time irreversible and

decoherence appears. The fourth experiment consists of

introducing randomness at the interface, which now removes

a stochastic amount of energy from the particles. The ran-

dom nature of the process affects the time reversibility of the

system. These results altogether clearly show that roughness

alone cannot trigger decoherence. An inelastic or diffusive

(random) process is necessary to make a quantum system

time irreversible. Finally, we introduce a diffusive process

which randomizes the direction of the particle wave numbers

while keeping their energy constant. Even in this case, the

system becomes time irreversible, although the process is

elastic. This result shows that the appearance of decoherence

is intimately connected to the randomness of a process hap-

pening at the interface.

II. THE 2D WIGNER MONTE CARLO METHOD

The Wigner approach can be considered as a phase-

space reformulation of the density matrix formalism.16,17

The two models are theoretically equivalent. The Wigner

equation reads

@fW

@t
þ �hk

m�
� rxfW ¼ QW ½fW �; (1)

where fW ¼ fWðx; k; tÞ is the unknown pseudo-distribution

function (it can have negative values) defined over the

phase-space ðx; kÞ ¼ ðx; y; kx; kyÞ; m� is the effective mass,

QW is a functional defined as

QW ½fW �ðx; k; tÞ ¼
ð

dk0VWðx; k� k0; tÞfWðx; k; tÞ; (2)

and the Wigner potential is defined as

VWðx; k; tÞ ¼
1

i�h4p2

ð
dx0e�ik�x0 ½Vþ � V��; (3)

where V6 ¼ Vðx6 x0

2
; tÞ is the potential function acting over

the domain. For convenience, in the following, we omit the

time dependence of VW.

This model can be rewritten exploiting the semi-discrete

nature of the phase-space.13 On one side, physical considera-

tions show that the simulation domain for the quantum struc-

ture is bounded by an upper limit LC ¼ ðLx
C; L

y
CÞ known as

the coherence length. This means that a discrete Fourier

transform can be applied in (3). On the other side, according

to the tenets of quantum mechanics, particle energy comes

in quanta. This is equivalent to say that the k-space

is expressed in terms of multiples of a finite quantity

Dk ¼ p
LC

.

Furthermore, it is possible to reformulate the semi-

discrete Wigner equation in an adjoint integral form having a

solution which can be written in terms of a series. In particu-

lar, if A ¼ Aðx; kÞ is some generic physical quantity, it is

possible to express its expectation value as a series

hAi ¼
ð1

0

dt0
ð

dxi

X1
m0¼�1

fiðxi;m
0Þe�

Ð t0

0
cðxiðyÞÞdy

gðxiðt0Þ;m0; t0Þ;

(4)

where fi ¼ fiðx;mÞ is the initial conditions at time 0. The

function g ¼ gðx;m; tÞ is the solution of the adjoint equation

which contains the quantity A ¼ Aðx; kÞ. The details are in

Ref. 13.

We report the first two terms of the series and give a

physical interpretation

hAi0ðsÞ ¼
ð1

0

dt0
ð

dxi

X1
m0¼�1

fiðxi;m
0Þe�

Ð t0

0
cðxiðyÞÞdy

� Aðxiðt0Þ;m0Þdðt0 � sÞ: (5)

From a pure mathematical MC perspective, the integrand

can be considered as a product of conditional probabilities.

Assuming that fi is normalized, random points xi;m
0 at time

0 can be generated. This can be considered as an initializa-

tion of particle trajectories xiðyÞ. The exponent in the inte-

grand is interpreted as the probability for the particle to

remain in its trajectory and the scattering rate is given by the

function cðxÞ which is defined later. If a scattering time is

generated randomly (less than s), the probability acts as a fil-

ter to the particles. Indeed, if a particle is not scattered until

time s, it contributes to hAi0ðsÞ with the value

fiðxi;m
0ÞAðxiðsÞ;m0Þ. Thus, hAi0ðsÞ is estimated by using the

mean value of the N initialized particles. On the other hand,

if the particle is scattered, then it does not contribute to

hAi0ðsÞ but to the term hAi1ðsÞ
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hAi1ðsÞ ¼
ð1

0

dt0
ð

dxi

X1
m0¼�1

fiðxi;m
0Þfcðxiðt0ÞÞe�

Ð t0

0
cðxiðyÞÞdyg � hDðx1Þ

�
ð1

t0
dt
X1

m¼�1

Cðx1;m;m
0Þ

cðxiðt0ÞÞ

� �
fe�

Ð t

t0
cðx1ðyÞÞdygAððx1ðtÞ;m; tÞdðt� sÞ; (6)

where

Cðx;m;m0Þ ¼ Vþw ðx;m�m0Þ
� Vþw ðx;�ðm�m0ÞÞ þ cðxÞdm;m0 (7)

and VþW ¼ Vþw ðx;mÞ is the positive part of the Wigner func-

tion. This time a particle is initialized at xi;m
0; 0 and follows

the trajectory until time t0 (which is the time of scattering

given by the probability density in the first curly brackets). It

is easy to see that the exponent is the probability to not scat-

ter until time t0, while cðxiðt0ÞÞdt0 is the probability to scatter

in the interval ½t0; t0 þ dt0�. The particle is now in the phase-

space position x1 ¼ xiðt0Þ;m0; t0 and the evolution continues

as long as the particle remains in the simulation domain.

Otherwise the domain indicator hD ¼ hDðxÞ changes the

value from 1 to 0 and the contribution is zero. The term in

the next curly bracket can be interpreted as a source of scat-

tering from m0 to m (locally in space at point x1 and time t0).
Thus, at moment t0, the particle initializes the trajectory

x1;m and, with the probability given by the exponent in the

last curly brackets, remains over the trajectory until time s is

reached: t is set to s by the d function provided that t0 < s,

otherwise the contribution is zero. In the same way, a physi-

cal interpretation of the other terms of the series can be

given.

From the previous observations, a MC approach for the

semi-discrete Wigner equation can now be depicted. By con-

sidering the quantity

cðxÞ ¼
Xþ1

m¼�1
VþWðx;mÞ (8)

as a normalization factor, (7) describes the generation pro-

cess of two particles, with a positive and a negative sign,

respectively, and the surviving initial particle with its sign

due to the d function. More specifically, an initial particle

with sign s and wave-vector n generates, with a rate VþðlÞ,
two primary particles with signs s, �s and momenta

n0 ¼ nþ l; n0 ¼ n� l, and continues its free flight evolution

until a given time T. The created pair, in turn, generates new

pairs, etc., and the number of particles increases exponen-

tially. By noting that particles are indistinguishable and that

two particles in the same spatial cell with the same momen-

tum m and opposite signs do not contribute to the Wigner

distribution function, an annihilation technique can be

implemented to reduce the number of particles during the

simulation.13 The time-dependent evolution of the Wigner

quasi-distribution happens only by creation and annihilation

of particles which replace the acceleration due to Newtonian

forces.13

III. NUMERICAL EXPERIMENTS

We study the effects of random processes on quantum

systems and the appearance of decoherence in terms of time

irreversibility. Indeed, coherence and time reversibility are

completely equivalent concepts.11 Another convenient, and

equivalent, criterium is the purity of a system.15 This quan-

tity can be defined in several ways. For example, it can be

expressed in terms of a Wigner quasi-distribution function,

of a density matrix, or even of a wave function W ¼ WðxÞ
for the evolution of only pure states

pðtÞ¼
Xþ1

m¼�1

ðL

0

dxf 2
Wðx;m; tÞ; (9)

¼ Trðq2Þ ¼
ðL

0

dxq2ðx; xÞ; (10)

¼
ðL

0

dx

ðL

0

dx0WðxÞW�ðx0ÞWðx0ÞW�ðxÞ: (11)

A convenient physical interpretation can be given, when p(t)
is expressed by means of a density matrix. As long as the

system evolves in a superposition of pure states, the purity is

constant and equal to one. Indeed, the non-diagonal elements

are all equal to zero. When, instead, the system enters a

decoherent regime, the purity decreases (mixed states).18

The initial conditions for the performed experiments

consist of a Gaussian wave packet, with minimal uncertainty,

interacting with a potential wall represented by a truncated

step function whose edge defines the interface of the system.

The corresponding initial pseudo-distribution function reads

f 0
Wðx;mÞ ¼ Ne�

ðx�x0Þ2

r2 e�ðmDk�k0Þ2r2

; (12)

where N, k0, x0, and r are, respectively, a constant of nor-

malization, the initial wave vector, the initial position, and

the width of the wave packet. Its initial position is close to

the barrier in order to see the interactions happening at early

times. The initial wave vector is chosen such that it corre-

sponds to an energy in equilibrium with the lattice (about

0.025 eV) and has a diagonal component which goes towards

the interface. The wall has an energy equal to 0.05 eV, r is

equal to 10 nm. Finally, open BCs which absorb particles,

when they reach the edges of the spatial domain, are

imposed. In this context, one expects two kinds of processes

to happen, partial reflection from the interface and absorp-

tion of the packet through the boundaries.
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This system is simulated in five different situations: (1)

a flat interface with specular reflection, (2) a rough interface

with specular reflection, and a flat interface in the presence

of (3) constant inelasticity, (4) random inelasticity, and (5) a

diffusive process. All simulations proceed forward in time

until 40 fs, when the wave vectors of all particles are

reverted in sign. Then the simulation proceeds until 80 fs.

This is equivalent to proceed backward in time until 0 fs.

The solutions obtained are compared to the initial conditions.

To enhance the statistical analysis and reduce the noise, we

perform an average over four different instances of the same

simulation started with different random seeds.

Finally, Figs. 4, 6 and 8–10 are obtained by cutting in

the middle of the normalized wave packet in the y-direction.

A. Time-reversibility

We simulate a wave packet moving towards a flat inter-

face without inelastic or diffusive processes. The goal of this

experiment is to show that the Wigner MC method based on

particle’s signs is suitable for the study of decoherent phe-

nomena. Figs. 1–3 show the results of the simulation. In

particular, Fig.1 represents the initial wave packet in proxim-

ity of the interface (upper straight line); the bottom plot

shows the evolution of the packet at 40 fs, when the wave

vectors of all particles are reversed. Finally, the recon-

structed solution is reported in Fig. 3. The comparison

between the initial solution and the reconstructed solution is

reported in Fig. 4. The agreement is excellent. As expected,

the system is numerically time reversible and no decoher-

ence is observed.

B. Roughness

We now introduce roughness and mimic a technologi-

cally realistic situation. Our methodology consists of adding a

position dependent random offset to an initially flat interface.

In practice, we start from a set of points representing the flat

interface, (xn, W), where W¼ 65 nm, n ¼ 1…Nx, and Nx is

the total number of cells in the x-direction. Then we generate

Nx random numbers rn (uniformly distributed between 0 and

1) and calculate the Nx offsets DWn ¼ Að2rn � 1Þ, with A the

biggest allowed offset. The interface roughness is now repre-

sented by the set of points ðxn;W þ DWnÞ, see Fig. 5 (wavy

upper line). Figs. 5 and 6 report the results of the simulation.

FIG. 1. Forward evolution of a wave packet in proximity of a barrier step at

0 fs.

FIG. 2. Forward evolution of a wave packet in proximity of a barrier step at

40 fs. The particles momenta are reverted and the evolution becomes back-

ward in time.

FIG. 3. Backward evolution of a wave packet in proximity of a barrier step

at 80 fs.

FIG. 4. Comparison (cut in the x-direction) between the initial conditions

and the backward solution at 80 fs.
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Fig. 5 shows how important is the shape of the interface in the

evolution of the wave packet. Indeed the wave packet is influ-

enced almost instantaneously and rapidly destroyed (some

level of chaos is introduced). Nevertheless, the system

remains in a coherent state as shown in Fig. 6 (comparison

between the initial solution and the reconstructed one).

Despite the presence of roughness, the initial state is perfectly

reconstructed. A further confirmation that the system is still

time-reversible comes from the calculation of the purity.

Indeed the (red) þ curve of Fig. 7 shows that it remains con-

stant until the wave packet starts to move out of the domain

(at about 128 fs).

C. Constant inelasticity

We now introduce an inelastic process in the simula-

tion. Every time a particle reaches the interface, a constant

amount of energy is removed from the ky-component of its

wave vector k¼ (kx, ky) and it is scattered back by inverting

its sign. The component kx is not changed. The amount of

energy is chosen arbitrarily and equal to 32Dky with

Dky ¼ p
Ly

C

. Intuitively, the bigger the energy removed, the

bigger is the influence of the interface on the system. The

comparison between the initial and reconstructed solutions is

reported in Fig. 8. A big hump of particles is now accumulat-

ing in proximity of the wall (right side of the plot) in the

reconstructed solution. In other words, the constant inelastic

process introduces decoherence, part of the quantum

FIG. 5. Forward evolution of a wave packet in proximity of a rough wall at

20 fs.

FIG. 6. Comparison (cut in the x-direction) between the initial conditions

and the backward solution at 80 fs.

FIG. 7. Purity curves calculated for several numerical experiments. The pu-

rity is initially constant and starts to decrease, when the particles interact

with a random process (when present) or with the open BCs. The quantum

information is lost at a regular pace. The purity of the diffusive process

decreases faster than the one corresponding to the random inelastic process.

Note that this tendency depends on the particular values used to simulate

those processes and, as such, can be inverted.

FIG. 8. Comparison between the initial conditions and final backward solu-

tions (at 80 fs) in the presence of constant inelasticity. Note that the cuts are

performed after the wave packets are normalized on the two-dimensional

domain.
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information is lost, and it is not possible to recover the initial

conditions anymore.

One detail must be underlined here: in this experiment,

when the system is evolved backward in time the interface

keeps on absorbing energy. It can be shown numerically that

if, during the backward evolution, the interface adds the

same amount of energy (known a priori) to a particle (instead

of subtracting it), the initial conditions can be reconstructed.

In other words, a constant inelastic process can be inverted

and the initial conditions can be reconstructed.

D. Random inelasticity

A random inelastic process is now introduced at a flat

interface. In this model, a particle reaching the interface is

back scattered and a random amount of energy is subtracted

to its ky component. The quantity is randomly chosen

between 0 and 64Dky. The comparison is reported in Fig. 9.

The system is clearly not time reversible any longer.

One should also note that the comment made in the pre-

vious experiment on the reconstruction of the initial condi-

tions by inverting the behavior of the interface during the

backward evolution does not hold anymore. Indeed, if the

inelastic process is intrinsically random, it cannot be

inverted. As soon as a particle interacts with the interface,

the information of the system is lost. This is also confirmed

by the (green) x curve of Fig. 7 showing the purity of such a

system.

E. Diffusive process

We introduce a diffusive process at a flat interface. The

wave vector of a particle interacting with the interface is ran-

domly modified in direction, but its energy is kept constant,

which corresponds clearly to an elastic process. This can be

considered as a generalization of the previous experiment,

which is diffusive but also inelastic. The results of the simu-

lation are reported in Fig. 10. The system is not time reversi-

ble. Despite its apparent simplicity, this is an important

result with profound implications. It shows that inelasticity

is not the only process that can trigger decoherence. A con-

firmation of this fact comes from the calculation of the purity

(blue * curve of Fig. 7), which decreases as soon as particles

start to be randomized in direction. In other words, the

appearance of decoherence is intimately connected to the

process of randomization which is the first cause of time irre-

versibility. It gradually destroys the information and makes

it impossible to recover the initial conditions.

F. Conclusions

In this work, we performed a study of the appearance of

decoherence at the nanometer scale by applying the Wigner

MC method based on particle’s signs. The criterium utilized

for this investigation is time reversibility. When only a flat

interface is involved and no diffusive or inelastic processes

are present, the system is time reversible. We have shown

that, even when the interface has some level of roughness,

time reversibility still holds. When an inelastic process is

introduced (by removing a constant or random amount of

energy to the particles), the system becomes time irreversi-

ble. Then we noted that, when the inelasticity is constant, it

is possible to invert the behavior of the interface and make

the system time reversible again. This fact does not hold for

a random inelastic process which is, by definition, intrinsi-

cally stochastic. Finally, we simulated the presence of a dif-

fusive process which randomizes the wave vector of the

particles interacting with the interface. This model can be

considered a generalization of random inelasticity. From the

calculation of the purity, it is clear that the system looses in-

formation and becomes time irreversible. This shows that a

pure randomization process is enough to make decoherence

appear. In other words, randomness is the first cause of time

irreversibility.
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FIG. 9. Comparison between the initial conditions and final backward solu-

tions (at 80 fs) in the presence of random inelasticity.

FIG. 10. Comparison between the initial conditions and final backward solu-

tions (at 80 fs) in the presence of a diffusive process.
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