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Decoherence effects in the Wigner function formalism
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Abstract We demonstrate the ability of the phase space
formulation of quantum mechanics to provide convenient
means and intuitive notions for exploring the process of
transition from a quantum to a classical state known as de-
coherence. The Wigner equation, which is usually relevant
for electron transport in nanostructures, augmented by the
Boltzmann scattering operator is now applied to the time
dependent transport problems which may be considered as
benchmark examples for the decoherence role of phonons
in semiconductor devices. Simulation results maintained by
theoretical analysis show how scattering effectively destroys
the interference effects. The initial coherence in the wave
vector distribution is pushed towards the equilibrium distri-
bution. In particular scattering by phonons hinders the natu-
ral spread of the density with time and advances it towards
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a classical localization. Furthermore, the decoherence effect
due to phonons, is measured by the purity of the Wigner
state, which decreases from its initial value of 1, with a rate
depending on the lattice temperature, and by a functional
comparing diagonal with off-diagonal elements of the den-
sity matrix.

Keywords Wigner function - Quantum transport -
Phonons - Decoherence

1 Introduction

The theory of decoherence addresses the manner in which
some quantum systems become classical due to entangle-
ment with the environment. The latter monitors certain ob-
servables in the system, destroying coherence between the
states corresponding to their eigenvalues. Only preferred
states survive consecutive interactions with the environment.
The remainder of states, which actually comprises a major
part of the Hilbert space, is eliminated. Many of the features
of classicality are actually induced in quantum systems by
their environment [1]. The Wigner function has often been
used in atomic physics to study decoherence [2, 3], because
it makes the transition towards the semi-classical world very
clear by tending to a distribution function. Additionally, it
has been recently demonstrated that the superposing photon
states prepared in an electromagnetic resonator can be com-
pletely characterized by Wigner’s function tomography [4].

Regarding solid-state nanodevices, decoherence in the
transport through quantum dots coupled to quantum point
contacts has been discussed within the concept of pointer
states [5]. Alternatively, a theoretical description of deco-
herence induced by contact coupling in ballistic nanodevices
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has been established within the framework of open system
theory [6].

The role of scattering has been intensively studied by dif-
ferent models describing quantum Brownian motion [7]. Pe-
culiar to the equation governing the evolution of the density
matrix in the spatial coordinate representation {x|p|x’) is a
term giving rise to an exponential damping in time with a
rate A of the off-diagonal elements (x # x’). Thus the ini-
tial wave packet of an electron does not follow the natural
process of spreading due to coherent evolution, but shrinks
around the line x = x’ revealing a classical localization [7].

The electron decoherence induced by electron-phonon
interaction has been considered in a molecular conductor in
the language of Landauer’s approach of transport by means
of Green’s function calculation [8]. This decoherence effect
on an electron has also been investigated in a bulk semicon-
ductor by evaluating the time evolution of the generalized
Wigner function of the electron-phonon system for a sin-
gle electron/phonon scattering event by using the “Wigner
paths” method [9].

Recently the problem has been reformulated in phase
space giving rise to a Wigner equation with a Fokker-Planck
term describing diffusion in phase space [10]. The analy-
sis of the equation provides an alternative interpretation of
the process of decoherence in phase space. Quantum coher-
ence effects as a rule give rise to rapid oscillations of the
Wigner function. The diffusion term destroys these oscilla-
tions thus effectively suppressing coherence. Furthermore,
this model has been compared with the Wigner-Boltzmann
equation showing that both models converge provided that
the wave vector of the lattice vibrations in the latter model
becomes much smaller than the electron counterpart [10]. It
follows that decoherence effects can definitely be expected
as a result of scattering by phonons. Theoretical analysis
shows that an increase of the electron-phonon coupling leads
to a super-linear decrease of the quantum contribution [11]
due to a decrease of the proportion of the coherent com-
ponent of the Wigner-Boltzmann equation and an interplay
between the scales of the involved physical parameters, for-
mally expressed as the limit & — 0.

The effects of decoherence will be demonstrated by
Monte Carlo simulations of the evolution of a single wave
packet tunneling trough a potential barrier, and of a pure
Wigner state consisting of two entangled Gaussian wave
functions.

The paper is organized to first provide an outline of the
theoretical foundations. It starts, in Sect. 2.1, by describ-
ing the physicals principles and ideas involving the Wigner
formulation of quantum mechanics and the connection to
the density matrix formalism. Section 2.2 introduces the
Wigner-Boltzmann equation and its link to classical Boltz-
mann transport. We then continue, in Sect. 2.3, to describe
the Monte Carlo methodologies used in the subsequent cal-
culations.

Simulation results of two distinct approaches using the
described theoretical background are given in Sect. 3. In par-
ticular Sect. 3.1 deals with a tunneling process simulated us-
ing an affinity based approach; Sect. 3.2 studies the decoher-
ence of two entangled states using a generation-annihilation
procedure.

2 Quantum mechanics in phase space

We introduce the basic concepts and notions of the phase
space formulation of quantum mechanics, which allows to
conveniently trace the transition from a quantum coherent
to a classical state during the process of decoherence. We
continue by recalling the properties of pure and mixed states.

2.1 Density matrix of entangled and mixed states

Consider the basis |0)|1). Any normalized superposition

V) =«al0) + BI1) (1)

gives an entangled state. The expectation values (A) of
physical quantities A, presented by a Hermitian operator A,
are obtained by the trace operation:

(A)=Tedp)= Y _(ilApli): Tr(p)=1. @
i=0,1

The density operator p is defined with the help of (1):

p =)yl
= |?[0)(0] + |BIP11) (1] + aB*[0) (1] +a*BI1){0]  (3)

The physical quantity ‘expectation value for the first ba-
sis state” in (1), for example, expressed by the operator oy =
|0)(0], evaluates to |o|> using the trace operation, while for
the second state it yields |8|%. The relation |a|?> + |8 =1
allows to interpret these values as probabilities, which im-
plies the normalization of (1) and ensures the last equality
in (2).

In order to ascertain and define quantities we need to pre-
pare a detector which discriminates states |0) from state |1)
by virtue of their orthogonality. There are two peculiarities
of this process. Such an interaction disturbs the superposi-
tion state (1) by leaving it in a preferred state. The proba-
bility of finding the system in the alternative state after such
an interaction is zero. Moreover, the last two terms in (3) re-
main unobservable for such a detector. However, they can be
observed by an other kind of detector and actually reveal the
quantum character of (1): they account for the superposition
of the amplitudes which lead to interference effects.

If these interference effects are neglected, the density op-
erator / reduces to f,, = |«|?>po + |81%p1. This density op-
erator again provides the values |«|> and |B|?> for the basis
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states, however, it corresponds to an entirely different set-up
of the system. The latter is in either the state O with a proba-
bility |«|?, or the complementary state with the complemen-
tary probability which comprises the mixed state density op-
erator p,,. The transition of (1) into one of the two possible
basis states as a result of a interaction with the environment
gives rise to the same p,,, which is a return to the principles
of the classical superposition of probabilities.

2.2 Wigner-Boltzmann equation

For a statistical ensemble of particles described by a density
operator p the Wigner function (WF) f,, is defined in the
full phase-space r, k as a differential Fourier transform of
the density matrix p(r, k), i.e.:

fu(r,K) / dre ™ p(r4r'/2, e —1'/2) @

~ e

d is the real-space dimension of the transport problem. The
dynamical equation of the WF in a potential U (r) is the
Wigner transport equation (WTE) which reads:

0fu S
?“Fvvrfw:wa"‘wa (5)

C is the collision operator and Q fw 1s the quantum evolu-

tion term resulting from the non- local effect of the potential,
defined by:

O fu(r,K) = / dk'Vy (r, k — K') £ (1, K) (6)

from the Wigner potential V,, given by:

1 .
— dr/ —ikr
ih2m)? / ¢

x [U(r+71'/2) —=U(r—1'/2)] (7

Vuw(r, k)

An alternative form for the quantum term Q fw leads to an
expansion in powers of & and higher order derivatives of the
potential energy [12]. For slowly varying potential the first
order approximation of this form reduces to

N 1
Q fu(r, k) = =2 VeU(r) fu (r, k) ®)

which is exactly the effect of the classical force on the
Maxwell-Boltzmann distribution function in the Boltzmann
transport equation (BTE). Thus, the BTE can be seen as the
classical approximation of the WTE, if the same collision
operator C is used in both cases, i.e., if quantum collision ef-
fects are neglected. Then, it has been shown that, under a few
reasonable conditions, the Boltzmann collision operator can
be also used with good accuracy in the WTE [13]. This new
form of the WTE is often called Wigner-Boltzmann trans-
port equation (WBTE). It is a strong result and one of the
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main advantages of the Wigner function with regard to de-
vice modelling. All the knowledge acquired in the past in
the treatment of scattering in semiclassical transport may be
reused for quantum transport in the Wigner formalism. It
enables to study important problems such as the scattering-
induced decoherence and the transition from quantum to
semiclassical transport regimes. Indeed, by Fourier trans-
form of the WF it is straightforward to return to the den-
sity matrix and to get direct information on the coher-
ence/decoherence of the system.

In particular, for a single-dimensional transport problem
along x-direction and a non-degenerate electron gas, the
WBTE reads:

LA PN
ot " m oax )0

= /dkxlvw(x, kx/ _kx)fw(x’k)/c’kyz’ t)

+/dk’fw(x,k’,t)s(k’,k) — fux, K, DAK)  (9)

Here, the phase space is formed by a single position
and three wave vector coordinates. Quantum correlations
are described by the arguments x and k, of the Wigner po-
tential V,,. Phase-breaking processes are accounted for by
the Boltzmann scattering operator with S(k, k'), the scat-
tering rate for a transition from k to K’. The term A(K) =
JdK'S(k,K) is the total out-scattering rate. The Wigner
function fw is a real quantity. Physical averages are ob-
tained according to (A) = fdkdxA(x,k)fw, where A is
a generic dynamical function in phase space. Thus, f,, re-
sembles the classical distribution function. However, in con-
trast to the latter, it allows negative values. Actually, the
only positive Wigner function is the equilibrium Maxwell-
Boltzmann distribution fyp, which is exactly the classical
limit of the Wigner function. Moreover, this is the only func-
tion which equates the two terms in the scattering operator
and thus remains unchanged by scattering.

2.3 Monte Carlo solution of the WBTE

To develop a particle approach for solving the Wigner trans-
port equation, one possibility consists in considering the
Wigner function f,, as a sum of Dirac excitations

fiCe, K, 1) = Ai(1)8(x — x; ()3 (k — ki (1)) (10)

localized in both real and reciprocal spaces. Such excita-
tions or pseudo-particles have a real-space coordinate x;, a
wave vector k;, and a magnitude A; which is called affin-
ity, as initially suggested in [14]. This latter parameter is not
necessary in semiclassical transport, because the Boltzmann
distribution function is always positive, but it is required in
order to reconstruct the Wigner function which can locally
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assume negative values. It contains the information on the
quantum state of the system.

Consistent with the Heisenberg inequalities, such exci-
tations, which we will call pseudo-particles, do not repre-
sent physical particles. They are mathematical quantities for
the solution of the WBTE. The advantage of this formula-
tion is that the evolution of these excitations follows sim-
ple equations [15]. In our “affinity” approach the quantum
term Q fw induces the continuous evolution of the pseudo-
particle affinity. Pseudo-particles behave and scatter as clas-
sical particles, except that the potential does no longer influ-
ence the wave vector but only the affinity through the quan-
tum evolution term. The wave vector can change only after a
scattering event. The initial method has been improved and
extended to study a wide range of nanodevices [16].

Alternatively, the quantum evolution term Q fuw of the
WBTE can be seen as a scattering term [17], and it can
be formally treated this way by introducing an additional
“quantum scattering” rate into the Monte Carlo scattering
process. When selected, this quantum scattering generates
pseudo-particles of positive and negative sign. Since this
process may lead to an exponential growth of the particle
number, an algorithm making use of annihilation of particles
with positive and negative sign has been proposed to obtain
convergence. Self-consistence with Poisson’s equation has
been reported using this technique [18]. In simple cases of
uniform potential problems, both “affinity” and “sign” meth-
ods are fully equivalent. In the case of the tunnelling prob-
lem analyzed below, the “affinity” method has been used,
while the evolution of the entangled state has been explored
with the particle sign method.

3 Simulations
3.1 Tunneling process

The single-barrier structure is a priori likely to generate spa-
tial quantum coherence. If a wave-packet is sent ballistically
(with no coupling to the phonon bath) onto a barrier, the re-
sulting reflected and transmitted wave-packets are fully co-
herent with each other (this is the situation of Fig. 1).

They are parts of the same wave function and, in other
words, the electron is fully delocalized over both sides of
the barrier: the electron is on the two sides of the barrier at
the same time, in a sort of “Schrodinger’s cat” state. This
situation is well observed in Fig. 1 which shows the density
matrix in the case where a ballistic Gaussian wave packet
has interacted with a tunnel barrier. The Wigner function of
the initial wave packet can be written as:

(x—xp)?

Sw(x, k) = Neiafe*(kx*ko)ztfz (11
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Fig.1 Modulus of the density matrix of a wave packet after interaction
with a tunnel barrier (a) without and (b) with coupling to a phonon
bath. The density matrix elements are expressed in nm~!

where N is a normalization constant. The initial transverse
momentum of particles is randomly selected according to
a thermal law. In the case of Fig. 1, we have chosen ko =
4% 108 m™1, xo = 30 nm, and o = 10 nm. The barrier is
centered at the position x¢c = 75 nm, its width and height
are 2 nm and 0.3 eV, respectively. The picture is taken after
130 fs. The electrons on the left and right sides of the bar-
rier are fully coherent, so high off diagonal values appear
in the density matrix, connecting both sides of the barrier.
When including phonon scattering the coherence between
the left and the right sides of the barrier appears strongly
damped. Electrons are separately localized and if interfer-
ences between electrons on the left and right sides could be
constructed, they would have low contrast.

The Wigner picture provides an insight into the reasons
of the classical localization effects. The wave packet is sub-
jected to Fourier transform, hence revealing its spectral mo-
mentum composition. The interaction with phonons then
acts on each of the components in a randomizing manner,
which eventually also destroys all quantum information. The
localization can now be explained by the fact that interaction
with the phonon environment becomes more likely, thus the
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Fig. 2 Coherence C (defined in (12)) between both sides of the tunnel
barrier as a function of time after interaction of a wave packet with the
barrier, for two initial average wave vectors ko

randomizing scattering effects more pronounced, as energy
increases. Therefore, the fastest components of a wave pack-
ets are affected the strongest leading to localization due to
classical scattering effects.

To quantify the localization of electrons on one or the
other side of the barrier due to decoherence, we define a
“coherence” between the left (L) and the right (R) side of
the barrier by:

_ J;dx [rdx|p(x, x|
fL dx+/p(x,x) fR dx'/p(x, x)

12)

This parameter compares the off-diagonal elements of the
density matrix connecting the left and right sides of the bar-
rier to the diagonal elements associated with left and right
sides. It is thus equal to unity in purely coherent conditions.
It is plotted as a function of time in Fig. 2 for two values
of the initial wave vector kq. It appears that coherence de-
creases rapidly. An electron, which tunnels through a bar-
rier can rapidly be considered as being on one side of the
barrier, but not in a coherent state between the two sides.
In more descriptive language, the “Schrodinger’s cat” state
is quickly resolved by the environment. This justifies the
“semiclassical” modeling of tunneling, which simplifies this
quantum effect in a transmission probability deduced from
the Schrodinger equation. This behaviour may also be quan-
tified by the purity of the density matrix, as commonly used
in studies of decoherence.

The purity is defined as P = Tr p2. It is a measure of the
statistic uncertainty associated with the delocalization of the
wave functions. It can be easily shown that the purity may
be also defined as [19]:
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Fig. 3 Purity P (defined in 13) between both sides of the tunnel barrier
as a function of time after interaction of a wave packet with the barrier,
for two initial average wave vectors ko

Pzzn/dx/dkfj(x,k) (13)

In the case where phonon scattering is included, the time
evolution of the purity is displayed in Fig. 3. A rapid de-
crease from the initial value of one is observed at short
times. It tends to zero with a rate depending on the initial
wave vector k.

3.2 Decoherence of entangled state

The chosen initial condition is the superposition (1) of two

—(x:tcz)2/202

Gaussian wave packages: e ' The correspond-

ing initial Wigner function
£ ky) = Ne~tambre?

(x—a)? _ (x+a)?
x (e 2 +e o7

ﬁ

+e o2 cos((kx - b)Za)) (14)

comprised by two Wigner wave packets and an oscillatory
term is shown in Fig. 4. Equilibrium is assumed in the other
two directions of the wave space, so that

0 R R 0
fw(X,k)=me kT fo(x, ky). (15)
A GaAs semiconductor with a single I" valley and scatter-
ing mechanisms given by elastic acoustic phonons and in-
elastic polar optical phonons is considered, while setting the
parameter a = 70 nm. The choice of

202 = h?/(2mkT) (16)
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Fig. 4 Entangled wave packets used as initial condition. The two
Gaussian functions of the phase space coordinates are separated by a
positive and negative values: the oscillations along k, are in accordance
with the last term in (14)

along with b = 0 gives rise to fyp(k), which minimizes
the effect of the phonons on the change in the shape of the
wave vector distribution. The reversible coherent evolution
is characterized by oscillations and negative values of the
Wigner function, which are manifestations of quantum su-
perpositions. During a coherent evolution the initial struc-
ture of the Wigner function remains intact, as shown in the
upper graphics of Fig. 5. The oscillatory term correspond-
ing to the off-diagonal elements of the density matrix is re-
sponsible for the coherence of the state, since the k distri-
butions of the other two components (in ky and k;) remain
unchanged. We present a direct observation of the loss of
coherence in the free evolution of an entangled state. The
physical model of the process of einselection is associated
with annihilation of particles with different sign, initialized
at regions with positive and negative values of the initial
Wigner function. The Boltzmann component strives to mod-
ify the shape of the solution, until obtaining the classical
equilibrium distribution, giving rise to decoherence. Scatter-
ing redistributes the momentum bringing positive and nega-
tive particles together, which causes their annihilation. The
fine structure in the oscillatory term, which is the source of
negative weights, is especially sensitive to this process. This
term is most affected by scattering as seen in Fig. 5, in the
bottom graphics. Indeed, the shape of the initial momentum
distribution,

Flke) = f dxdkydk, fu (17)

Fig. 5 Top: The coherent evolution leaves the basic structure of the
entangled wave packets in tact even after 900 fs. Bottom: Scatter-
ing mechanisms destroy the initial structure of the Wigner-function as
shown here after 300 fs

in Fig. 6 is due entirely to the oscillatory term, as the other
two components of k are distributed according to thermal
equilibrium, which is indicated by the thin line. The ini-
tial shape remains frozen during coherent evolution, while
as is deducible from the figure, scattering destroys the co-
herence in about 1 ps and forces the distribution to equilib-
rium.
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5 100fs -
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4t

fkz)[ au. |

Fig. 6 The momentum distribution of the initial condition decays to
the thermal equilibrium at a temperature 7 = 200 K in approximately
1 ps. Without scattering the initial distribution remains frozen in place

Figure 7 shows the density

n(x) = /dkxdkydszw. (18)

The coherent curve (upper graphics) exhibits pronounced
oscillations, which are suppressed in the Boltzmann curve
which localizes around the initial peaks.

The initially well balanced positive and negative contri-
butions of f,, to the density are destroyed by scattering, as
seen on the bottom graphics of Fig. 7. Another effect is that
scattering reduces the spreading of the wave packets as can
be seen in Fig. 8. These results show that scattering induces
a spatial localization and destroys coherence, thus prevent-
ing reversibility in time. Indeed the coherent wave packet
is slightly broader after 200 fs, upper graphics; with this
trend continuing so that the coherent wave packet begins
to reach beyond the simulation domain after 500 fs, bot-
tom graphics, while the wave packet experiencing scatter-
ing still exists completely within the confines of the simula-
tion.

Again the retardation of the evolution is due to the ran-
domizing effect of scattering due to phonons, which is
stronger for higher energy, thus faster, particles. The interac-
tions with phonons thus act as a kind of low pass filter with
regard to the momenta within the wave packet; dampening
especially the high “frequencies” and thus leading to slower
propagation of the overall packet.

A measure for this behaviour is the purity P, equa-
tion (13). For coherent evolution it remains 1, while the loss
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Fig. 7 Top: Initial, coherent and Boltzmann evolution after 200 fs at
200 K. Bottom: Positive and negative contributions to the density

of information in the initial state is given by its decrease.
An increase of the temperature leads to an increase of the
electron-phonon coupling and thus an accelerated drop of
purity, as depicted in Fig. 9.

The model explains the loss of coherence with the re-
distribution of the negative particles. Their effect is sup-
pressed in the sea of positive particles which dominate in
the state. The pointer states which survive the monitoring
by phonons are the two Gaussian packets. The initially pure
state evolved towards an object having a completely differ-
ent physical meaning: it is a mixed state—determined by the
probabilities of the electron to be in one or the other packets
related to the two wave functions.
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Fig. 8 The spatial broadening of the wave packet is hindered by scat-
tering processes

4 Conclusions

The decoherence effects have been studied in two very dif-
ferent quantum situations: (i) a single electron wave packet
interacting with a tunneling barrier; (ii) the entanglement of
two wave packets. In both cases, the transition from quan-
tum to semi-classical states is induced by electron-phonon
scattering. Phonons introduced redistribute the wave vectors
of the coherent physical states striving to impose the classi-
cal equilibrium distribution. The phonons introduce a time
arrow in the evolution by breaking the reversibility of the
coherent processes and cause localization. This analysis has
been implemented by using the Wigner function formalism
which offers particular advantages as: (i) a seamless transi-
tion between quantum and classical descriptions; (ii) a direct

1.0

k 200K coherent complete
X 200K coherent domain
77K complete =

purity

s"‘x 77K domain  x
200K complete
x‘w 200K domain
% 300K complete ==
300K domain &

time[ms]

Fig. 9 Evolution of purity at different temperatures. Pairs of lines are
obtained by neglecting particles which leave the simulation domain
(domain) and by a complete record of all particles (complete). The
former case may lead to an artificial indication for loss of coherence

inclusion of the scattering processes; (iii) ability to describe
general transport regimes posed by initial and boundary con-
ditions; and (iv) numerical feasibility to describe transient
processes.

Acknowledgements This work has been supported by the Austrian
Science Fund Project FWF-P21685.

References

—

Zurek, W.H.: Rev. Mod. Phys. 75(3), 715 (2003)

2. Vacchini, B., Hornberger, K.: Relaxation dynamics of a quantum
Brownian particle in an ideal gas. Eur. Phys. J. Spec. Top. 151,
59-72 (2007)

3. Halliwell, J.J.: Two derivations of the master equation of quantum
Brownian motion. J. Phys. A, Math. Theor. 40, 3067-3080 (2007)

4. Hofheinz, M., Wang, H., Ansmann, M., Bialczak, R.C., Lucero,
E., Neeley, M., O’Connell, A.D., Sank, D., Wenner, J., Martinis,
J.M., Cleland, A.N.: Synthesizing arbitrary quantum states in a
superconducting resonator. Nature 459, 546-549 (2009)

5. Ferry, D.K., Akis, R., Bird, J.P.: Einselection in action: decoher-
ence and pointer states in open quantum dots. Phys. Rev. Lett. 93,
026803 (2004)

6. Knezevic, I.: Decoherence due to contacts in ballistic nanostruc-
tures. Phys. Rev. B 77, 125301 (2008)

7. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J.W., Kupsch, J., Sta-
matescu, 1.O.: Decoherence and the Appearance of a Classical
World in Quantum Theory. Springer, Berlin (2003)

8. Pastawski, H.M., Foa Torres, L.E.F., Medina, E.: Electron-phonon
interaction and electronic decoherence in molecular conductors.
Chem. Phys. 281, 257-278 (2002)

9. Buscemi, F., Cancellieri, E., Bordone, P., Bertoni, A., Jacoboni,
C.: Electron decoherence in a semiconductor due to electron-
phonon scattering. Physica Status Solidi (c) 5, 52-55 (2008)

10. Querlioz, D., Dollfus, P.: The Wigner Monte Carlo Method for Na-
noelectronic Devices—A Particle Description of Quantum Trans-
port and Decoherence. ISTE-Wiley, New York (2010)

@ Springer



396

J Comput Electron (2013) 12:388-396

11.

12.

13.

14.

Nedjalkov, M., Selberherr, S., Ferry, D.K., Vasileska, D., Dollfus,
P., Querlioz, D., Dimov, 1., Schwaha, P.: Physical scales in the
Wigner-Boltzmann equation. Ann. Phys. 328, 220-237 (2012)
Jacoboni, C., Brunetti, R., Bordone, P., Bertoni, A.: Quantum
transport and its simulation with the Wigner-function approach.
Int. J. High Speed Electron. Syst. 11, 387-423 (2001)

Nedjalkov, M., Querlioz, D., Dollfus, P., Kosina, H.: Wigner
function approach. In: Vasileska, D., Goodnick, S. (eds.) Nano-
Electronic Devices: Semiclassical and Quantum Transport Mod-
eling, pp. 289-358. Springer, New York (2011)

Shifren, L., Ringhofer, C., Ferry, D.K.: A Wigner function-based
quantum ensemble Monte Carlo study of a resonant tunneling
diode. IEEE Trans. Electron Devices 50, 769-773 (2003)

. Querlioz, D., Saint-Martin, J., Nam Do, V., Bournel, A., Doll-

fus, P.: A study of quantum transport in end-of-roadmap DG-

@ Springer

16.

17.

18.

19.

MOSFETS using a fully self-consistent Wigner Monte Carlo ap-
proach. IEEE Trans. Nanotechnol. 5, 737-744 (2006)

Querlioz, D., Nha Nguyen, H., Saint-Martin, J., Bournel, A.,
Galdin- Retailleau, S., Dollfus, P.: Wigner-Boltzmann Monte
Carlo approach to nanodevice simulation: from quantum to semi-
classical transport. J. Comput. Electron. 8, 324-335 (2009)
Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry,
D.K.: Unified particle approach to Wigner-Boltzmann transport in
small semiconductor devices. Phys. Rev. B 70, 115319 (2004)
Sverdlov, V., Grasser, T., Kosina, H., Selberherr, S.: Scattering and
spacecharge effects in Wigner Monte Carlo simulations of sin-
gle and double barrier devices. J. Comput. Electron. §, 447-450
(2006)

Manfredi, G., Feix, M.R.: Entropy and Wigner functions. Phys.
Rev. E 62, 46654674 (2000)



	Decoherence effects in the Wigner function formalism
	Abstract
	Introduction
	Quantum mechanics in phase space
	Density matrix of entangled and mixed states
	Wigner-Boltzmann equation
	Monte Carlo solution of the WBTE

	Simulations
	Tunneling process
	Decoherence of entangled state

	Conclusions
	Acknowledgements
	References


