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Wigner quantum mechanics is reformulated in a discrete momentum space and analyzed within a

Monte Carlo approach for solving integral equations and thus associated with a particle picture.

General quantum phenomena may thereby be modeled in terms of quasi-particles involving attributes

such as drift, generation, sign, and annihilation on a phase space grid. The model is examined in an

ultimate regime, where classical and quantum dynamics become equivalent. The peculiarities of the

transport in this asymptotic regime are analyzed within simulations, benchmarking the behavior of the

Wigner function. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802931]

Classical physical quantities are presented by phase

space dynamical functions Ap, having equations of motion

determined by the Poisson bracket. Operator mechanics

associates operators Â which evolve according to the com-

mutator with the Hamiltonian. The difference between the

mean values of AP and Â may be evaluated by an inference,1

estimating how long classical and quantum evolutions stay

close, within a prescribed error. The manner in which the

commutator tends towards the Poisson bracket is explored in

the classical limit �h! 0. This, in quantum theories, widely

applied formal limit refers to the behavior of certain physical

quantities, attached to �h—in this case, these are energy and

time.

These considerations become more intuitive in the

Wigner formulation of quantum mechanics, where states and

physical observables are defined in the phase space once

more. Classical evolution is determined by the first deriva-

tive of the electric potential—the electric field, accounted for

by the Liouville part of the Boltzmann equation. In contrast,

quantum evolution is governed by the entire potential, which

is used to define the Wigner integral operator. The Taylor

expansion of the latter couples the derivatives of the poten-

tial with the powers of �h. This represents another form of the

limit �h! 0, which is survived only by the electric field. In

this case, the Wigner equation reduces to the ballistic

Boltzmann counterpart and the difference between classical

and quantum pictures is imposed by the initial state. In this

treatment, we consider coherent problems, effects from scat-

tering and statistical aspects will be regarded elsewhere. The

physical states are subsets of the much broader class of solu-

tions allowed by any of these equations. Then, a legitimate

quantum state must obey a condition related to the uncer-

tainty relation,2,3 while the classical state must be non-

negative, and is actually interpreted as initial distribution of

point like particles. This duality offers a transparent classical

process, which may be used as a reference for validation of

quantum transport simulation methods. However, this

approach has not yet been applied in the case of Wigner

transport, because the involved generalized functions

preclude any direct numerical treatment. This research aims

both to develop an asymptotic approach to the problem and

to validate a Wigner particle model under such extreme

conditions.

Wigner models of carrier transport phenomena conven-

iently utilize basic similarities between classical and quantum

notions in phase space. Alternative concepts such as Wigner

trajectories,4 quantum windows in Monte Carlo (MC) regions,5

consecutive coupling of Boltzmann, and Wigner regions6 have

been explored. However, a well established approach is still

missing, as any of the developed models meets certain numeri-

cal challenges. Deterministic methods7,8 exhibit problems with

discretization9 and can treat only single-dimensional transport,

because the efforts for matrix inversion become enormous.

The development of stochastic approaches began during

the last decade, when the phenomenological Monte Carlo

approach, hindered by the existence of negative values in the

quantum quasi-distribution, was replaced by more formal

methods. Two particle models have been derived, currently

unified by the trend to reuse major parts of the classical

transport concepts. Ensemble MC particles endowed with

affinity—an attribute carrying the value of the quantum

potential—have been shown to be an adequate approach to

single-dimensional carrier dynamics.9 A multi-dimensional

application is hindered by the enormous computational

requirements posed by the increase of the number of needed

particle states in the ensemble. The second model is a single

particle MC approach, based on the ergodicity of the system

and thus restricted to stationary transport determined by the

boundary conditions.10 When compared to the affinity

approach, it has very different attributes, related to generation

of signed particles. These reside on phase space points of gen-

eration, waiting to be consecutively evolved to the boundary.

If an evolving particle meets a resident counterpart with oppo-

site sign, both particles annihilate each other—a property

which spares the efforts to evolve them to the boundary. As the

probability for a trajectory to meet at a point is zero, this prop-

erty is approximated using a cell in a phase space grid. The last

object introduced is that of a momentum subspace grid, which

appears to be inherent to the stationary Wigner function.11
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universal model; thus, the main challenge is to identify and uti-

lize the ones, which may be unified in a particle model relevant

for general transport conditions while maintaining moderate

computational demands.

We exploit the concepts of momentum quantization,

indistinguishable particles and renormalization by annihila-

tion at consecutive time steps. Entangled with the notions of

classical trajectories, particle ensemble, particle generation,

and sign give rise to a time-dependent fully quantum trans-

port model which naturally includes both open and closed

boundary conditions along with general initial conditions.

The model is introduced in the next section by a reconsidera-

tion of the usual continuous formulation of Wigner dynamics.

It is then applied in an asymptotic approach to quantum-

classical evolution duality.

In contrast to the transport problem formulated in terms

of a density matrix qðr þ s; r � sÞ, the Wigner counterpart

may be easily formulated in a confined domain of r.12 The

definition involves the integral Fourier transform FD{} of

q over s. We maintain that a discrete transform conforms

better with the principles of quantum mechanics applied to

nano structures. Indeed, q is zero always when s is outside

the physical boundaries, while in the contacts the correlation

“heals”8 over several thermal momentum lengths, or even

already when entering the contact.13 Thus, a minimal charac-

teristic length L may be specified for the unitary transform

giving the Wigner function f(r, n, t) in terms of a discrete

momentum:

f ðn; �Þ ¼ 1

L

ðL=2

�L=2

dse�i2nDksqðs; �Þ ¼ FD qðs; �Þf g; (1)

qðs; �Þ ¼
X1

n¼�1
ei2nDksf ðn; �Þ; Dk ¼ p=L: (2)

Traditionally, the numerical aspects are presented in terms of

Dk, but this is a convenient shortcut of Dp=�h—relevant for

the physical analysis is the momentum p. The Wigner

equation

@

@t
þ �hnDk

m

@

@r

� �
f ðr; n; tÞ ¼

X
n0

Vwðr; n� n0Þf ðr; n0; tÞ; (3)

Vwðr; nÞ ¼
1

i�h
FD ðVðr þ sÞ � Vðr � sÞÞf g (4)

involves the sum over the Wigner potential Vwðn; rÞ, which

now may depend on the time.

Equation (3) is first reformulated as a Fredholm integral

equation of the second kind. The time integral is introduced by

field less Newton’s trajectories linking the solution f(r, n, t)
back in time to the two components of the free term f0 contain-

ing the initial and the boundary conditions. Then, a proper

adjoined equation is derived, which allows to express the

expectation value as a series

hAit ¼ hf0Ait þ hf0CAit þ hf0CCAit þ � � � (5)

of a generic physical quantity A, e.g., velocity or energy. The

consecutive terms in the brackets are linked by expressions

having a meaning of free flight over forwardly—in time—

parametrized trajectories. C is given by three terms having a

meaning of scattering sources

Cðr;m;m0Þ ¼ Vþw ðr;m� m0Þ � V�w ðr;m0 � mÞ þ cðrÞdm;m0

(6)

with

Vþw ¼
Vw if Vw > 0

0 otherwise
cðrÞ ¼

X1
m¼�1

Vþw ðr;mÞ
(

and V�w ðmÞ ¼ Vþw ð�mÞ. The terms in Eq. (6) have equal total

rate c, which allows for the following interpretation: after

any free flight, the trajectory forks into three: the initial tra-

jectory continues due to the Kronecker delta, and two trajec-

tories are initiated with offset of l ¼ m� m0 and of �l
around the initial momentum number.

A particle picture can be associated with the expansion

(5). Particles, distributed and initialized by a sign according

to the initial and boundary condition values, begin free flights

over Newton trajectories. With a frequency determined by c,

these particles create couples of particles at random times

t0 < t locally in r and with offset 6l in momentum number

space until reaching the evolution time t. The particle in l car-

ries the sign of the parent particle, the counterpart bears the

opposite sign. These child particles generate further couples

which also evolve until time t. Those which leave the bounda-

ries are neglected, the remaining contribute to the value of

Eq. (5) according to their sign. In this sense, contributions

from particles having the same momentum number and posi-

tion, but with opposite signs compensate each other: particle

annihilation still occurs but at the end of the evolution, at the

recording of the particles states. Due to the Markovian char-

acter of the latter, the ensemble state may be evolved at con-

secutive time steps, where the final state obtained by

recording on a phase space grid becomes the initial condition

for the next step in the evolution. The model has passed the

standard comparison with other quantum approaches, which

will be reported elsewhere.

We summarize some of the peculiarities of this method:

The momentum subspace becomes discrete, so that exact

generation-annihilation rules are specified. The standard

ensemble of enumerable particle states containing the partic-

ular position and momentum coordinates and time is

replaced by an array of signed integers associated with phase

space nodes. These integers on a grid comprise the concept

for indistinguishable particles (we note the difference with

the common statistical meaning of the phrase, where it usu-

ally indicates certain symmetry of the physical state), whose

number may grow without causing any memory problems.

Numerical discretization is needed only for the position

variable r, where the Wigner function is smooth, as is guar-

anteed by the existence of the gradient in Eq. (3).

The simulations presented in the next section explore

the compatibility of these particle attributes in the discussed

asymptotic regime.

The equivalence between ballistic Boltzmann and

Wigner evolution is established for linear potentials Ex by

the following equality:
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ð
dk0Vwð�; k � k0Þf ð�; k0Þ ¼ � eE@f ð�; kÞ

�h@k
: (7)

Quantum effects may be introduced only by the initial condi-

tion and thus are discarded by the choice f0 ¼ NdðkÞdðxÞ.
The latter indicates the involved physics as all other

initial functions are superpositions of f0. According to the

Boltzmann counterpart, the evolution corresponds to an

acceleration of N classical particles, over a common Newton

trajectory. The challenge now is to model the process within

the signed particle scheme. The electric force is incorporated

via the electric field in the Wigner potential so that no direct

acceleration is possible in this picture. The effect of accelera-

tion may be achieved only by the generation of positive and

negative particles. Unfortunately, the equality (7) reveals the

Wigner potential as a delta function derivative d0. The equal-

ity relies on the integral Fourier transform, which is formally

obtained by the limit L!1 of the discrete counterpart (1/L
becomes 1=2p) corresponding to the continuous formulation

of Eqs. (1)–(4). In this case, the classical limit ensured by the

diverging coherence length is another manifestation of the

formal limit �h! 0 giving rise to continuous momenta:

Dp ¼ p=ðL=�hÞ ! 0. The mathematical aspects of the con-

vergence towards the continuous solution and the role of �h
are explored in Ref. 14. The existence of generalized func-

tions precludes any exact numerical treatment. In particular,

the definition of the Wigner potential (4) diverges for a linear

potential in this limit.

A relevant numerical approach relies on a finite L, so

that the Wigner potential is

Vwðx; nÞ ¼ �
eEL

�hp
cosðpnÞ

n
: (8)

We analyze the impact this assumption has on any of the two

transport regimes. The Boltzmann description is influenced

by the discretization Dk ¼ p=L, which imposes cellular

automata evolution rules15 for the accelerated particles: The

probability for a transition during a time dt between the ini-

tial and the next node in field direction is proportional to the

acceleration dk ¼ eEdt=�h. The particle number N gradually

decreases with time at the initial node, while the number on

the next node increases accordingly. For a time Dt given by

the Newton law: Dk ¼ eEDt=�h, all particles are transferred

to the next node, which corresponds to the same momentum

value, which would be obtained if they were continuously

accelerated by the field.

The same process is observed when applying the quan-

tum method: in Fig. 1, the initial density at k¼ 0 gradually

decreases, while the density on the first node to the right

increases. The initial peak drops, so that for 0.52 ps their

number on the adjacent nodes becomes equal. Then, for

around 1 ps the initial N ¼ 105 particles appear on the first

node: for E ¼ 104V=m and L¼ 200 nm this time is consist-

ent with Newton’s law: Dk ¼ eEDt=�h. Particles gain momen-

tum with a time which corresponds to acceleration; however,

the latter is obtained not by the classical particle transfer, but

within the sign generation-annihilation model. Theoretical

considerations show that, according to Eq. (8) only positive

particles are generated at the first node, while only negative

particles are generated at the origin thus decreasing the ini-

tial peak.

However, there is more than this desired behavior of the

evolution process. We observe a persistent pattern of positive

and negative densities, which covers the whole domain, and

is present in all of the figures. This behavior is the price paid

for the step back from the initially continuous picture: equiv-

alence between Wigner and Boltzmann transport is guaran-

teed only when L!1. The discrete case follows quantum

rules, so that the whole system is disturbed by the violation of

the uncertainty principle in the initial condition. The oscilla-

tions initially resemble the pattern of Eq. (8) and near to the

origin increase with the evolution time above 20% of the ini-

tial peak. When the number of particles on the first node

begins to dominate, the inverse process of decrease begins.

At the end, when all particles are at the first node, the oscilla-

tions are significantly damped, Fig. 1. The pulsing of the non-

classical component of the solution can be explained by theo-

retical considerations: particles generated from the first node

according to Eq. (8) are of inverse polarity when compared to

those generated from the initial node. It is related to the offset

Dk corresponding to a switch from n to n þ1 in Eq. (8) and

thus a flipping of the sign. Thus, in a distant node X, we first

observe accumulation of particles with a certain sign due to

the initial condition, which is further compensated by the par-

ticles appearing due to the first node, which at the distant

node X, generate particles of opposite sign. The density is

closest to the classical shape at discrete points in time, show-

ing that the classical picture is approximated at consecutive

steps Dt, which tend to zero with Dk. Accordingly, the

decrease of the latter causes a decrease of the magnitude of

the oscillations as confirmed numerically in Fig. 2. However,

this unphysical solution provides a fine structure to explore

the effect of annihilation on the precision of the model. Fig. 3

shows a snapshot of the distribution at 0.9 ps obtained for

three different steps for recording. The results are in excellent

agreement, reference is the 1 � 0.9 ps curve corresponding to

the highest precision for Eq. (5), which demonstrates the reli-

ability of the method. Furthermore, the annihilation greatly

improves the computations as the particle number increases

FIG. 1. Evolution of the normalized density f(k, t). The initial, intermediate,

and final particle densities in the two adjacent peaks are outlined around the

origin by symbols. The acceleration of the initial peak is accompanied with

unphysical effects of density oscillations away from the origin.
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exponentially with the evolution time: the 3 � 0.3 ps simula-

tion involves three orders of magnitude less particles com-

pared to the reference simulation.

Finally, the method is capable to cleanly reproduce the

acceleration of the initial condition for 5 ps evolution, Fig. 4,

which is above the characteristic times of most transport

processes in nano structures.

The announced general purpose ensemble carrier trans-

port model overcomes the typical computational require-

ments for quantum simulations due to the concepts for

indistinguishable particles and annihilation. The model may

be regarded as a step towards unification between affinity

and sign approaches and has potential for extension above

single-dimensional transport. The model is both validated

and used to explore the transport regime asymptotically

approaching the quantum-classical evolution duality. The

underlying physics is a rich combination of classical and

quantum effects. The latter disappear in a limit, which is an

alternative manifestation of the fundamental bound �h! 0.

The fine structure of the asymptotic solution makes it a good

candidate for benchmarking quantum transport models in

phase space.
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FIG. 2. With the increase of the coherence length L from 200 nm to 500 nm,

the magnitude of the non-classical component of the solution decreases

along with the shortening of the oscillating period according to Dk ¼ p=L.

The evolution time is 0.5 ps.

FIG. 3. The fine structure of the density is used to explore the effect of anni-

hilation. The results from a direct simulation of the 0.9 ps evolution, a single

intermediate recording, the 2� 0:45 ps curve, and two intermediate record-

ings, the 3� 0:3 ps curve, are in excellent agreement.

FIG. 4. The method maintains a clean picture of acceleration for 5 ps keep-

ing the initial distribution intact. The position K of the peak at this time is

consistent with the position which would be reached by Boltzmann particles

accelerated according to the Newton law: K ¼ 5 ps� eE=�h:
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