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The difference between the classical and the quantum

mean values of a physical quantity associated with the

evolution of an initial state may be evaluated by an esti-

mate [1], which vanishes for up to quadratic potentials.

In this case the commutator coincides with the Poisson

bracket and the physical aspects are determined by the

initial condition only. This ultimate parity may be used

to setup benchmark experiments testing the properties of

computational approaches. In particular, in the Wigner

picture it holds:

∫
dk′Vw(k − k′)f(x, k′, t) = −

eE∂f(x, k, t)

h̄∂k
(1)

showing the equivalence of the ballistic Boltzmann and

coherent Wigner evolution for linear potentials V (x) =
Ex. The choice of an initial condition f(x, k, 0) =
Nδ(k)δ(x) discards all quantum effects, so that the evo-

lution is a simple acceleration of classical particles over

a Newton trajectory. Why has this duality not yet been

used as a reference for validation of Wigner transport

simulation methods? The reason is that according to

(1) Vw is a generalized function: Vw(k) = eE
h̄ δ′(k),

which precludes any exact numerical treatment: even

the standard, infinitely coherent in space, definition of

the Wigner potential [2] diverges. This research aims

at both, the development of an asymptotic approach

as well as a validation of our Wigner particle model

for this extreme case. The model accounts for mixed

initial and boundary conditions and entangles particle

attributes such as drift, generation and sign of the er-

godic counterpart [3] with the concepts for momentum

quantization, indistinguishable particles and annihilation

at consecutive time steps. The key parameter in this

approach is the finite coherence length L giving rise to

the quantization ∆k = π/L of the momentum subspace,

and a discrete Fourier expansion

Vw(n) =

∫ L/2

−L/2

e−in∆ks

ih̄L
∆V (x±s)ds = −

eEL

h̄πn
cos(πn)

The quantization imposes rules of cellular automata

on the Boltzmann evolution [4]: The probability for a

transition during a time dt to the next node n in field di-

rection is proportional to the acceleration dk = eEdt/h̄.

This leads to a reference process, where the number of

particles placed at the initial node gradually decreases

in favour of the corresponding increase on the next

node. Newton’s law is recovered in the limit L → ∞.

The challenge now is to emulate the same process by

generation of signed particles according to Vw(n), which

reside at a momentum grid during the evolution and

may annihilate if having: opposite sign; identical phase

space coordinates; identical evolution times. This illus-

trates their indistinguishability. Our simulations indeed

demonstrate this behaviour: Figure 1 shows the initial

peak which drops so that at 0.53ps the two adjacent

nodes contain an equal number of particles, while after

1ps the transition is complete. However, an additional

phenomenon is revealed by this evolution process: a

pattern of oscillating values appears. We associate this

with the fact that the equivalence between quantum

and classical evolution is asymptotic only. The discrete

quantum system is disturbed by the violation of the

uncertainty principle in the initial condition. Indeed,

with an increase of L the magnitude of the oscillations

decreases, Figure 2. Another interesting phenomenon is

the pulsing of the pattern in time: during a transition the

oscillations are much higher than at its end, as if the

solution tends to the classical shape at discrete points in

time, Figure 1 and Figure 3. For E = 104V/m and L =
200nm these instants are consistent with Newton’s law:

∆k = eE∆t/h̄. It also validates the robust behaviour

of our technique: the 5ps solution is obtained without

any distortion due to annihilation. Figure 4 shows the

dramatic increase of computational effort with increasing

evolution time and the importance of annihilation to keep

particle numbers under control. The fine structure and

asymptotic behaviour of the analysed quantum process

makes it an ideal candidate for benchmark simulations.
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Fig. 1. The effect of the accelerating force is replaced by the Wigner

potential with generation of positive and negative particles which

reside on the grid in momentum space. The decrease of the initial

peak is entirely due to the generation of negative particles at the

zero node. These annihilate with the positive counterparts leading

to a decrease of the initial condition. On the next node to the right

positive particles are generated. The net effect is as in the cellular

automata reference process. The transition of the peak between two

neighbouring nodes is accompanied by increased oscillations, which

are subside once the transition is complete.
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Fig. 2. An increase of the coherence length reduces the magnitude

of the oscillations, demonstrating the expected asymptotic behaviour.

The corresponding decrease of ∆k reflects on the time required for

half transfer, according to Newton’s law, by reducing it 4 times.

ACKNOWLEDGEMENT

This work has been supported by the Austrian

Science Fund Project FWF-P21685-N22, the project

EC AComIn (FP7-REGPOT-2012-2013-1) and Bulgarian

NSF Grants DMU 03/61 and DTK 02/44/2009.

k [m−1]

f
(k
,t
)

0 · 10−12s
2 · 10−12s
5 · 10−12s

1.0

0.8

0.6

0.4

0.2

0.0

−0.2

−1 · 108 0 1 · 108

Fig. 3. The initial peak moves robustly for 5ps demonstrating the

lack of any distortion due to the annihilation of particles. Points in

time corresponding to Newton’s law have much lower oscillations.
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Fig. 4. An increase of the time step dramatically increases the

number of generated particles as can be seen by comparing the

number of generated particles for 9 · 10−13s with 3× 3 · 10
−13s.
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