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Chapter 22

Monte Carlo Investigations of
Electron Decoherence due to Phonons
Philipp Schwaha, Mihail Nedjalkov, Siegfried Selberherr, and Ivan Dimov

Abstract. We investigate alternative Monte Carlo algorithms for simulation of the decoher-
ence of entangled electron states due to scattering by phonons. We begin with a weighted
single particle approach, which requires an estimator encompassing all the time steps to be
held in memory. A second algorithm is obtained by synchronously evolving an ensemble of
all particles together. While these algorithms are identical from a theoretical point of view,
their implementation and run-time behavior differ significantly. A third algorithm exploits the
idea of indistinguishable particles which condenses the information connected to particle lo-
cation by using phase space cells. An increased number of particles can be considered in this
way without exceeding memory constraints. However, an additional source of error arises due
to numerical scattering — a consequence of consecutive averaging in the phase space cells. An
estimate for the viability of this procedure is provided by a comparison with results obtained
from the previous algorithms. Furthermore, the influence of the size of the phase space cells
is investigated.
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22.1 Introduction

Quantum computers provide an alternative to the current computation devices based
on classical charge transport. They rely on fundamental physical processes such as
superposition, entanglement, uncertainty, and interference. The research on quan-
tum computing is mainly concerned with the possible speed-up, quantum complexity
bounds, and construction of optimal quantum algorithms [1]. The basic unit of quan-
tum information is the qubit, upon which logical operations act, and which are pro-
vided by quantum gates. The representation of a qubit can make use of basis quantum
states. For example, for a system comprised of two states |0) and |1) any normalized
superposition

¥) = «[0) + Bl1) (22.1)
is a legitimate qubit. While at first glance this superposition seems to closely resemble
the classical case, there is the key difference that whereas a classical system can be in
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exactly one particular state, a quantum computer consisting of n qubits can be in an
arbitrary superposition of up to 2" different states simultaneously. The conservation of
the quantum nature of a state as described by Equation (22.1) is paramount for quantum
computers. This restricts the describability of the evolution by unitary automorphisms.
To clarify the difference we recall that expectation values (A4) of physical quantities
A presented by a Hermitian operator A are obtained by the trace operation:

(4) =Tr(Ap) = ) Gildpliy:  Tr(p)=1. (22.2)
i=0,1

The density operator p is defined with the help of (22.1):
p= 1) (| = lal?0){0] + IBPI1)(1] + ap*[0) (1] + a*B[1){0] (22.3)

The two states |0) and |1), can be discriminated from each other by a detector
due to their orthogonality. The physical quantity “expectation value for the first ba-
sis state” in (22.1), for example, expressed by the operator po = |0)(0]|, evaluates to
|a|? using the trace operation, while for the second state it yields |8|2. The relation
|a|? 4+ |B]?> = 1 allows to interpret these values as probabilities, which implies the
normalization of (22.1) and ensures the last equality in (22.2). Thus, the first two terms
represent a classical state comprised by expectation probabilities, while the rest of the
terms in (22.3) reflect the coherence of the state by enabling interference effects.

A deviation from a coherent evolution due to interactions with the environment may
turn an initially quantum system into a classical one, a process known as decoherence.
As the latter destroys the coherence terms, it is the biggest issue for the realization
and use of quantum computers and quantum devices in general. Many of the features
of classicality are actually induced in quantum systems by their environment [2]. The
evolution of an initial electron wave packet subject to scattering does not follow the
natural process of spreading, as in the case under purely coherent evolution; the cor-
responding density matrix shrinks around the line x = x’, revealing a classical lo-
calization [3]. Decoherence of semiconductor electrons due to scattering by phonons
and impurities was first demonstrated by Monte Carlo simulations of the evolution
of a single wave packet [4]. Recently the decoherent evolution of an entangled, ac-
cording to (22.1), state, comprised by two Gaussian wave packages e~ +a)?/202 yibx
has been studied in terms of a Wigner distribution f, [S]. The corresponding initial
function

_ (x—a)? _(x+a)2

x2
FO(x, ky) = Ne—(kx=b)%0? (e o2 4+e o2 +e o2cos ((ky — b)2a))
(22.4)

given by two packets and an oscillatory term is shown in Figure 22.1. Equilibrium is
assumed in the other two directions of the wave vector space, so that
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Figure 22.1. Entangled wave packets used as initial condition.

multiplies (22.4) to give the initial condition £,0(x,k) in the free evolution equation

(a i h""a) fulrkt) = [ A fulr . 0SW 0~ fulrDAM) 225)

ot m 0x

Phase-breaking processes are introduced by the Boltzmann scattering operator S (k,k’),
the rate for a transition from k to k’. A(k) = [ dk’S(k.k) is the total out-scattering
rate. The choice of 202 = #2/(2mkT) and b = 0 gives rise to a Maxwell-Boltzmann
equilibrium distribution, which minimizes the effect of the phonons on the change in
the shape of the wave vector distribution. Figure 22.2 shows, how scattering effec-
tively destroys the oscillatory term, causing a collapse of f, towards equilibrium.

These investigations pose requirements for relevant particle algorithms, capable of
resolving the fine structure of f,. We present three Monte Carlo algorithms for solving
(22.5) and compare their numerical peculiarities.

22.2 The Algorithms

The comparison conveniently uses the fact that without scattering the initial momen-
tum distribution defined by

Flky) = / dxdkydks fo (x. ke ky. k2), (22.6)
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Figure 22.2. The momentum distribution, f(ky), (22.6), decays due to the scattering by
phonons from the initial condition to the thermal equilibrium in approximately lps, 7' =
300K.

remains frozen in the wave vector space. The algorithms utilize estimators defined on
a grid in the phase space. These estimators are updated by the particles in their vicinity.
Each of the particles is initialized at a phase space position corresponding to the spatial
coordinate and momentum provided by the initial condition fy. The particle’s weight
is set according to the value of fy in the initialization point and can thus be positive
or negative. The particles are then evolved along Newton trajectories according to the
flow defined by the system’s Hamiltonian.

As time is evolved by time step increments, the weight is recorded at the estimators
closest to the position to which the particle has evolved.

22.2.1 Algorithm A

Algorithm A utilizes the same grid structure as used for the estimators to choose the
initial phase space position of the generated particles. The state of the particle is com-
prised by the position and momentum coordinates and its weight. Each particle is then
evolved through all of the time steps individually and the weights are recorded. This
requires that the estimators for all time steps must be held in memory during the whole
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Figure 22.3. Schematic illustrations of Algorithms A (left) and B (right). Algorithm A needs
to maintain the estimators for all time steps within memory, whereas Algorithm B must store
the ensemble of particles and a single estimator for the current time step.

simulation. The amount of required memory can be estimated by

sizeof (estimator grid) x (# time steps) + sizeof (particle state)

22.2.2 Algorithm B

Algorithm B utilizes the same grid structure for the spawning of particles as Algo-
rithm A, but instead of evolving the particles individually, they are evolved as an en-
semble. Technically, this only requires the interchange of the order in which time and
particles are iterated. In contrast to Algorithm A, only the estimator for a single time
step must be held in memory. This, however, comes at the price that the entire ensem-
ble of particles needs to be held. The amount of required memory can be estimated by

sizeof (particle state) x (# particles) + sizeof (estimator grid)

22.2.3 Algorithm C

In contrast to Algorithms A and B, Algorithm C abandons the use of identical grids
for the creation of particles as well as estimators. The algorithm exploits the idea of
indistinguishable particles within a grid cell. The particle state after any time step is
now presented by the number associated to the grid cell, and the weight. At the be-
ginning of a time step the particle starting position is chosen using a uniform random
distribution within the cell. The evolution is then performed as in Algorithm B, as
well as the recording of estimates on a grid. After the evolution, at the end of the time
step, the particle is absorbed by the end grid cell, where the weights of the particles
are recorded. The procedure of randomization of the initial coordinates is addressed as
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Figure 22.4. Algorithm C uses distinct cells (delimited by dotted lines) to hold the particles.
The size of these cells is independent of the estimator grid. Two different realizations of a cell
containing four particles are shown.

numerical scattering. In contrast to phonon scattering it is nonlocal in position, and no
conservation rules are applied. The effect of the numerical scattering must disappear
in the liming case of vanishing cell volumes, since then Algorithm C tends towards
the procedure of Algorithm B, as the randomization is suppressed and individual po-
sitions are tracked once more. The advantage of Algorithm C is that particle position
and momenta are not stored, as replaced by the number of the cell. This algorithm is
very convenient for Wigner particle generation-annihilation schemes [6], where huge
numbers of particles may appear in the simulations. Moreover, the algorithm can be
generalized to store the total weight in the cell, which will be discussed elsewhere. In
the following we investigate the effect of the numerical scattering as a grid size de-
pending source of decoherence. The amount of required memory can be estimated by

(# cells) x sizeof (weight) + sizeof (particle state) + sizeof (estimator grid)

Figure 22.4 shows the cell structure as well as the estimator grid. Each cell records
the individual weights of the particles within, while the positions within the cell are
chosen at random. Thus the two configurations shown in Figure 22.4 are both identical
with regard to the cells. Since the estimator grid can be adjusted independently of the
cell structure, the estimators distinguish between the two configurations.

Simulations are presented, where Algorithms A and Algorithms B result in a perfect
match and are used as reference A/B. The grid consists of 4000 points for the x axis
and 3000 points for the k axis. Thus, using the previously given formulae for 100 time
steps and a particle state requiring 32 Bytes, the memory requirements for Algorithm A
can be determined to be 8.94 GiB, while Algorithm B requires 139.14 MiB. The finest
cell structure, comprised of 12 x 10° cells, used in deployments of Algorithm C, con-
sumes 183.11 MiB of memory, while the coarsest, corresponding to 12 x 10 cells,
only requires 92.47 MiB. It can be seen that for 100 time steps Algorithm A requires
excessive amounts of memory, when compared to the other algorithms, especially as
Algorithm B produces matching results. The variation of the cell sizes allows an ad-
justment of the memory requirements of Algorithm C.

Figure 22.6 demonstrates the effect the cell size has on the reconstruction of the
densities after a 10 fs time step. The main peaks are well resolved without regard for
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Figure 22.5. With phonon scattering Algorithm C manages to reproduce the results of Algo-
rithms A/B as seen here after 300fs. This indicates that the effects of numerical scattering due
to cell size are suppressed by the physical scattering due to phonons.

the cell’s sizes. However, the quantum region in between the center of mass show
spurious fluctuations in the densities, which are nonnegative quantities.

Figure 22.7 shows the distribution of the wave vectors after 700 fs of coherent evolu-
tion, including results for different sizes of the cells used in Algorithm C. For small cell
sizes, Algorithm C correctly reproduces the frozen wave vector distribution of Algo-
rithm A and Algorithm B. As the cell size increases by a factor of four, a spurious spike
centred at 0 is encountered, while the remainder still adequately follows the reference
results. A volume 25 times larger than the initial cells ensures a well-pronounced ef-
fect of decoherence due to the numerical scattering, similar to that caused by phonons
in Figure 22.2.

Inclusion of scattering due to phonons in the algorithms leads to the results shown
in Figure 22.5. Again, all algorithms are generally capable of reproducing the refer-
ence results. Phonon scattering dominates the evolution, overriding the effect of the
numerical counterpart. This is important, since it allows for larger cell tolerance in
mixed mode quantum simulations.

We have presented different Monte Carlo algorithm to compute the results of coher-
ent and decoherent evolution of a quantum system. It has been found that a cell-based
algorithm is suitable for these calculations, provided that the cells are chosen suffi-
ciently fine in the coherent case. In mixed mode transport physical scattering domi-
nates numerical effects, which allows a tolerance in the choice of cell volumes.
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Figure 22.6. Densities n(x) = [ dk f,, (x,k) for different cell sizes after a single 10fs time
step show spurious oscillations in the central quantum region, which is given in more detail in
the central inset.
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Figure 22.7. The coherent momentum distribution must remain frozen in time, as correctly

shown by Algorithms A/B after 700fs evolution. The numerical scattering in Algorithm C
causes decoherence similar to that of phonons with increasing cell size.
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