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Abstract. A Monte Carlo analysis of the evolution of an electron inter-
acting with phonons is presented in terms of a Wigner function. The ini-
tial electron state is constructed by a superposition of two wave packets
and a pronounced interference term. The results show that phonons ef-
fectively destroy the interference term. The initial coherence in wave vec-
tor distribution is pushed towards the equilibrium distribution. Phonons
hinder the natural spread of the density with time and advance it to-
wards a classical localization. The decoherence effect due to phonons,
which brings about the transition from a quantum to a classical state, is
demonstrated by the purity of the state, which decreases from its initial
value of 1, with a rate depending on the lattice temperature.

1 Introduction

Quantum computational and communication processes rely on the fundamental
physical notions of superposition, entanglement, uncertainty, and interference.
The idea for such processes is related to the fundamental physical limits of
computation, which are foreseeable due to the saturation in down-scaling the
feature sizes of transistors, the basic elements of today’s computing engines.
Today, features are already characterized by the nanometre scale, where few
tens of atom layers represent the active region of devices. As the physical laws
at such scale are inherently quantum mechanical in nature, the idea for quantum
computations arises in a natural way. The research on quantum computing is
mainly concerned with the possible speed-up, quantum complexity bounds, and
construction of optimal quantum algorithms [IJ.

The foundations for quantum algorithms rest on the basic quantum units of
information (qubits) and the basic logical manipulations provided by quantum
gates. The qubit is a quantum state which may be conveniently presented by
the states 0 or 1 of the classical bit forming the basis |0) |1). Any normalized
superposition

[¥) = a|0) + 5[1) (1)
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of such states is a legitimate qubit. A single classical register can store the states
only one at a time, while the quantum counterpart stores superpositions of them.
In general, a quantum computer with n qubits can be in an arbitrary superposi-
tion of up to 2™ different states simultaneously, whereas a normal computer can
only be in one of these 2™ states at any given time. The difficult task, however,
is to retrieve this information efficiently. The complex numbers a and § can
only be measured statistically, which is related to the very nature of quantum
mechanics as will be seen below. The property (d) also gives rise to quantum
teleportation, since the states can be highly non-local, and to quantum cryp-
tography. In quantum communication it is easy to detect, if the state has been
subject to undesired observation, since measurements disturb quantum states,
due to the entanglement of |¢) with the states of the detector. The realizations
of all these novel and fascinating scientific ideas rely on the condition that ()
remains coherent, i.e. is a subject of unitary evolution, which is equivalent to
say ‘remains quantum’, since measurements and processes of interaction with
the environment try to turn the quantum system into a classical one, a process
known as decoherence. To clarify the difference we recall that expectation values
(A) of physical quantities A, presented by a Hermitian operator A are obtained
by the trace operation:

(A) =Tr(Ap) = 3 _ GlApliy;  Tr(p) =1. (2)

The density operator j is defined with the help of (I):
p = )Wl = lal?0){0] + [B7[1){1] + aB*|0){1] + o B[1) (0] ®3)

The physical quantity ‘expectation value for the first basis state’ in (), for
example, expressed by the operator pg = |0)(0|, evaluates to |a|? using the trace
operation, while for the second state it yields |3|2. The relation |a|? + []* = 1
allows to interpret these values as probabilities, which implies the normalization
of () and ensures the last equality in (2]).

In order to measure quantities we need to prepare a detector which discrim-
inates states |0) from |1) by virtue of their orthogonality. There are two pecu-
liarities of this process. The measurement disturbs the superposition state ()
by leaving it in the measured state. The probability of finding the system in the
alternative state after the measurement is zero. Moreover, the last two terms
in (@) remain unobservable for such a detector. However, they can be observed
by other kind of detectors and actually reveal the quantum character (d): they
account for the superposition of the amplitudes which lead to interference effects.

If these interference effects are neglected, the density operator p reduces to
per = |a|*po + |8)?p1. This density operator again provides the values |a|? and
|3]2 for the basis states, however, it corresponds to an entirely different set-up
of the system. The latter measures the register by generating either the state
0 with a probability |a|?, or the complementary state with the complementary
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Fig. 1. Entangled wave packets used as initial condition

probability. The collapse of () into one of the two possible basis states as a result
of a measurement gives rise to the same p.|, which is a return to the principles of
the classical computer. Accordingly, p. can be called classical density operator.

Decoherence destroys the unitary evolution of the coherent state and is thus
the biggest enemy of an effective practical realization of the aforementioned
ideas. The system interacts with the environment so that system and environ-
ment states entangle into a common, usually macroscopic state. The system state
now is obtained by applying a trace on the additional variables, which precludes
certain correlations. The theory of decoherence addresses the manner in which
some quantum systems become classical due to such entanglement with the en-
vironment. The latter monitors certain observables in the system, destroying
coherence between the states corresponding to their eigenvalues. Only preferred
states survive consecutive ‘measurements’ by the environment as in the above
example. The remainder of states which actually comprises a major part of the
Hilbert space is eliminated. Many of the features of classicality are actually in-
duced in quantum systems by their environment [2]. The role of scattering has
been intensively studied by different models describing quantum Brownian mo-
tion. Peculiar for the equation governing the evolution of the density matrix in
the spatial coordinate representation (z|p|a’) is a term giving rise to an expo-
nential damping in time with a rate A of the off-diagonal elements (z # z').
Thus the initial wave packet of an electron does not follow the natural process
of spreading due to the coherent evolution, but shrinks around the line z = 2’
revealing a classical localization [3].

Recently the problem has been reformulated in phase space giving rise to
a Wigner equation with a Fokker-Planck term describing the diffusion in the
phase space [4]. The analysis of the equation provides an alternative interpre-
tation of the process of decoherence in phase space. Quantum coherence effects
as a rule give rise to rapid oscillations of the Wigner function. The diffusion
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Fig. 2. Left: The coherent evolution leaves the basic structure of the entangled wave
packets intact even after 900fs. Right: Scattering mechanisms destroy the initial struc-
ture of the Wigner-function as shown here after 300fs.
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Fig. 3. The momentum distribution of the initial condition decays to at a temperature
T = 200K the thermal equilibrium in approximately 1ps. Without scattering the initial
distribution remains frozen in place.
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Fig. 4. Left: Initial, coherent and Boltzmann evolution after 200fs at 200K. Right:
Positive and negative contributions to the density.

term destroys these oscillations thus effectively suppressing quantum coherence
effects. Furthermore, this model has been compared with the Wigner-Boltzmann
equation showing that the latter reduces to the former provided that the wave
vector of the lattice vibrations becomes much smaller than the electron coun-
terpart [4]. It follows that decoherence effects can definitely be expected as a
result of the scattering by phonons. These effects have been well demonstrated
by Monte Carlo simulations of the evolution of a single wave packet [4].

We utilize Monte Carlo simulations for analysis of the decoherence caused
by the phonon scattering on the evolution of the Wigner function of two wave
packets which initially superimpose into a state in the form of ([Il). We employ
a standard weighted Monte Carlo approach which cannot be discussed further
due to space constraints. The main indicator is the purity of the state, which
decreases from its initial value of 1, with a speed depending on the lattice tem-
perature. The Wigner-Boltzmann model is introduced in the next section. Simu-
lation results and their analysis via a comparison with the coherent evolution are
presented in the last section. The results show that phonons effectively destroy
the interference term. The initial coherence in wave vector distribution is pushed
towards the equilibrium distribution. Phonons hinder the natural spread of the
density with time and advance the system towards a classical localization.

2  Wigner-Boltzmann Equation

The Wigner picture provides a unitary equivalent to the rigorous density matrix
description of quantum mechanics, and can account for interaction with phonons
via the following evolution equation:

(8 hkyx O

_ / o ’
ot m 833) fw(z, k,t) = /dkx Vi@, bx — k) fo (2, kS, Kyzs ) (4)

+ /dk’fw(x7k’,t)5(k’7k) — fw(z, k, t)A(k)
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Here, the phase space is formed by a single position and three wave vector
coordinates. Quantum correlations are described by the arguments z and ky
of the Wigner potential V;,. Phase-breaking processes are accounted for by the
Boltzmann scattering operator with S(k, k'), the scattering rate for a transition
from k to k’. A(k) = [dk’S(k.X’) is the total out-scattering rate. The Wigner
function fy, is a real quantity. Physical averages are obtained according to (A) =
[ dkdxA(z, k) fw, where A is a generic dynamical function in phase space. Thus,
fw resembles the classical distribution function. However, in contrast to the
latter, it allows negative values. Actually, the only positive Wigner function is
the equilibrium Maxwell-Boltzmann distribution fyg. Moreover, this is the only
function which equates the two terms in the scattering operator and thus remains
unchanged by scattering.

In the following, we consider the case without electric potential, so that the V4,
term disappears. At first glance (@) reduces to the classical field less Boltzmann
equation in this particular case. This, however, is not true, since the classifica-
tion of the equation depends on the initial condition. If it is non-negative and
normalized to unity, this is indeed a legitimate classical distribution function.
Alternatively, a phase space function f2 may be chosen, which corresponds to a
fully coherent initial system. In this case the uncertainty relation is manifested
by the shape of the function: the shape is such that the density matrix (z|p|z’)
obtained from the function must be a product of the type 1 (x)y(z’) where ¢ is a
quantum state function [5]. Then equation (@) describes the evolution of fO due
to processes of scattering. In the next section we demonstrate that this evolu-
tion transforms fO towards a classical distribution by destroying all incorporated
coherence effects.
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Fig. 5. The spatial broadening of the wave packet is hindered by scattering processes.
The coherent wave packet is slightly broader after 200fs (left hand side); with this trend
continuing so that the coherent wave packet begins to reach beyond the simulation
domain after 500fs, while the wave packet experiencing scattering still exists completely
within the confines of the simulation.
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3 Simulations and Analysis

The chosen initial condition is the superposition () of two Gaussian wave pack-
—(zta)? . . .
ages: e 202 €% The corresponding initial Wigner function

_ (z—a)? _ (z+a)?

22
Fo(@ k) = Nem (=m0 o= 7oi® o™ "0bT om0 cos ((ky — )20) | (5)

comprised by two Wigner wave packets and oscillatory term is shown in Figure[dl
Equilibriugn iQS as{zsumed in the other two directions of the wave space, so that
QW?,fkTe_n PEA multiplies (&) to give fO(x,k). A GaAs semiconductor with
a single I" valley and scattering mechanisms given by elastic acoustic phonons
and inelastic polar optical phonons is considered, while setting the parameter
a = 70nm. The choice of 202 = 2722kT along with b = 0 gives rise to fup(k),
which minimizes the effect of the phonons on the change in the shape of the
wave vector distribution. The SI units [m], [m~!] and [s] are used.

During a coherent evolution the initial structure of the Wigner function re-
mains intact, as shown in the left hand side of Figure Pl The oscillatory term
corresponding to the off-diagonal elements of the density matrix is responsible for
the coherence of the state, since the k distributions of the other two components
(in ky and k,) remain unchanged. Thus the oscillatory term is most affected by
scattering as seen on the right hand side of Figure 2l Indeed, the shape of the
initial momentum distribution, f(kx) = [ dxdkydk,fy, in Figure Bl is due en-
tirely to the oscillatory term, as the other two components of k are distributed
according to thermal equilibrium, which is indicated by the thin line. The initial
shape remains frozen during coherent evolution, while as it is deducible from the
figure, scattering destroys the coherence in about 1ps and forces the distribution
to equilibrium.

FigureMshows the density n(x) = [ dkxdkydk, fi. The coherent curve exhibits
pronounced oscillations, which are being suppressed in the Boltzmann curve
which localizes around the initial peaks. The initially well balanced positive
and negative contributions of fy, to the density are destroyed by scattering, as
seen on the right hand side of Figure @ Another effect is that scattering tries
to reduce the spreading of the wave packets as can be observed in Figure Bl
These results show that scattering induces a spatial localization and destroys
coherence, thus preventing reversibility in time. A measure for this behaviour is
the purity p = f dzxdkydkydk, fvgv For coherent evolution it remains 1 while the
loss of information in the initial state is given by its decrease. An increase of
the temperature leads to increase of the electron-phonon coupling and thus an
accelerated drop of purity, as depicted in Figure [@l

It is concluded that phonons are an important cause of decoherence. The tran-
sition from a quantum to a classical electron state occurs at a picosecond time
scale, which acts as a limit for the speed of operation of future semiconductor
quantum computers.
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Fig. 6. Evolution of purity at different temperatures. Pairs of lines are obtained by
neglecting particles which leave the simulation domain (domain) and by a complete
record of all particles (complete). The former case may lead to an artificial indication
for loss of coherence.
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