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Abstract—A relation called scaling theorem is formu-

lated, which estimates how physical scales determine the

choice between classical and quantum transport regimes.

I. INTRODUCTION

The Wigner-Boltzmann (WB) equation provides a

relevant physical model for a variety of transport condi-

tions characterizing modern semiconducting nanostruc-

tures [1]. It is defined by two operators which, as implied

by the name, impose quantum-coherent or scattering

dominated evolution. While the former is manifested by

oscillations in the solution due to quantum superposi-

tions, the second strives towards classical equilibrium

causing decoherence and irreversibility. Which of these

regimes will prevail, depends on the physical scales

whose role is investigated here.

II. PHYSICAL SCALES

The physical system considered consists of an electron

interacting with a semiconductor device potential V (R)
and a sea of phonons with wave vector Q and energy

~ωQ and coupling F̃ (Q), which define the Hamiltonian

of the electron-phonon system:

H = − ~
2

2m
∇R + V (R) +

∑

Q

b†QbQ~ωQ

+ i
∑

Q

F̃ (Q)(bQeiQR̂ − b†Qe−iQR̂) (1)

The system is characterized by the scales for length

L and energy V0, which further determine the scales

for time T0 =
√m

V 0
L and momentum P0 = ToVo/L.

They are used to express the Hamiltonian in terms of

the dimensionless quantities:

R = Lr, Q =
1

L
q, V (R) = ηV0v(r),

~ωQ = αV0Ωq, F̃ (Q) = βV0F (q), (2)

defining the strength parameters η, α, β, as well as the

dimensionless parameter ǫ = ~

ToV0
used to obtain a

hierarchy of important notions.

A. Coherent Evolution

We first consider the coherent case. (i) The dimen-

sionless Schrödinger equation (SE) is derived, along

with an estimate called Egorov’s theorem [2]: the mean

values corresponding to classical (Poisson bracket) and

quantum (commutator) evolution for time t of a given

observable differ by O(ǫ2t); (ii) The result can then be

considered in the phase space. A dimensionless Wigner

theory can be developed. The most general formulation

of the Wigner function introduces another arbitrary pa-

rameter ǫ′ as follows:

fw(r,p, t) =
1

(2πǫ)3

∫

dr′e−ipr′/ǫ′ρǫt(r+
r′

2
, r− r′

2
);

(3)

where ρǫt is the density matrix. The value of ǫ′ can be

fixed by requesting some properties of the function fw:
it is natural to wish, if possible, to have a function (3)

which recovers the classical way of obtaining averages.

Calculations show that this is possible, and give rise

to the condition ǫ′ = ǫ. In this way a dimensionless

Wigner theory may be developed, where ǫ replaces ~ in

the standard formulas [3]. (iii) It is then shown that, if

ǫ decreases, the Wigner evolution becomes closer to a

ballistic Liouville evolution fL as |fw − fL| < O(ǫ2t).

B. WB Evolution and Scaling Theorem

These ideas are further pursued to derive a dimension-

less WB equation in terms of ǫ, η, α, β:

Lfw =

∫

dp′
(

ηvwfw + β2Bfw
)

(4)

where vw is the Wigner potential corresponding to (3),

and B is the Boltzmann collision operator. The following

notion, called scaling theorem is formulated.

AN INCREASE OF THE ELECTRON-PHONON COU-

PLING BY A FACTOR β′ CAUSES A DECREASE OF THE

STRENGTH PARAMETERS AS:

ǫ′ = ǫ/
√

β′, η′ = η/β′, α′ = α/β′. (5)
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III. EFFECTS DUE TO SCATTERING

A. Effects of Decoherence

The scaling theorem shows that there are two mecha-

nisms which cause in parallel decoherence of the electron

system. The first one could be expected from the form of

the Hamiltonian (1) and the linearity of the Schrödinger

equation: an increase of the phonon coupling is equiva-

lent to a relative decrease of the defined in (2) strength

parameters η and α.

The existence of a second mechanism shows that the

transition towards classical transport is faster than the

transition caused by just a linear decrease of the quantum

component. This second mechanism is related to the

decrease of ǫ in (5): according to (iii) the reduction of

ǫ renders the quantum evolution closer to the classical

counterpart. This aspect of the scaling theorem elucidates

the heuristic picture of a ’scattering-induced reduction of

the coherence length’.
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Fig. 1. Initial densities in the phase space X,K of the genuine and

primed systems, arbitrary units.

The destructive effect of the scattering on the quantum

behavior has been associated with the picture of electrons

which carry the information about the electric potential

during their free flight. Without scattering the flight

lasts forever, so that all spatial points are correlated.

Alternatively the distance between the correlated points

decreases with the increase of the scattering rates, as they

give rise to shorter flights.

This model is in the following provided with a math-

ematical foundation linked to the decrease of the effect

of higher order derivatives of the Wigner potential: in

the limit ǫ → 0 only the local electric field survives. An

analysis of the Wigner potential term in (4) shows that

the specific way of this reduction is related to the es-

tablishment of the delta function from the exponent: the

contributions to the integral from regions away from the

local position r are canceled due to the rapid oscillations

of the exponent when ǫ → 0. The relationship between

the strength parameters adds to this an insight about the

physical factors affecting the limit.

B. Evolution Classes

The scaling theorem determines classes of physical

problems with equivalent numerical aspects. Processes

with very different initial conditions, momenta, electron-

phonon coupling, phonon energies, and local evolution

time may have equivalent evolution provided that these

physical quantities are properly scaled. The existence of

such classes of physically different, but mathematically

equivalent problems is demonstrated by considering the

evolution of entangled electron states.
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Fig. 2. Initial momenta of the genuine and the primed systems. The

third system has the same initial condition as the primed counterpart.

The underlying experiment corresponds to an electron

system initialized by superposition of two Gaussian wave

packets e−(X±X0)2/2σ2

eiK0x giving rise to the following

initial Wigner function:

f0(X,Kx) = Ne−(Kx−K0)2σ2

(

e−
(X−X0)2

σ2 + (6)

e−
(X+X0)2

σ2 + e−
X2

σ2 cos ((Kx −K0)2X0)

)

This initial Wigner function follows a free evolution,

where only phonons interact with the electron state.

Phonons cause decoherence by effectively destroying the

well pronounced oscillatory term on the last line of (6)
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Fig. 3. Scaled densities in arbitrary units after T = 210fs (T ′
≃

150fs.) evolution time of the original (primed and third) system.

during the process of evolution. The initially entangled

state evolves towards an object having completely dif-

ferent physical meaning: it is a mixed state, determined

by the probabilities of the electron to be in one or

the other packets related to the two wave functions.

Equilibrium is assumed in the other two directions of the

wave space, so that ~
2

2πmkT e
−

~
2(K′2

y+K′2
z)

2mkT multiplies (6) to

give f0
w(X,K). A GaAs semiconductor with a single

Γ valley and scattering mechanisms given by elastic

acoustic phonons and inelastic polar optical phonons

is considered, X0 = 70nm, the temperature is 200K.

A choice of 2σ2 = ~
2/(2mkT ) along with K0 = 0

gives rise to the Maxwell-Boltzmann distribution, which

minimizes the effect of the phonons on the change in the

envelope of the wave vector distribution.

Three experiments with different physical settings are

carried out The strength parameters of the two of them,

called genuine and primed systems are linked by the

scaling theorem, while in the third one, only the phonon

energy is intentionally modified for comparison. Thus,

the third state has the same initial setup as the primed

one. The parameters are scaled as follows:

ǫ′ = ǫ/
√

β′, α′ = α/β′, T ′
0 = T0/

√

β′,

and the wave vector scale is

K ′
o = K0

√

β′, where K0 = 1/ǫL.

in the case of β′ = 2. The two experiments have very

different physical characteristics in terms of electron-

phonon coupling, phonon energies, and initial distribu-

tions φ(X,K) and φ(X ′,K ′) = φ(X,
√
β′K). Figure 1

and Figure 2 show the initial distribution of the densities
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Fig. 4. Scaled momenta in arbitrary units after T = 210fs (T ′
≃

150fs.) evolution time of the original (primed and third) system.

and momenta of the genuine and primed electron states.

However, according to (5) they correspond to one and the

same numerical task. Figure 3 and Figure 4 show densi-

ties and momenta of the three systems after T = 210fs
of the genuine system, corresponding to T ′ ≃ 150fs.
of the primed one. The scaled curves fit well within the

stochastic noise, the latter showing that they correspond

to entirely different stochastic processes which give rise

to the same distribution of the mean values. The third

system, defined by an inconsistent scaling of the phonon

energy α′ = α/
√
β′, shows a different behavior after the

same evolution of 150fs, demosntrating that this system

belongs to another evolution class.
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