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Abstract The Wigner function formalism has been introduced with an emphasis on
basic theoretical aspects, and recently developed numerical approaches and appli-
cations for modeling and simulation of the transport of current carriers in electronic
structures. Two alternative ways: the historical introduction of the function on top
of the operator mechanics, and an independent formulation of the Wigner theory in
phase space which then recovers the operator mechanics, demonstrate that the for-
malism provides an autonomous description of the quantum world.

The conditions of carrier transport in nano-electronic devices impose to extend
this coherent physical picture by processes of interaction with the environment. Rel-
evant becomes the Wigner–Boltzmann equation, derived for the case of interaction
with phonons and impurities. The numerical aspects focus on two particle models
developed to solve this equation. These models make the analogy between classical
and Wigner transport pictures even closer: particles are merely classical, the only
characteristics which carries the quantum information is a dimensionless quantity –
affinity or sign.

The recent ground-breaking applications of the affinity method for simula-
tion of typical nano-devices as the resonant tunneling diode and the ultra-short
DG-MOSFET firmly establish the Wigner–Boltzmann equation as a bridge between
coherent and semi-classical transport pictures. It became a basic route to under-
stand the nano-device operation as an interplay between coherent and de-coherence
phenomena. The latter, due to the environment: phonon field, contacts or defects,
attempts to recover the classical transport picture.
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1 Introduction

The Wigner picture of quantum mechanics constitutes a phase space formulation
of the quantum theory. Both states and observables are represented by functions of
the phase space coordinates. The Weyl transform attributes to any given operator
of the wave mechanics a phase space counterpart which is a c-number. Furthermore,
the Wigner function is both the phase space counterpart of the density matrix and
the quantum counterpart of the classical distribution function. Basic notions of the
classical statistical mechanics are retained in this picture. In particular the usual
quantities of interest in operator quantum mechanics, i.e. mean values and proba-
bilities, are evaluated in the phase space by rules resembling the formulae of the
classical statistics. It is for these reasons that the Wigner function is often consid-
ered as a quasi-distribution. The phase space formulation of quantum mechanics has
been established historically on top of the operator mechanics [1–3]. In this respect,
it is natural to raise the question of whether the Wigner theory can be considered
as an equivalent autonomous alternative of the operator mechanics. What outlines
classical from quantum behavior in the phase space? In particular how to determine
if a given function of the phase space coordinates is a possible quantum or classical
state? These questions have been addressed by the inverse approach, which has
been explored later [4, 5]. It provides an independent formulation of the Wigner
theory and then recovers the operator mechanics, which completes the proof of the
logical equivalence between the two theories.

Device modeling needs a conjunction of Wigner quantum mechanics of carrier –
potential interactions with other interactions due to the environment. Physical mod-
els of the carrier kinetics taking into account the engineering characteristics of the
device structure are developed, which are further approached by corresponding
numerical methods. Models, algorithms and applications are mutually developed
within the Wigner transport picture. This work is an effort to give a self-contained
overview of the basic notions, and to point at some recent results in the field. Further
details and a presentation of the recent advances can be found in [66].

We feel that here is the place to acknowledge the work of W. Frensley,
D. K. Ferry and co-authors, C. Jacoboni and the Modena group and other important
contributions, which are frequently cited in the sequel.

In the next section we will introduce the Wigner quantum mechanics by follow-
ing the historical approach. Some concepts of statistical mechanics and Hermitian
operators are recalled in a way to outline the mutual relationship between the classi-
cal and quantum counterparts. The operator ordering is discussed: actually there are
alternative phase space formulations of the quantum mechanics which are associ-
ated with alternative ordering prescriptions. A particular ordering given by the Weyl
transform introduces the Wigner function. The corresponding evolution equation is
a central entity in this approach. The presented detailed derivation of the Wigner
equation is based on the von Neumann equation for the density matrix. Fundamen-
tal concepts of the picture are discussed along with the characteristics of pure and
mixed state Wigner functions.

We believe that it is important to introduce in parallel some basic notions of the
inverse approach. Conditions determining whether a given phase space function is
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a possible quantum state are presented. Explicit expressions exist which associate
to given phase space pure or mixed quantum state the corresponding wave func-
tion or density matrix. Results which establish the equivalence between the operator
and Wigner quantum mechanics are summarized. Behind the abstract mathematical
aspects, these results allow to understand and solve practical for semiconductor
device community problems, encountered when bound states exist in the physical
system.

A strong advantage of the Wigner formalism of quantum transport is its ability
to include all relevant scattering mechanisms. Though the full quantum treatment of
scattering is difficult to apply to practical situations, namely for the description of
transport in realistic devices, it is shown that under some reasonable approximations,
such as the fast and weak scattering limits, the Wigner collision operator simplifies
into the well-known Boltzmann collision operator. This is demonstrated in Sect. 3
for the case of electron–phonon and electron–ionized impurity interactions. The
Wigner transport equation thus reduces to the so-called Wigner–Boltzmann equa-
tion. In the latter form, the transport equation becomes very convenient for device
simulation. It can benefit from all the knowledge acquired for many years in semi-
classical device physics and especially in the physics of scattering.

Furthermore we show that the analogy between classical and Wigner transport
pictures become even closer. Particle models are associated with the Wigner-
quantum transport in Sect. 4. The Wigner potential is interpreted as a source which,
in addition to the common classical parameters, associates to each particle a new di-
mensionless quantity which, depending on the model, could be affinity or sign. This
quantity is the only characteristic carrying the quantum information for the system.
It is taken into account in the computation of the physical averages.

Two numerical techniques of Monte Carlo device simulation are described in
Sect. 4. They may be seen as a generalization of the well-known Monte Carlo
method for semi-classical device simulation.

Finally, in Sect. 5, the device simulation is applied to some typical nano-devices,
namely the resonant tunneling diode (RTD) and the ultra-short double-gate (DG)
metal-oxide-semiconductor field-effect transistor (MOSFET). Quantum and de-
coherence effects taking place in these are emphasized.

The occurrence of quantum de-coherence in devices of a size smaller than the
electron wave length and mean free path is becoming an important subject of ex-
perimental and theoretical research [6–9]. The theory of de-coherence has shown
that the semi-classical behavior of a quantum system may emerge from the interac-
tion with its environment. For electrons in a nano-device, the environment likely to
induce de-coherence may be the phonon field, the contacts or defects.

In this final section the theory of de-coherence is briefly introduced through an
academic example of the free evolution of a Gaussian wave packet and the phonon
scattering-induced de-coherence is investigated in a typical nano-device, the RTD.
The Wigner–Boltzmann formalism is proved to be an appropriate framework for
such analysis [10]. One of its major advantage lies in the fact that it offers a straight-
forward access to the off-diagonal elements of the density matrix which provides a
clear visualization of de-coherence phenomena.
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The Wigner–Boltzmann equation may also become – in establishing a link
between semi-classical and quantum transport – a ground-breaking route to under-
standing nano-device behavior. We focus in particular on the case of the ultra-small
DG-MOSFET with gate length of 6 nm through comparison between quantum
(Wigner–Boltzmann) and semi-classical simulations. Beyond the analysis of direct
source-drain tunneling and quantum reflections on the steep potential drop at the
drain-end of the channel, the results emphasize the role of scattering which rem-
ains surprisingly important in such a small device in spite of significant quantum
coherence effects.

2 Wigner Quantum Mechanics

2.1 Classical Distribution Function

A single particle of mass m is considered to move with a potential energy V (x). The
phase space is defined by the Cartesian product of the particle position x and mo-
mentum p. Physical quantities are dynamical functions A(x, p) of the phase space
coordinates, such as the kinetic and potential energies and their sum giving the
Hamiltonian H(x, p). The state of the single particle at given time is presented by
a point in the phase space. Provided that the initial particle coordinates are known,
the novel coordinates x(t), p(t) at time t are obtained from the Hamilton equations

ẋ =
∂H(x, p)

∂ p
=

p
m

; ṗ = −∂H(x, p)
∂x

= −∂V (x)
∂x

(5.1)

The function A(t) describes how physical quantities change in time. Two ways
are possible: (a) A(t) = A(x(t), p(t)) is the old function in the novel coordinates;
(b) A(t) = A(t,x, p) is a new function of the old coordinates. In the first case we
postulate that the laws of mechanics do not change with time: A remains the same
function for the old and the new coordinates. Then, with the help of (5.1) we obtain
the equation of evolution for A:

Ȧ =
∂A(x, p)

∂x
∂H(x, p)

∂ p
− ∂A(x, p)

∂ p
∂H(x, p)

∂x
= [A,H]P; [x, p]P = 1 (5.2)

A basic notion between the dynamical functions is endowed with the Poisson
bracket [·, ·]P. It gives rise to an automorphic (conserving the algebraic structure)
mapping of the set of such functions.

Alternatively, in the second case we have to postulate a law for the evolution of
A(t,x, p). If it is imposed according to (5.2), the automorphism consistently leads to
the conservation of the mechanical laws: the new function in the old coordinates is
the old function in the novel coordinates: A(t,x, p) = A(x(t), p(t))!

A statistical description is introduced if the coordinates of the point cannot
be stated exactly, but with some probability. According to the basic postulate of
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classical statistical mechanics, the state of the particle system is completely speci-
fied by a function f (x, p), with the following properties:

f (x, p) ≥ 0
∫

dxd p f (x, p) = 1 (5.3)

Physical quantities A are then described by the corresponding mean values:

〈A〉(t) =
∫

dxd pA(t,x, p) f (x, p) (5.4)

This equation is not convenient since it requires calculation of the evolution of any
particular quantity A. However, due to the automorphism of the Poisson bracket,
it is possible to change the variables so that time is transferred to the distribution
function f [11]. Equation (5.4) modifies to:

〈A〉(t) =
∫

dxd pA(x, p) f (x, p, t) (5.5)

The evolution equation for f can be derived with the help of (5.1) and (5.2):
(

∂
∂ t

+
p
m

.
∂
∂x

+ F(x)
∂

∂ p

)
f (x, p, t) =

(
∂ f
∂ t

)
c

(5.6)

Here the force F = −∇xV is given by the derivative of the potential energy V . The
characteristics of the differential operator in the brackets, called Liouville operator,
are classical Newton’s trajectories, obtained from (5.1). Over such trajectories the
left hand side of (5.6) becomes a total time derivative. In the case of no interaction

with the environment,
(

∂ f
∂ t

)
c
= 0, i.e. trajectories carry a constant value of f . Oth-

erwise the particles are redistributed between the trajectories and the right hand side
of (5.6) is equal to the net change of the particle density due to collisions. In the
rest of this section we derive a quantum analog of (5.3), (5.5) and the Boltzmann
equation (5.6).

2.2 Quantum Operators

We recall the principles of the operator quantum mechanics, which will be used
to reformulate the formalism in the phase space. Physical quantities in quantum
mechanics are presented by Hermitian operators Â:

Â|φn〉 = an|φn〉; 〈φn|φm〉 = δmn ∑
n
|φn〉〈φn| = 1̂ (5.7)

Such operators have real eigenvalues and a complete system of orthonormal eigen-
vectors which form an abstract Hilbert space. The states of the system are specified
by the elements |Ψt〉 of the Hilbert space H which are square integrable and nor-
malized with respect to the L2 norm in H . In wave mechanics it is postulated that
the evolution of |Ψt〉 is provided by the Schrödinger equation

Ĥ|Ψt〉 = ih̄
∂ |Ψt〉

∂ t
〈Ψt |Ψt〉 = 1 |Ψt〉 = ∑

n
cn(t)|φn〉 (5.8)
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The state can be decomposed in the complete basis of an observable A. Also, it can
be shown that during the evolution the state remains normalized. This property is
often called conservation of probability.

According to the correspondence principle, to classical position and momentum
variables correspond the Hermitian operators x̂ and p̂, satisfying a quantum coun-
terpart of the Poisson bracket:

x → x̂ p → p̂ x̂ p̂− p̂x̂ = [x̂, p̂]− = ih̄1̂ (5.9)

Wave mechanics uses only half of the phase space – coordinate or momentum rep-
resentation – for the description of the physical system. We assume a coordinate
representation; according to (5.7) and (5.9) it holds that

x̂|x〉 = x|x〉
∫

dx|x〉〈x| = 1̂ p̂ = −ih̄
∂
∂x

(5.10)

Finally, we recall the equation for the averaged value of a physical quantity:

〈A〉(t) = 〈Ψt |Â|Ψt〉 =
∫

dx〈Ψt |x〉〈x|Â|Ψt〉 (5.11)

The operator formulation of the quantum mechanics looks too abstract when com-
pared to the familiar classical concepts. Nevertheless it is possible to reformulate
the ideas of the quantum mechanics in the phase space. The first step is to evaluate
the actual number of variables involved in (5.11). With the help of (5.7) and (5.10)
it holds:

〈x|Â|Ψt〉 =
∫

dx′∑
n

an〈x|φn〉〈φn|x′〉〈x′|Ψt〉 =
∫

dx′α(x,x′)Ψt(x′)

where Ψt(x) = 〈x|Ψt〉. A substitution in (5.11) shows that the physical average is
actually evaluated in a “double half” of the phase space:

〈A〉(t) =
∫

dx′
∫

dxα(x,x′)ρt(x′,x) = Tr(ρ̂t Â) (5.12)

with ρt and ρ̂t the density matrix and density operator:

ρt(x,x′) = Ψ∗
t (x′)Ψt(x) = 〈x|Ψt〉〈Ψt |x′〉 = 〈x|ρ̂t |x′〉 ρt = ∑

m,n
c∗m(t)cn(t)|φn〉〈φm|

(5.13)

2.3 Weyl Transform

Equation (5.12) resembles (5.5) provided that one of the spatial variables is replaced
by a momentum variable. A proper transform for such a replacement is needed. The
important consequence is that the transformed density matrix can be interpreted as
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the quantum counterpart of the classical distribution function. Pursuing a proper
rule, we consider how an operator Â can be associated to a given physical quantity.
Â can be obtained explicitly with the help of (5.9) and the knowledge of A(x, p): the
Taylor expansion, for example, can be used to establish the rule:

A(x, p) = ∑
i, j

bi, jx
i p j → A(x̂, p̂) = ∑

i, j
bi, jx̂

i p̂ j

For the Hamiltonian of a particle in a potential field, H(x, p) = p2

2m +V (x), this
rule leads to a consistent result. However, for general functions A the procedure is
not well defined, since the operators p̂ and x̂ do not commute. First, non-Hermitian
operators can appear. Second, even for Hermitian operators there is ambiguity in the
correspondence: let us consider two equivalent expressions for the function A(x, p):

A1 = px2 p = A2 =
1
2
(p2x2 + x2 p2)

The substitution of x and p by x̂ and p̂ gives rise to the following operators:

A1 → Â1 = p̂x̂2 p̂ A2 → Â2 =
1
2
(p̂2x̂2 + x̂2 p̂2)

Now, while A1 = A2, the obtained operators differ by h̄2: Â1 = Â2 + h̄2. The example
shows how different operator functions are mapped into the same function of the
phase space coordinates: the relation (5.9) is not sufficient to establish a unique
correspondence between A and Â. A certain rule must be applied in order to remove
this ambiguity. We will make use of the fact that an arbitrary function f (x, p) can be
obtained from the generating function F(s,q) = ei(sx+qp) as follows:

f (x, p)= f

(
1
i

∇s,
1
i

∇q

)
F(s,q)s=0,q=0=

1
(2π)2

∫
dsdqdldm f (l,m)e−i(ls+mq)F(s,q)

It remains to consider possible operator generalizations of F , e.g.

F̂1 = ei(sx̂)ei(qp̂); F̂2 = ei(qp̂)ei(sx̂); ei(sx̂+qp̂)

which represent the standard order where the positions precede the momenta, the
anti-standard order, where the momenta come before the positions, and the Weyl
order. The fully symmetric Weyl order bears some of the basic properties of a
characteristic function of a probability distribution [4] and will be used henceforth
to establish the rule of correspondence. The choice of alternative orders leads to
alternative quasi-distributions. It should be noted that once postulated, the corre-
spondence rule must be consistently applied to all notions of the operator mechanics
in order to ensure conservation of the values of the physical averages (5.11). The
Weyl transform reads:

A(x, p) = W (Â(x̂, p̂)) =
h̄

(2π)

∫
dsdqTr

(
Â(x̂, p̂)ei(sx̂+qp̂)

)
e−i(sx+qp) (5.14)
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Equivalently, as discussed in the appendix, it holds:

Â = Â(x̂, p̂) =
∫

dsdqβ (s,q)ei(sx̂+qp̂) (5.15)

Here β is adjoint to A via the Fourier transform:

A(x, p) =
∫

dsdqβ (s,q)ei(sx+qp) β (s,q) =
1

(2π)2

∫
dxd pA(x, p)e−i(sx+qp)

(5.16)

The Wigner function is defined as the transform of the density operator, multiplied
by the normalization factor (2π h̄)−1. The Weyl map W provides the algebra of phase
space functions with a non-commutative *-product defined as:

W (Â)∗W(B̂) = A(x, p)∗B(x, p) = W (Â B̂) (5.17)

Basic notions of the operator quantum mechanics are formulated in the phase space
with the help of the *-product.

2.4 Wigner Function for Pure State

Equation (5.8) and its adjoint equation give rise to the von Neumann equation of
motion for the pure state density matrix ρt (5.13).

ih̄
∂ρ(x,x′, t)

∂ t
= 〈x|[Ĥ, ρ̂t ]−|x′〉

=
{
− h̄2

2m

(
∂ 2

∂x2 − ∂ 2

∂x′2

)
+
(
V (x)−V (x′)

)}
ρ(x,x′, t) (5.18)

The variables are changed with the help of a center of mass transform:

x1 = (x + x′)/2, x2 = x− x′

∂ρ(x1 + x2/2,x1 − x2/2,t)
∂ t

=
1
ih̄

{
− h̄2

m
∂ 2

∂x1∂x2
+(V (x1 + x2/2)−V(x1 − x2/2))

}
ρ(x1 + x2/2,x1 − x2/2, t)

(5.19)

As shown in the appendix, the Wigner function is obtained by Fourier transform
with respect to x2:

fw(x1, p, t) =
1

(2π h̄)

∫
dx2ρ(x1 + x2/2,x1 − x2/2, t)e−ix2.p/h̄ (5.20)
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We note that, due to the Wigner transform, x1 and p are independent variables. It
is easy to show that the corresponding operators commute. Thus x1 and p define a
phase space – the Wigner phase space.

The Fourier transform of the right hand side of (5.19) gives rise to two terms
which are evaluated as follows. It is convenient to introduce the abbreviation
ρ(+,−, t) for ρ(x1 + x2/2,x1 − x2/2,t):

I = − 1
ih̄

h̄2

m(2π h̄)

∫
dx2e−ix2.p/h̄ ∂ 2ρ(+,−,t)

∂x1∂x2

= − 1
m(2π h̄)

p.
∂

∂x1

∫
dx2e−ix2.p/h̄ρ(+,−,t) = − 1

m
p.

∂ fw(x1, p, t)
∂x1

where we have integrated by parts and used the fact that the density matrix tends to
zero at infinity: ρ → 0 if x2 →±∞.

II =
1

ih̄(2π h̄)

∫
dx2e−ix2.p/h̄(V (x1 + x2/2)−V(x1 − x2/2))ρ(+,−, t)

=
1

ih̄(2π h̄)

∫
dx2

∫
dx′e−ix2.p/h̄(V (x1 + x2/2)−V(x1 − x2/2))

×δ (x2 − x′)ρ(x1 + x′/2,x1 − x′/2,t)

After a substitution of the delta function with the integral

δ (x2 − x′) =
1

(2π h̄)

∫
d p′ei(x2−x′)p′/h̄. (5.21)

the following is obtained:

II =
1

ih̄(2π h̄)

∫
d p′

∫
dx2e−ix2.(p−p′)/h̄(V (x1 + x2/2)−V(x1 − x2/2))

× 1
(2π h̄)

∫
dx′e−ix′ p′/h̄ρ(x1 + x′/2,x1 − x′/2, t)

=
∫

d p′Vw(x1, p− p′) fw(x1, p′,t)

We summarize the results of these transformations. Equation (5.19) gives rise to the
Wigner equation:

∂ fw(x, p, t)
∂ t

+
p
m

.
∂ fw(x, p,t)

∂x
=
∫

d p′Vw(x, p− p′) fw(x, p′, t) (5.22)
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where Vw is the Wigner potential.

Vw(x, p) =
1

ih̄(2π h̄)

∫
dx′e−ix′ p/h̄(V (x + x′/2)−V(x− x′/2)) (5.23)

A change of the sign of x′ reveals the antisymmetry of the Wigner potential.

2.5 Properties of the Wigner Function

We first outline the equivalence between the Schrödinger equation and the Wigner
equation in the case of a pure state. From Ψt we can obtain ρ and thus fw. The
opposite is also true: it can be shown that, if we know fw we can obtain Ψt up to a
phase factor.

Comparing this with the Boltzmann equation (5.6), we can recognize on the left
hand side of the Wigner equation the field-less Liouville operator. Furthermore, it
is easy to see that the Wigner potential is a real quantity, Vw = V ∗

w . It follows that,
being a solution of an equation with real coefficients, fw is real. The Wigner function
conserves the probability in time:
∫

dx
∫

d p fw(x, p, t)=
∫

dx
∫

dx2ρ(x+x2/2,x1−x2/2, t)δ (x2) =
∫

dx〈x|ρ̂t |x〉= 1

(5.24)

In a similar way it can be demonstrated that the position or momentum proba-
bility distributions are obtained after integration over momentum p or position x
respectively:

∫
d p fw(x, p,t) = |Ψt(x)|2

∫
dx fw(x, p, t) = |Ψt(p)|2 (5.25)

The most important property of the Wigner picture is that the mean value 〈A〉(t) of
any physical quantity is given by

〈A〉(t) =
∫

dx
∫

d p fw(x, p,t)A(x, p) (5.26)

where A(x, p) is the classical function (5.16). This is proven in the appendix.
Our goal to derive a quantum analog of (5.3), (5.5) and (5.6) has been attained to

a large extent. Equation (5.24) corresponds to the second equation in (5.3) and the
Wigner function is real. Equation (5.26) is equivalent to (5.5). The left hand sides of
the Wigner equation (5.22) and the Boltzmann equation are given by the Liouville
operator. Classical and quantum pictures become very close.

Nevertheless, there are basic differences. The Wigner function allows negative
values and thus is not a probability function. It cannot be interpreted as a joint dis-
tribution of particle position and momentum. Actually, the Wigner function can have
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nonzero values in domains where the particle density is zero. As follows from (5.25),
a physical interpretation is possible only after an integration.

The quantum character of the Wigner function is underlined by the following
remarkable result. If the spectrum of Â, (5.7), is non-degenerate, then the corre-
sponding to an eigenvector Wigner function fw(n) = (2π h̄)−1W (|φn〉〈φn|) satisfies
the following equation:

fw(n)(x, p)∗A(x, p) = an fw(n)(x, p); A(x, p)∗ fw(n)(x, p) = an fw(n)(x, p) (5.27)

The probability P that a measurement of the observable corresponding to a given
generic operator Â yields the value an in a state fw(x, p, t) is:

P(an) = (2π h̄)
∫

dxd p fw(x, p,t) fw(n)(x, p) (5.28)

2.6 Classical Limit of the Wigner Equation

We discuss the classical limit of (5.22) by considering the case when the potential
V is a linear or a quadratic function of the position:

V

(
x± x′

2

)
= V (x)± ∂V (x)

∂x
x′

2
+ · · · = V (x)∓F(x)

x′

2
+ · · ·

where the dots stand for the quadratic term. The force F can be at most a linear
function of the position. As the even terms of the Taylor expansion of V cancel in
(5.23), the Wigner potential becomes:

Vw(x, p) =
i

h̄(2π h̄)

∫
dx′e−ix′ p/h̄F(x)x′

The right hand side of (5.22) becomes

∫
d p′Vw(x, p− p′) fw(x, p′,t) =

i
h̄(2π h̄)

∫
d p′

∫
dx′e−ix′(p−p′)/h̄F(x)x′ fw(x, p′, t)

=
−F(x)
(2π h̄)

∂
∂ p

∫
d p′

∫
dx′e−ix′(p−p′)/h̄ fw(x, p′, t)

= −F(x)
fw(x, p,t)

∂ p
(5.29)

where we have used the equality ix′e−ix′(p−p′)/h̄ = −h̄ ∂
∂ p e−ix′(p−p′)/h̄. Then the

Wigner equation reduces to the collisionless Boltzmann equation:

∂ fw(x, p,t)
∂ t

+
p
m

.
∂ fw(x, p,t)

∂x
+ F(x)

∂ fw(x, p, t)
∂ p

= 0 (5.30)
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Now consider as an initial condition a minimum uncertainty wave-packet. The
Wigner function of such a packet is a Gaussian of both position and momentum
[12]. The latter can equally well be interpreted as an initial distribution of classical
electrons. Provided that the force is a constant or linear function of the position, the
packet evolves according to (5.30). The evolution resembles that of the classical dis-
tribution. Despite the spread in the phase space, the Gaussian components determine
the general shape of the packet. fw remains positive during the evolution.

However, stronger variations of the field with position introduce interference
effects. Near band offsets the packet rapidly looses its shape and negative values
appear.

2.7 Wigner Potential and Fourier Transform

In this section we discuss some properties of the Wigner potential in terms of the
Fourier transform. For this purpose we express the momentum p through the wave
number k as p = h̄k. We introduce V̂ (q), the Fourier transform of the potential. The
Fourier transform and its inverse read

V̂ (q) =
∫

dxV (x)e−iqx, V (x) =
1

2π

∫
dqV̂(q)eiqx. (5.31)

The result of the Fourier transform is in general a complex function, which can be
expressed in polar form by its modulus and phase.

V̂ (q) = A(q)eiϕ(q) (5.32)

With the variable substitutions s = x± x′/2 the integrals in the definition (5.23) of
the Wigner potential can be evaluated as

∫
dx′V

(
x +

x′

2

)
e−ikx′ = 2e2ikx

∫
dsV (s)e−2iks = 2e2ikxV̂ (2k),

∫
dx′V

(
x− x′

2

)
e−ikx′ =

[
2e2ikxV̂ (2k)

]∗
,

and the following relation between the Wigner potential (5.23) and the Fourier trans-
form of the potential can be established.

Vw(x, h̄k) =
1

ih̄(2π h̄)

{
2e2ikxV̂ (2k)− [

2e2ikxV̂ (2k)
]∗}

This expression can be simplified using the polar form (5.32).

Vw(x, h̄k) =
2

π h̄2 A(2k)sin[ϕ(2k)+ 2kx] (5.33)
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The x-dependence of the Wigner potential is given analytically by an undamped sine
function, independent of the actual shape of the potential. This result also shows,
that even for a well localized potential barrier the Wigner potential is fully de-
localized in the coordinate space. In any numerical procedure, therefore, the Wigner
potential needs to be truncated at some finite x-coordinate.

Another property of the Wigner potential can be derived by considering the
function

Δ(x,x′) = V

(
x +

x′

2

)
−V

(
x− x′

2

)
. (5.34)

The Wigner potential is defined as the Fourier transform of this function with respect
to the argument x′. We note that

Δ(x,−x′) = −Δ(x,x′). (5.35)

Due to this antisymmetry, the substitution exp(−ikx′) = cos(kx′) − isin(kx′) in
(5.23) readily yields the Fourier sine transform.

Vw(x, h̄k) =
1

ih̄(2π h̄)

∫
dx′ Δ(x,x′)e−ikx′

= − 1
h̄(2π h̄)

∫
dx′ Δ(x,x′)sin(kx′) (5.36)

In general the potentialV (x) is given within a finite simulation domain, representing,
for instance, the active region of an electronic device. Outside of this domain the
potential is continued by two constants, say VL and VR. This situation represents an
active device region connected to semi-infinite leads on both sides, where the leads
are assumed to be ideal conductors. Therefore, in practical cases Δ will have the
asymptotic behavior,

lim
x′→±∞

Δ(x,x′) = ∓(VL −VR) (5.37)

where (VL −VR) is the potential difference between the left and the right lead. Since
the integrand in (5.36) does not vanish at infinity, the Fourier integral will diverge at
q = 0. From the asymptotic behavior of Δ(x,x′) for x′ → ∞ we find the asymptotic
behavior of Vw(x, h̄k) for k → 0.

Δ(x,x′) 	 (VR −VL)sgn(x′), x′ → ∞ (5.38)

Vw(x, h̄k) 	 2(VL −VR)
h̄(2π h̄)

P
1
k
, k → 0 (5.39)

Here, sgn denotes the signum function and P the principal value. This consider-
ation shows that if the potential difference is nonzero, there will be a pole in the
Wigner potential at k = 0. Numerical methods for the Wigner equation generally
use a k-space discretization, where the discrete k-points are located symmetrically
around the origin and the point k = 0 is not included. In this way, no particular
treatment of the singularity is needed.
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2.8 Classical Force

The potential operator in (5.22) takes the form

Q fw(x, p) = h̄
∫

dqVw(x, h̄q) fw(x, p− h̄q), (5.40)

if variables are changed according to p− p′ = h̄q. To deal with the singularity of
Vw, one can define a small neighborhood around q = 0 and split the domain of
integration as follows [13].

Q fw(x, p) =
∫

|q|≤qc/2

+
∫

|q|>qc/2

= Qcl fw + Qqm fw (5.41)

Here qc is some small wave number. In this way, we have split the potential operator
Q in two parts, which we refer to as Qcl and Qqm. A linearization can be introduced
in the integral over the small wave numbers.

Qcl fw(x, p,t) = h̄
∫

dqVw(x, h̄q) fw(x, p− h̄q)
|q|≤qc/2

(5.42)

	 h̄
∫

dqVw(x, h̄q)
[

fw(x, p)− h̄q
∂ fw(x, p)

∂ p

]

|q|≤qc/2

(5.43)

= −∂ fw(x, p)
∂ p

h̄2
∫

dqqVw(x, h̄q)
|q|≤qc/2

(5.44)

In the second line the integral over fw vanishes since Vw is an odd function in q.
Substituting (5.33) into (5.44) gives

− h̄2
∫

dqqVw(x, h̄q)
|q|≤qc/2

= − 2
π

∫ qc/2

−qc/2
dqqA(2q)sin [ϕ(2q)+ 2qx]

= − 1
2π

∫ qc

−qc

dqqA(q)sin [ϕ(q)+ qx]

=
∂
∂x

1
2π

∫ qc

−qc

dqA(q)cos [ϕ(q)+ qx]

=
∂
∂x

ℜ
{

1
2π

∫ qc

−qc

dqA(q)eiϕ(q)eiqx
}

=
∂
∂x

ℜ
{

1
2π

∫ qc

−qc

dqV̂(q)eiqx
}

=
∂
∂x

Vcl(x)
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Here we introduced the classical potential component as

Vcl(x) =
1

2π

∫ qc

−qc

dqV̂(q)eiqx. (5.45)

This function is real, as can be easily shown by substituting V̂ (q).

Vcl(x) =
1

2π

∫ qc

−qc

dq
∫

dyV (y)eiq(x−y) =
∫

dyV (y)
sin[qc(x− y)]

π(x− y)
(5.46)

So we have a convolution of two real functions, the potential V (x) and the sin(x)/x
function.

According to its definition (5.45), the classical potential component shows a
smooth spatial variation, as it is composed of long-wavelength Fourier components
only. Equation (5.45) motivates the following spectral decomposition of the poten-
tial profile into a slowly varying, classical component (5.45) and a rapidly varying,
quantum mechanical component.

V (x) = Vcl(x)+Vqm(x) (5.47)

When the linearization described above is introduced in the classical component,
this decomposition yields a Wigner equation including both a local classical force
term and a nonlocal potential operator.

(
∂
∂ t

+
p
m

∂
∂x

− ∂Vcl(x)
∂x

∂
∂ p

)
fw(x, p,t) =

∫
dp′V qm

w (x, p′) fw(x, p− p′, t) (5.48)

The Wigner potential is calculated from the quantum mechanical potential compo-
nent, Vqm = V −Vcl. The two potential components have the following properties.
The classical component accommodates the applied voltage. As it is treated through
a classical force term, it does not induce any quantum reflections. The quantum
mechanical component vanishes at infinity and has a smooth Fourier transform.

2.9 Quantum Statistics

The density operator ρ̂t = |Ψt〉〈Ψt |, used to obtain the Wigner function, corresponds
to a system in a pure state. The state of the system is often not known exactly.
Assuming that a set of possible states ρ̂ i

t can be occupied with probabilities γi, the
definition (5.13) of density operator can be generalized for a mixed state:

ρ̂t = ∑
i

γiρ̂ i
t ∑

i
γi = 1, γi > 0 (5.49)
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The mean value of a given physical quantity becomes a statistical average of
“averages in states i”. It is easy to see that the von Neumann equation (5.18) and
the expression (5.12) hold also in this case. Accordingly, the mixed state Wigner
function and equation are derived from ρ̂ and its equation of motion as in the case
of a pure state. Since the derivation is reversible, one can equivalently postulate
fw(x, p, t) as a definition of the state of the system. Note that if the set γi is known,
the density matrix can be obtained from (5.49). This is for example possible in
models where γi are defined by the boundary conditions [12]. Then the problem is
reduced to a set of pure state problems. However, for more complex physical sys-
tems, containing electrons which interact with other types of quasi-particles, γi are
not known a priori. In this case ρ̂i and γi are obtained with the help of the basic no-
tions (5.18) and (5.12). We note that in the latter the Hamiltonian already contains
the term accounting for the interaction with the quasi-particles, so that (5.18) must
be augmented accordingly. Indeed the corresponding representation of the system
is given by the basis vectors |Xi〉|x〉 where the additional degrees of freedom X de-
scribing the quasi-particles are assumed enumerable. Of particular interest are the
electron averages, so that the operator Â does not affect Xi. Equation (5.12) becomes:

〈Â〉(t) = Tr(ρ̂t Â)= ∑
i

∫
dx〈x|〈Xi|ρ̂t Â|Xi〉|x〉=

∫
dx〈x|ρ̂e

t Â|x〉= Tre(ρ̂e
t Â) (5.50)

where ρ̂e
t = ∑i〈Xi|ρ̂t |Xi〉 is the electron, or reduced density operator. The set of

probabilities γi and the set of electron density operators ρ̂e,i
t are now introduced

according to:

γi = Tre(〈Xi|ρ̂t |Xi〉) ≥ 0, ∑
i

γi = 1; ρ̂e,i
t =

〈Xi|ρ̂t |Xi〉
Tre(〈Xi|ρ̂t |Xi〉) , Tre(ρ̂e,i

t ) = 1

These estimates follow from the fact that ρ̂t is a positively defined operator and
from the conservation of the probability. Hence, in a formal consistence with (5.49),
it holds

ρ̂e
t = ∑

i

γiρ̂e,i
t

However, in order to obtain γi and ρ̂e,i
t one needs ρ̂t which entails solving the evo-

lution equation for the whole system. Usually this is not possible, moreover we are
not interested in the detailed information about the state of the quasi-particles. This
implies to approximate the evolution equation to a closed equation for the electron
subsystem. Alternatively this can be done in terms of the Wigner functions obtained
after a Wigner transform of the corresponding density operators.

With the help of (5.13) and (5.49) it is obtained:

fw(x, p,t) = ∑
m,n

(
∑

i
γicn(t)c∗m(t)

)
fw(m,n)(x, p)
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This equation introduces the off-diagonal Wigner function

fw(m,n) = (2π h̄)−1W (|φn〉〈φm|) (5.51)

If |ψt,1〉 and |ψt,2〉 are two states, solutions of (5.8), the off-diagonal Wigner func-
tion fw(1,2) = (2π h̄)−1W (|ψt,1〉〈ψt,2|) is a solution of (5.22). Furthermore if |ψ1〉 and
|ψ2〉 are two stationary energy eigenstates, corresponding to energy eigenvalues E1

and E2, it holds:

H(x, p)∗ fw(1,2) = E1 fw(1,2) fw(1,2) ∗H(x, p) = E2 fw(1,2) (5.52)

where H(x, p) = W (Ĥ) = p2/2m+V(x).

2.10 Quantum Phase Space States

It has been shown that the laws and relations of the operator quantum mechanics
can be reformulated into the language of the phase space functionals. A systematic
presentation of the inverse approach is not possible within this chapter, however we
provide some selected ideas which help the reader to build up an initial impression.

A basic question which must be addressed is about the identification of the
admissible quantum phase space functionals. Conditions have been derived, which
specify the functionals in terms of pure or mixed quantum states and the rest of
non-quantum states. A phase space function is an off-diagonal pure state if it can be
presented in the form (5.51) for two complex valued, normalized functions 〈x|φm,n〉.
In particular, if m = n the function is just a pure state. The first necessary and suf-
ficient condition for a pure state has been introduced by Tatarskii [4], and will be
formulated later. The condition has been generalized for off-diagonal pure states [5]
as follows:

If fw(x, p, t) is square-integrable, and if Z, defined as

Z(x,x′,t) =
∫

d peix′p/h̄ fw(x, p, t) (5.53)

satisfies the following equation

∂ 2lnZ(x,x′,t)
∂x′2

=
(

1
2

)2 ∂ 2lnZ(x,x′, t)
∂x2 (5.54)

then fw is a phase space function of the form (5.51):

fw(1,2)(x, p,t) =
1

2π h̄

∫
dye−iyp/h̄ψ∗

2

(
x− y

2
, t
)

ψ1

(
x +

y
2
, t
)

(5.55)
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where ψ1,2 are some complex square integrable functions. If, moreover, fw is a
real function, then it is a pure state Wigner function. On the other hand, if fw is
a pure state, or an off-diagonal pure state Wigner function, then it satisfies the above
differential equation.

The proof presented in [5] is short and elegant: Equation (5.54) can be viewed
as a wave equation with ‘time’ variable x′, spatial variable x, and velocity 1/2. The
general solution, known as the one-dimensional case of d’Alembert’s solution, is
given by two arbitrary functions which are shifted in time to the left and right with
the velocity used to define the equation. Thus:

lnZ(x,x′,t) = lnψ∗
2

(
x− h̄x′

2
,t

)
+ lnψ1

(
x +

h̄x′

2
, t

)

where lnψ1,2 are two arbitrary functions. Then the evaluation of (5.55) is straight-
forward. Moreover ψ1,2 are square integrable as fw is square integrable. Besides, if
fw is real, then ψ1 is proportional to ψ∗

2 . The normalization of ψ follows from the
normalization of fw which is a pure state. The converse result is shown by direct
calculations.

Equation (5.54) provides the pure state quantum condition. Physical states are
presented by its real and normalized solutions, namely the pure state Wigner func-
tions. The non-real off-diagonal solutions are relevant for the treatment of the mixed
states. An important result follows [4]: Let us assume that fw is a solution of (5.22)
and satisfies the quantum condition at the initial time. Then fw is a solution of
(5.54) for all times. Namely, the Wigner evolution preserves the pure (possible off-
diagonal) quantum condition. In contrast, it can be shown that this is not true if the
evolution is provided by the classical limit (5.29). Moreover, as originally shown by
Tatarskii, the quantum character of the evolution is not ensured solely by the Wigner
equation: the initial condition must also be an admissible quantum state. In this way
the pure state condition implicitly implies the Heisenberg uncertainty relation.

The wave functions can be explicitly constructed from the knowledge of fw(1,2).
Namely, if fw satisfies the conditions around (5.54), it takes the form (5.51). Then
with the help of (5.53) it holds:

ψ1(x) = N1Z
( x

2
,x
)

ψ2(x) = N2Z∗
( x

2
,−x

)
N1 = ψ∗

2 (0)−1 N2 = ψ1(0)−1

A shift of the arguments of Z is assumed if one of the wave functions becomes
zero at zero. These expressions are valid for stationary wave functions: in the time-
dependent case they introduce an arbitrary time-dependent phase. For this case an
alternative formula is suggested in [5].

The following result is important: Let us assume β to be such that Â, defined
by (5.15), is a generic linear operator. Hence A(x, p), defined in (5.16) satisfies the
following equations:

A(x, p)∗ fw(m,n)(x, p) = an fw(m,n)(x, p) fw(m,n) ∗A(x, p) = am fw(m,n)(x, p)
(5.56)
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Then fw(m,n) is a (off-diagonal) pure state, where the associated functions φn and φm

satisfy the eigenvalue equations:

Âφn(x) = anφn(x) Â∗φm(x) = a∗mφm(x)

The result holds in particular for the energy eigenvalue problem.
The above considerations make it possible to establish a one to one correspon-

dence between the space of all real pure state functions fw(x, p) defined in the phase
space – the functions satisfying the conditions around (5.54) and the Hilbert space
of the physical states ψ(x):

ψ → fw : fw(x, p) =
1

2π h̄

∫
dye−iyp/h̄ψ∗

(
x− y

2

)
ψ
(

x +
y
2

)

fw → ψ : ψ(x) = N
∫

d peipx/h̄ fw

( x
2
, p
)

where N is defined as a normalization phase factor constant.
Similar necessary and sufficient conditions are formulated for mixed phase space

quantum states [5].
These considerations illustrate how the Wigner quantum mechanics can be in-

troduced in an independent way, and used as a formalism to re-derive the standard
operator quantum mechanics.

2.11 Summary

We summarize the basic notions used in the Wigner representation of quantum
mechanics by taking into account the three dimensional nature of the space. The
momentum variable will be replaced by the wave vector k, as the latter is usually
preferred for modeling of carrier transport in semiconductors and devices. This al-
lows to skip h̄ in the definitions (5.20):

fw(r,k,t) =
1

(2π)3

∫
dr′ρ(r + r′/2,r− r′/2, t)e−ir′.k, (5.57)

and to restate the Wigner equation and the Wigner potential as follows:

∂ fw(r,k,t)
∂ t

+
h̄k
m

·∇r fw(r,k,t) =
∫

dk′Vw(r,k−k′) fw(r,k′, t) (5.58)

Vw(r,k) =
1

ih̄(2π)3

∫
dr′e−ir′k(V (r + r′/2)−V(r− r′/2)) (5.59)

If one is interested in the properties of the system along a desired direction, in
the general case the relevant Wigner function becomes (5.57), integrated over the
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obsolete variables. It is a special case when the task is separable into transversal
and longitudinal modes: ρ = ρxρ⊥. Then (5.57) can be reduced to the single-
dimensional definition after an integration over the transversal variables. It is also
possible to consider a Wigner function of the type fx(x,kx,k⊥) where the longitudi-
nal variables come from the single-dimensional definition, imposed e.g. by the fact
that the potential depends only on x, while the transversal variables are introduced
by other parts of the Hamiltonian accounting e.g. for phonons.

2.12 The Bound-States Problem

If the state ψn(r, t) = ψn(r,0)exp(−Ent/h̄) of the physical system is a given en-
ergy eigenstate, the density matrix is time-independent, ρnn(r1,r2, t) = ψ∗

n (r1,0)
ψn(r2,0). In this case the system Hamiltonian and the density operator commute,
and the von Neumann equation (5.18) reduces to

ih̄
∂ ρ̂
∂ t

= [Ĥ, ρ̂]− = 0 . (5.60)

This equation does not contain the system Hamiltonian any longer, and cannot de-
termine the bound-state density matrix, since any given bound-state density matrix,
being time-independent, will satisfy this equation. Similar arguments hold for the
Wigner equation, linked to (5.60) by the Weyl transform. As it has been shown in
[14], bound states cannot be obtained from the ballistic Wigner equation (5.58).

The harmonic oscillator is an example clearly demonstrating this problem. If the
potential is a quadratic function of position, V (r) = m∗ω2|r|2/2, the Wigner equa-
tion (5.58) reduces to the collisionless Boltzmann equation, the three dimensional
version of (5.30), with F(r) = −m∗ω2r being the classical force. The equation
propagates an initial distribution classically. This demonstrates that, in the spirit of
Sect. 2.10, the single equation (5.58) is not completely equivalent to the Schrödinger
equation. Two alternative solutions of this problem can be pursued.

The solutions of the Wigner equation have to be subjected to a necessary and suf-
ficient condition which selects an allowed class of Wigner distributions describing
quantum-mechanical pure states. The condition preceding (5.54) originally formu-
lated [4] in terms of the density matrix is:

∇r1 ∇r2 lnρ(r1,r2) = 0 (5.61)

ρ(r1,r2) =
∫

fw

(
k,

r1 + r2

2

)
eik·(r1−r2) dk

(2π)3 (5.62)

This restriction holds also for the initial condition, responsible for the correct physi-
cal foundation of the computational task. Thus bound states enter externally, via the
initial establishment of the task. The system Hamiltonian does not provide further
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information via the Wigner equation: the only property of the latter is that a bound
state remains unaffected during the evolution. For example, in the case of the har-
monic oscillator, the quantization condition for the energy does not follow from the
Wigner equation, but from a supplementary condition.

The alternative way is to incorporate bound states as a part of the computa-
tional task. Carruthers and Zachariasen [14] start from the Schrödinger equation
and derive an adjoint Wigner equation. If this adjoint equation is considered in ad-
dition, the usual Schrödinger eigenvalue problem can be reconstructed from the
two Wigner equations. The adjoint equation is obtained with the help of the anti-
commutator [14],

[Ĥ, ρ̂ ]+ = Ĥρ̂ + ρ̂Ĥ = 2Eρ̂,

and takes a form, consistent with (5.52) and (5.56):

h̄2

2m∗

(
|k|2 − 1

4
∇2

r

)
fw(m,n)(k,r)−

∫
Ṽw(k−k′,r) fw(m,n)(k

′,r)d k′

=
Em + En

2
fw(m,n)(k,r) (5.63)

Ṽw(q,r) =
1

2ih̄

∫ {
V
(

r +
s
2

)
+V

(
r− s

2

)}
e−iq·s d3s

(2π)3

For m = n one obtains the bound-state Wigner functions, which are real valued. The
case m �= n gives the off-diagonal functions (5.51). The entire set of fw(m,n)(k,r)
form a complete orthonormal basis.

The fact that the Wigner equation alone cannot provide the bound-states of a
closed system has some implications for the numerical solution methods. Consider
a system in which quasi-bound states of long life time exist. In this case the en-
ergy levels have very little broadening, which indicates that the system is almost
closed. Such a system would be a double barrier structure realized by a semicon-
ductor heterostructure. The spacing between resonance energies is typically in the
10−2 eV range. For thick barriers the broadening of the resonances can be in the
10−9 eV range. To resolve such a resonance a highly non-uniform energy grid with
extremely small spacing around the resonance peaks would be needed. The discrete
Fourier transform utilized by a numerical Wigner equation solver, on the other hand,
permits only equi-distant grids in momentum space. With such a grid the extremely
narrow resonances cannot be resolved in practice, and the discrete Wigner equation
would become ill-conditioned. From this discussion one can conclude that a numer-
ical Wigner function approach is applicable only to sufficiently open systems, i.e.,
to systems with not too narrow resonances.

The bound state problem is inherent to the coherent picture imposed by the bal-
listic Wigner transport. Bound states can be equally well treated in the more realistic
picture which accounts for de-coherence processes of interaction with the environ-
ment, introduced in the next section.
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3 Wigner–Boltzmann Equation

3.1 Introduction

The Wigner function approach allows to handle open-boundary systems, (carrier
exchange with the environment is actually the basic characteristic of an operating
electronic device), under stationary, small signal, or transient conditions, in a natural
way [15]. Early works investigate the theoretical and numerical properties of the
coherent Wigner equation, appropriate for ballistic transport [4,12,16]. At that time
it has been recognized that dissipative processes are not only a part of the world of
device physics, but that neglecting the interplay between coherent and de-coherence
phenomena may lead to unphysical behavior of the modeled system [17]. The reason
for such behavior are quasi-bound, or ‘notch’ states which may be charged properly
by the boundary conditions only via a dissipation mechanism.

Dissipative interactions have been approached by means of phenomenological
models based on the relaxation time approximation, [15, 18, 19] and also by intro-
ducing an actual Boltzmann-like collision operator [17, 20]. The phonon collision
operator acting upon the Wigner distribution has been initially suggested as an a pri-
ory assumption that ‘is an adequate approximation at some level’ [17]. Can the
classical Boltzmann scattering operator and the quantum Wigner-potential opera-
tor reside in a common equation? The answer is not trivial: derivations from first
principles and analysis of the assumptions and approximations have been provided
only recently for interactions with ionized impurities [21] and with phonons [22].
Moreover the two approaches are very different.

Consider for instance the short-range Coulomb potential created by an ionized
impurity e2 exp(−β |r− ri|)

/
4πε |r− ri|, where ε is the semiconductor permittivity

and β is the screening factor in the static screening approximation. The demonstra-
tion starts with the derivation of the Wigner potential associated with this Coulomb
potential, from which a quantum evolution term is derived. After some tedious but
straightforward calculations, considering a large number of dopants and within the
fast collision approximation, the electron–impurity collision term finally takes ex-
actly the same form as commonly derived for the Boltzmann collision operator with
continuous doping density [21].

The semiclassical phonon collision is derived from the equation for the gener-
alized Wigner function [23, 24]. Along with the electron coordinates, the function
depends on the occupation number of the phonon states in the system. Of interest
is the electron, or reduced, Wigner function obtained from the generalized Wigner
function by a trace over the phonon coordinates. A closed equation for the reduced
Wigner function can be derived after a hierarchy of approximations, which includes
the weak scattering limit and assumes that the phonon system is in equilibrium [22].
They concern the interaction with the phonons, while the potential operator remains
exact. The phonon interaction in the resulting equation, being nonlocal in both
space and time is yet quantum. The Wigner–Boltzmann equation is obtained after
a classical limit in the phonon term, leading to the instantaneous, local in position
Boltzmann collision operator.
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The effects neglected by this limit can be studied from the homogeneous form
of the equation for the reduced Wigner function. In this case the latter reduces to
the Levinson equation [25], or equivalently to the Barker–Ferry equation, [26] with
infinite electron lifetime. It should be noted that the inclusion of a finite lifetime
requires a refined set of approximations in the generalized Wigner equation [27].

Effects of time dependent collisional broadening (CB) and retardation of phonon
replicas have been investigated theoretically and experimentally in homogeneous
semiconductors [28–32]. These effects are related to the lack of energy conservation
and the memory character of the electron–phonon dynamics, and are due to the finite
duration of the interaction process. The effect of the action of the electric field dur-
ing the process of collision – the intra-collisional field effect (ICFE) – has attracted
the scientific attention for quite some time [33–35]. Numerical studies demonstrate
the CB, CR and ICFE effects in the case of ultrafast and/or high field transport in
semiconductors and insulators [24,36–40] and in the case of photo-excited semicon-
ductors [31, 32]. The solutions of the Levinson equation show the establishment of
the classical, energy conserving delta function for long times. Semiclassically for-
bidden states are occupied at early evolution times [22, 32]. The first experimental
evidence of memory effects and energy non-conserving transitions in the relaxation
of hot carrier distributions have been reported a decade ago [29]. At higher times,
which are above few hundred femtoseconds for GaAs, the Boltzmann limit dom-
inates in the carrier evolution. A theoretical analysis [41] supports this result: the
classical limit and the first order correction of the equation have been derived by us-
ing a small parameter. The latter requires that the product of the time scale and the
phonon frequency scale to become much larger than unity, which gives rise to coarse
graining in time. Thus, for long evolution times, the quantum effects in the electron–
phonon interaction can be neglected. Consequently, the intra-collisional field effect
is not important in stationary high field transport in semiconductors [38]. Rather, the
effect must be sought in the time domain of the early time evolution, which precedes
the formation of the classical energy conserving δ -function [39, 42]. We note that
the above considerations hold in the weak collision limit, where the next interaction
begins well after the completion of the current one.

The above considerations show that the inclusion of the Boltzmann collision op-
erator in the Wigner equation requires that the dwell time of the carriers inside the
device, and hence the device itself, must be sufficiently large. On the contrary, the
application of the Wigner potential operator is reasonable for small device domains,
where the potential changes over a region comparable with the coherence length of
the electron. These requirements are not contradictory, since common devices are
composed by an active quantum domain attached to large contact regions.

3.2 Electron–Phonon Interaction

We consider the dynamics of a single electron, subject to the action of the electric
potential and interacting with the lattice vibrations. The description of the system



312 M. Nedjalkov et al.

is provided by both electron and phonon coordinates. The Wigner function and the
Wigner equation for such a coupled electron–phonon system are defined as follows.
The Hamiltonian of the system is given by

H = H0 +V + Hp + He−p

= − h̄2

2m
∇r +V(r)+∑

q
b†

qbqh̄ωq + ih̄∑
q

C(q)(bqeiqr −b†
qe−iqr) (5.64)

where the free electron part is H0, the structure potential is V (r), the free-phonon
Hamiltonian is given by Hp and the electron–phonon interaction is He−p. In the
above expressions b†

q and bq are the creation and annihilation operators for the
phonon mode q, ωq is the energy of that mode and C = ih̄C(q) is the electron–
phonon coupling element, which depends on the type of phonon scattering analyzed.
The state of the phonon subsystem is presented by the set {nq} where nq is the oc-
cupation number of the phonons in mode q. Then the representation is given by the
vectors |{nq},r〉 = |{nq}〉|r〉. The generalized Wigner function [23] is defined by:

fw(r,k,{nq},{nq}′,t) =
1

(2π)3

∫
dr′e−ikr′ 〈r + r′/2,{nq}|ρ̂t |{nq}′,r− r′/2〉

The equation of motion of fw is derived [43] with the help of (5.18):

∂ fw(r,k,{nq},{nq}′,t)
∂ t

=
1
ih̄

∫
dr′e−ikr′ 〈r + r′/2,{nq}| [H, ρ̂t ]− |{nq}′,r− r′/2〉

The right hand side of this equation is shortly denoted by WT (H). In the following
we evaluate W T (H) for each term of the Hamiltonian (5.64). WT (H0 +V(r)) can
be readily evaluated by using the steps applied after (5.18). The free phonon term is
evaluated as:

WT (Hp) =
1
ih̄

(
ε({nq})− ε({n′q}

)
fw(r,k,{nq},{nq}′, t)

where ε({nq}) = ∑q nqh̄ωq. The transform WT (He−p) gives rise to four terms. By
inserting

∫
dr′′|r′′ >< r′′| in the first one it is obtained:

∫
dr′

∫
dr′′e−ikr′

〈
r +

r′

2
,{nq}|bq′e

iq′r′′ |r′′
〉〈

r′′|ρ̂t |{n′q},r− r′/2

〉

=
√

nq′ + 1
∫

dr′e−ikr′eiq′(r+r′/2)
〈

r +
r′

2
,{n1, . . . ,nq′ + 1, . . .}|ρ̂t |{n′q},r−

r′

2

〉

=
√

nq′ + 1eiq′r fw

(
r,k− q′

2
,{n1, . . . ,nq′ + 1, . . .},{n′q}, t

)

where the ortho-normality relation 〈r|r′〉 = δ (r− r′) has been used along with the
fact that bq becomes a creation operator when operating to the left. The remaining
terms are evaluated in a similar way.



5 Wigner Function Approach 313

We are now ready to formulate the generalized Wigner equation:
(

∂
∂ t

+
h̄k
m

·∇r

)
fw(r,k,{nq},{n′q},t)

=
1
ih̄

(
ε({nq})− ε({n′q})

)
fw(r,k,{nq},{n′q}, t)

+
∫

dk′Vw(r,k−k′) fw(r,k′,{nq},{n′q}, t)+∑
q′

C(q′)

×
{

eiq′r
√

nq′ + 1 fw

(
r,k− q′

2
,{nq}+

q′ ,{n′q}, t
)

−e−iq′r√nq′ fw

(
r,k+

q′

2
,{nq}−q′ ,{n′q}, t

)

−eiq′r
√

n′q′ fw

(
r,k+

q′

2
,{nq},{n′q}−q′ , t

)

+ e−iq′r
√

n′q′ + 1 fw

(
r,k− q′

2
,{nq′},{n′q}+

q′ , t

)}
(5.65)

where we denoted by {nq}+
q′ ({nq}−q′) the states of the phonon subsystem, obtained

from {nq} by increasing (decreasing) the number of phonons in the mode q′ by
unity. Furthermore we observe that the last two terms in the curly brackets can be
obtained from the first ones by the following rule: (a): the argument of the exponent
changes its sign; (b): the phonon number in the mode determined by the summation
index (q′) is changed in the right state instead in the left state; (c): in the square roots
nq′ is replaced by n′q′ . In what follows we denote the last two terms by i.c..

The generalized Wigner equation couples an element fw(. . . ,{n},{m}, t) to four
neighborhood elements for any phonon mode q. For any such mode nq can be any
integer between 0 and infinity and the sum over q couples all modes.

In accordance with Sect. 2.9 and (5.50) of interest is the reduced Wigner func-
tion, which is obtained from the generalized Wigner function by taking the trace
over the phonon states. An exact equation for the reduced Wigner function can not
be obtained since the trace operation does not commute with the electron–phonon
interaction Hamiltonian. In what follows we derive a model, which approximates
the generalized Wigner equation, but is closed with respect to the reduced Wigner
function. The model is general enough to account for the quantum character of the
interaction with the phonons. The electron-device potential part of the transport is
treated on a rigorous quantum level. A classical limit in the electron–phonon op-
erators gives rise to the Wigner–Boltzmann equation. The derivation introduces a
consistent hierarchy of assumptions and simplifications.

3.2.1 Weak Coupling

We begin with the assumptions which simplify (5.65) towards a model equation
set for the electron Wigner function. Of interest are the diagonal elements of the
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generalized WF. The evolution of an initial state of the system defined at time
t = 0 is considered. The state is assumed diagonal with respect to the phonon
coordinates, which corresponds to the evolution process of an initially decoupled
electron–phonon system.

(
∂
∂ t

+
h̄k
m

·∇r

)
fw(r,k,{nq},{nq},t)=

∫
dk′Vw(r,k−k′) fw(r,k′,{nq},{nq}, t)

+∑
q′

C(q′)
{

eiq′r
√

nq′ + 1 fw

(
r,k− q′

2
,{nq}+

q′ ,{nq}, t
)

−e−iq′r√nq′ fw

(
r,k+

q′

2
,{nq}−q′ ,{nq}, t

)
+ i.c.

}
(5.66)

A diagonal element is linked to so called first-off-diagonal elements, which are
diagonal in all modes but the current mode q′ of the summation. In this mode the
four neighbors of nq′ ,nq′ namely nq′ ±1,nq′ and nq′ ,nq′ ±1 are concerned. This is
schematically presented on Fig. 5.1.

The auxiliary equation for the first-off-diagonal element in (5.66) is obtained by
the help of (5.65):

(
∂
∂ t

+
h̄(k− q′

2 )
m

·∇r

)
fw

(
r,k− q′

2
,{nq}+

q′ ,{nq}, t
)

= −iωq′ fw

(
r,k− q′

2
,{nq}+

q′ ,{nq},t
)

Fig. 5.1 Diagonal and
first-off-diagonal elements
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+
∫

dk′Vw(r,k−k′) fw

(
r,k− q′

2
,{nq}+

q′ ,{nq}, t
)

+∑
q′′

C(q′′)

×
{

eiq′′r
√

nq′′ + 1 fw

(
r,k− q′

2
− q′′

2
,{{nq}+

q′ }+
q′′ ,{nq}, t

)

−e−iq′′r√nq′′ fw

(
r,k− q′

2
+

q′′

2
,{{nq}+

q′ }−q′′ ,{nq}, t
)

−eiq′′r√nq′′ fw

(
r,k− q′

2
+

q′′

2
,{nq}+

q′ ,{nq}−q′′ , t
)

+ e−iq′′r
√

nq′′ + 1 fw

(
r,k− q′

2
− q′′

2
,{nq}+

q′ ,{nq}+
q′′ , t

)}
(5.67)

Accordingly, the first-off-diagonal elements are linked to elements which in general
are placed further away from the diagonal ones by increasing or decreasing the
phonon number in a second mode, q′′, by unity. These are the second-off-diagonal
elements. The only exception is provided by two contributions which recover diag-
onal elements. They are obtained when the running index q′′ coincides with q′ due
to: (a): ({{nq}+

q′ }−q′′ ,{nq}) in the term in the fifth row of (5.67). We note that in this

case n′′q = n′q + 1 in the square root in front of fw. (b): ({nq}+
q′ ,{nq}+

q′′) in the last
row of (5.67).

Next we observe that each link of two elements corresponds to a multiplication
by the factor C. Thus the next assumption is that C is a small quantity. While the
first-off-diagonal elements give contributions to (5.66) by order of C2, the second-
off-diagonal elements give rise to higher order contributions and are neglected. The
physical meaning of the assumption is that the interaction with a phonon in mode
q′ which begins from a diagonal element completes at a diagonal element by an-
other interaction with the phonon in the same mode, without any interference with
phonons of other modes. The assumption allows to truncate the considered elements
to those between the two lines parallel to the main diagonal on Fig. 5.1. As a next
step we need to solve the truncated equation, which can be done explicitly after
further approximations related to the Wigner potential. For this it is sufficient to
consider the classical force according (5.30). Such a model is able to account for
correlations between electric field and scattering – the ICFE. As we aim at deriva-
tion of a Boltzmann type of collisions, we entirely neglect the Wigner potential
term:

⎛
⎝ ∂

∂ t
+

h̄
(

k− q′
2

)

m
·∇r + iωq′

⎞
⎠ fw

(
r,k−q′

2
,{nq}+

q′ ,{nq}, t
)

= C(q′)e−iq′r
√

nq′ + 1
(
− fw (r,k,{nq},{nq},t)+ fw

(
r,k−q′,{nq}+

q′ ,{nq}+
q′ , t

))

(5.68)
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We consider the trajectory

k(t ′) = k− q′

2
; R(t ′,q′) = r−

∫ t

t′
dτ

h̄k(τ)
m

= r− h̄(k−q′/2)
m

(t − t ′); (5.69)

initialized at time t by k− q′
2 , r and the function

fw(R(t ′,q′),k(t ′),{nq}+
q′ ,{nq}, t)eiω ′

qt′ (5.70)

The total time derivative of this function, taken at time t ′ = t gives the left hand side
of (5.68). Then we consider a form of this equation, obtained by a parameterization
by t ′ with the help of (5.69), and a multiplication by the exponent. A final integration
in the time interval 0,t gives rise to:

fw

(
r,k− q′

2
,{nq}+

q′ ,{nq},t
)

= C(q′)
∫ t

0
dt ′e−iωq′ (t−t′)e−iq′R(t′,q′)

√
nq′ + 1

(
fw(R(t ′,q′),k−q′,{nq}+

q′ ,{nq}+
q′ ,t

′)− fw(R(t ′,q′),k,{nq},{nq}, t ′)
)

(5.71)

where we used the fact that the initial condition is zero due to the assumption for an
initially decoupled system.

The corresponding equation for the second first-off-diagonal element is obtained
in the same fashion:

fw

(
r,k+

q′

2
,{nq}−q′ ,{nq},t

)
= C(q′)

∫ t

0
dt ′eiωq′ (t−t′)eiq′R(t′ ,−q′)√nq′

(
fw(R(t ′,−q′),k,{nq},{nq},t ′)− fw(R(t ′,−q′),k+ q′,{nq}−q′ ,{nq}−q′ , t ′)

)

(5.72)

The remaining two elements, which compose the i.c. term in (5.66) give rise to
two integral equations which are complex conjugate to the first two. In this way the
relevant information is provided by (5.66), (5.71) and (5.72), which can be unified
as follows:(

∂
∂ t

+
h̄k
m

·∇r

)
fw(r,k,{nq},{nq},t)=

∫
dk′Vw(r,k−k′) fw(r,k′,{nq},{nq}, t)

+2Re∑
q′

C2(q′)
∫ t

0
dt ′

{
(nq′ + 1)ei

ε(k)−ε(k−q′)−h̄ωq′
h̄ (t−t′)

(
fw(R(t ′,q′),k−q′,{nq}+

q′ ,{nq}+
q′ ,t

′)− fw(R(t ′,q′),k,{nq},{nq}, t ′)
)

−nq′e
i

ε(k)−ε(k+q′)+h̄ωq′
h̄ (t−t′)

(
fw(R(t ′,−q′),k,{nq},{nq}, t ′)

− fw(R (t ′,−q′),k+ q′,{nq}−q′ ,{nq}−q′ ,t ′)
)}

(5.73)
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where we have used the equalities:

±q′r∓ωq′(t − t ′)∓q′R(t ′,±q′) =
ε(k)− ε(k∓q′)∓ h̄ωq′

h̄
(t − t ′)

The model involves only diagonal elements, so that the double counting of the
phonon coordinates becomes obsolete and one set of phonon numbers may be
omitted.

3.2.2 Equilibrium Phonons

The obtained equation set (5.73) is still infinite with respect to the phonon coor-
dinates, which are to be eliminated by the trace operation. The next assumption is
that the phonon system is a thermostat for the electrons, i.e. the phonon distribution
remains in equilibrium during the evolution:

P(nq, t
′) =

∫
dr

∫
dk ∑

{nq′ }
′ fw(r,k,{nq′ },{nq′},t ′) = Peq(nq) =

e−h̄ωqnq/kT

n(q)+ 1
(5.74)

Here P(nq, t ′) is the probability for finding nq phonons in mode q at time t ′, the ∑′
denotes summation over all phonon coordinates but the one in mode q, and n(q) is
the mean equilibrium phonon number (Bose distribution):

n(q) =
∞

∑
nq=0

nqPeq(nq) =
1

eh̄ωq/kT −1
;

∞

∑
nq=0

Peq(nq) = 1 (5.75)

The condition (5.74) is equivalent to the assumption that at any time 0 ≤ t ′ ≤ t it
holds

fw(r,k,{nq},{nq},t ′) = f (r,k,t ′)∏
q

Peq(nq) (5.76)

where f (r,k, t ′) reduced or electron Wigner function. Accordingly, the four terms
in the curly brackets of (5.73) become dependent on the phonon coordinates by the
following factors:

(nq′ + 1)Peq(nq′ + 1)
′

∏
q

Peq(nq); (nq′ + 1)Peq(nq′)
′

∏
q

Peq(nq)

nq′Peq(nq′)
′

∏
q

Peq(nq); nq′Peq(nq′ −1)
′

∏
q

Peq(nq) (5.77)

Now the trace operation, namely the sum over nq for all modes q, can be readily
done with the help of (5.75) and the following equalities [44]:

n(q) = ∑
nq

(nq + 1)Peq(nq + 1); n(q)+ 1 = ∑
nq

nqPeq(nq −1);
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The factors depending on the phonon coordinates are replaced by the following
numbers:

n(q′); (n(q′)+ 1); (5.78)

n(q′); (n(q′)+ 1) (5.79)

This is an important step which allows to close the equation set for the electron
Wigner function, transforming it into a single equation.

However, it is important to clarify what the physical side of the formal assump-
tion (5.76) is. The peculiarities of the model (5.73) in conjunction with (5.76) can
be conveniently analyzed from the integral form of the equation set, written for a
homogeneous system, where the space dependence appears due to the initial con-
dition only, which is of a decoupled electron–phonon system. The integral form is
obtained within the following steps: R(t ′,±q′) is replaced from (5.69), introduced
is another trajectory, initialized by r,k,T ,

kT (t) = k; RT (t) = r−
∫ T

t
dτ

h̄kT (τ)
m

= r− h̄k
m

(T − t); (5.80)

where T now becomes the evolution time. k,r are replaced on both sides of (5.73)
by kT (t),RvT (t) and the equation is integrated on t in the limits 0,T . The initial
condition in the form (5.76) appears explicitly:

fw(r,k,{nq},T ) = f (r,k,0)∏
q

Peq(nq)

+2Re∑
q′

C2(q′)
∫ T

0
dt
∫ t

0
dt ′

{
(nq′ + 1)ei

ε(k)−ε(k−q′)−h̄ωq′
h̄ (t−t′)

(
fw(RT (t)− h̄(k−q′/2)

m
(t − t ′),k−q′,{nq}+

q′ , t
′)

− fw(RT (t)− h̄(k−q′/2)
m

(t − t ′),k,{nq},t ′)
)
−nq′e

i
ε(k)−ε(k+q′)+h̄ωq′

h̄ (t−t′)

(
fw(RT (t)− h̄(k+ q′/2)

m
(t − t ′),k,{nq},t ′)

− fw (RT (t)− h̄(k+ q′/2)
m

(t − t ′),k+ q′,{nq}−q′ , t ′)
)}

(5.81)

The phonon system can be at any state with certain set of numbers {nq}, however
now the initial condition assigns a probability to this set. A replacement of the equa-
tion into itself presents the solution as consecutive iterations of the initial condition.
We fix a set of numbers {nq}, corresponding to the phonon state of interest, and
consider the first iteration of the term in the third row of (5.81). Until time t ′ the
arguments of the initial condition are rt′ = RT (t)− h̄(k−q′/2)

m (t − t ′),kt′ = k − q′
which we may think as coordinates of a given particle, and the phonon system is
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in another state with an extra phonon in mode q′ which contributes to the state of
interest. At time t ′ the interaction begins by absorption of the half of the wave vector
of a phonon in mode q′, so that the particle appears with a wave vector k−q′/2, and

moves along a trajectory determined by rt′ +
h̄(k−q′/2)

m (t − t ′) At time t the second
half of the phonon is absorbed. The particle coordinates become RT (t), k – exactly
the right ones, which will bring it to r,k at time T . It contributes to the function
on the left by the real part of the initial condition value at the starting point, mul-
tiplied by the pre factor in front of the considered term. The process corresponds
to real absorption of a phonon: the phonons at the initial state are reduced by one.
The next term describes a virtual process: the particle at rt′ ,k first emits half of the
wave vector of a phonon in mode q′, but then, at time t it is absorbed back. Thus
the initial phonon state does not change at the end of the interaction. The rest of the
terms can be explained in the same way. We also note that the origin of the ICFE is
the acceleration of the model particle along the trajectories.

The important message from this picture is the finite duration of the interaction
process. We also expect the usual for a physical point of view existence of a mean
interval with vanishing probabilities for large deviations from the mean. By recalling
the fact that given interaction completes before another initiates, it follows that for
a given evolution interval there is only a finite number of involved phonons. In
accordance, the assumption for a thermostat means that the number of phonons is
so huge that a given phonon mode can be involved only once in the interaction.
A quantitative analysis can be found in [27].

3.2.3 Closed Model

The assumption for equilibrium allows to eliminate the phonon degrees of freedom
from (5.73), which are now replaced by the numbers (5.79). The equation can be
conveniently rewritten by relying on the symmetry of C, nq and ωq with respect to
the change the sign of the wave vector. We change the sign of q in the last two rows
and introduce the variable k′ = k−q′.
(

∂
∂ t

+
k
m
·∇r

)
fw(r,k,t)=

∫
dk′{Vw(r,k−k′) fw(r,k′, t)

+
∫ t

0
dt ′

(
S(k′,k,t,t ′) fw(R(t ′,q′),k′,t ′)−S(k,k′, t, t ′) fw(R(t ′,q′),k, t ′)

)}
(5.82)

S(k′,k, t, t ′) =
2VC2

q

(2π)3

(
n(q)cos(Ω(k′,k,t,t ′))+ (n(q)+1)cos(Ω(k,k′, t, t ′))

)

Ω(k,k′, t, t ′) =
ε(k)− ε(k′)+ h̄ωq

h̄
(t − t ′); q = k−k′

The phonon interaction in this equation bears quantum character despite all sim-
plifying assumptions. No approximations are introduced for the coherent part of
the transport process: if the phonon interaction is neglected, the common Wigner
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equation for an electron in a potential field is recovered. The analysis of the physical
processes involved is the same as for (5.81). The main peculiarity is the non-locality
in the real space. The Boltzmann distribution function in point r,k at time t col-
lects contributions only from the past of the real space part of the trajectory passing
through this point. Since the finite duration of the phonon interaction, the solution
of (5.83) can collect contributions from all points in the phase space and thus gives
rise to a spatial non-locality. There is a lack of energy conservation even in the most
simple homogeneous case, where the electric field is zero. The energy conserving
delta function in the Boltzmann type of interaction is obtained after a limit which
neglects the duration of the collision process.

3.2.4 Classical Limit: General Form of the Equation

We consider the classical limit of the electron–phonon interaction. The time integral
in (5.83) is of the form: ∫ t

0
dτe

i
h̄ ετφ(τ) (5.83)

The following formal limit holds in terms of generalized functions:

lim
h̄→0

1
h̄

∫ ∞

0
dτe

i
h̄ ετ φ(τ) = φ(0)

{
πδ (ε)+ iP

1
ε

}
(5.84)

The actual meaning of the process of encouraging a constant to approach zero is
that the product of the energy and time scales becomes much larger than h̄. The
mathematical aspects of the derivation are considered in [41]. As applied to the right
hand side of (5.83) the limit (5.84) leads to cancellation of all principal values P .
This is in accordance with the fact that (5.83) contains only real quantities. The
energy and momentum conservation laws are incorporated in the obtained equation.
We note that the time argument of the integrant is zero, which implies t = t ′ and
thus R(t ′,q′) = r.

The general form of the obtained Wigner–Boltzmann equation is

(
∂
∂ t

+
k
m
·∇r

)
fw(r,k,t) =

∫
dk′Vw(r,k−k′) fw(r,k′, t ′)

+
∫

dk′ ( fw(r,k′,t)S(k′,k)− fw(r,k, t)S(k,k′)
)

(5.85)

with the particular for the electron–phonon interaction scattering rate S:

S(k′,k) =
2π
h̄

V
(2π)3

{
|C (q)|2δ (ε(k)− ε(k′)− h̄ωq)n(q)

+ |C (q)|2δ (ε(k)− ε(k′)+ h̄ωq)(n(q)+ 1)
}

where q = k−k′, and C has been replaced by the electron–phonon matrix element
C : C2 = |C |2/(h̄)2.
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The interaction with phonons is now treated classically while the interaction with
the Wigner potential is considered on a rigorous quantum level. We conclude by
noting that a classical limit in the potential term recovers the Boltzmann equation.

3.3 Electron–Impurity Interaction

Let us now see in more detail, as was already mentioned above, how the short-range
scattering by ionized impurities may be included into the Wigner transport equa-
tion. For an assembly of dopant atoms j of position r j the short-range interaction
potential with electrons may be written in the form of a screened Coulomb potential

Ve−ii = ∑
j

e2 exp
(−β

∣∣r− r j
∣∣)

4π ε
∣∣r− r j

∣∣ (5.86)

where ε and β are the dielectric constant and the screening factor, respectively. The
corresponding Wigner potential simply writes

Vw (r,k) =
i

h̄ (2π)3

e2

4π ε ∑
j

∫
d r′e−i k r′

⎛
⎝e

−β
∣∣∣r− r′

2 −r j

∣∣∣∣∣∣r− r′
2 − r j

∣∣∣ −
e
−β

∣∣∣r+ r′
2 −r j

∣∣∣∣∣∣r + r′
2 − r j

∣∣∣

⎞
⎠

=
i

h̄ (2π)3

e2

4π ε ∑
j

(
23
(

e−2i k(r−r j)− e2i k(r−r j)
)∫

d r′′
e−2i k r′′e−β |r′′|

|r′′|

)

=
i

h̄ (π)3

e2

ε ∑
j

((
e−2i k(r−r j)− e2i k(r−r j)

) 1
4k2 + β 2

)
(5.87)

which leads to the quantum evolution term

Q fw (r,k) =
i

h̄ (π)3

∫
d k′ fw

(
r,k′) e2

ε

×∑
j

((
e−2i(k−k′)(r−r j)− e2i(k−k′)(r−r j)

) 1

4(k−k′)2 + β 2

)
(5.88)

In this section, we assume as a simplification the external field to be zero. It is
in accordance with the similar assumption that was used in the previous section
regarding electron–phonon scattering. Over a trajectory initialized by r(t) = r,k, t,
where the notation implies the meaning of a usual change of variables,

r(t) = R
(
t ′
)
+

h̄k
m

(
t − t ′

)
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in the Wigner transport equation (5.58), the left hand side term ∂ fw(r,k,t′)
∂ t′ +

h̄ k
m

∂ fw(r,k,t′)
∂ r simplifies into ( ∂ fw(R(t′),k,t′)

∂ t′ )R(t′). By taking (5.88) into account, the
Wigner transport equation thus becomes

(
∂ fw (R(t ′) ,k,t ′)

∂ t ′

)
R(t′)

=
i

h̄ (π)3

∫
d k′ fw

(
R
(
t ′
)
,k′) e2

ε

×∑
j

((
e−2i(k−k′)(R(t′)−r j)− e2i(k−k′)(R(t′)−r j)

) 1

4(k−k′)2 + β 2

)
,

which may be integrated into

fw
(
r,k′, t

)
= ic +

e2

ε
i

h̄ (π)3

t∫

0

d t ′
∫

d k′′ fw
(
R′ (t ′) ,k′′, t ′

)

×∑
j

[(
e−2i(k′−k′′)(R′(t′)−r j)− e2i(k′−k′′)(R′(t′)−r j)

) 1

4(k−k′)2 + β 2

]

(5.89)

where the prime of R prompts that the trajectory is now initialized by the arguments
r,k′, t of the left hand side of the equation. By choosing a time origin far enough
from time t, the initial condition term vanishes. Substituting (5.89) into (5.88) leads
to

Q fw (r,k, t) = − 1

h̄2 (π)6

e4

ε2

t∫

0

d t ′
∫

d k′
∫

d k′′ fw
(
R′ (t ′) ,k′′, t ′

)

×∑
j

[(
e−2i(k−k′)(r−r j)− e2i(k−k′)(r−r j)

)

×
(

e−2i(k′−k′′)(R′(t′)−r j)− e2i(k′−k′′)(R′(t′)−r j)
)

×
(

4
(
k−k′)2 + β 2

)−1(
4
(
k′ −k′′)2 + β 2

)−1
]

(5.90)

By developing the product of exponential functions, the non-cross terms give

S1 =
(

4
(
k−k′)2 + β 2

)−1(
4
(
k′ −k′′)2 + β 2

)−1

×∑
j

e−2i(k−k′)(r−r j)e−2i(k′−k′′)(R′(t′)−r j) + cc (5.91)

S1 =
(

4
(
k−k′)2 + β 2

)−1(
4
(
k′ −k′′)2 + β 2

)−1

×e−2i(k−k′)(r) e
−2i(k′−k′′)

(
r− h̄ k′

m (t−t′)
)

∑
j

e2i(k−k′′)(r j) (5.92)
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If the number of doping atoms in density ND is assumed to be large enough the
discrete sum in (5.90) can be replaced by an integral that takes the form

∑
j

e2i(k−k′′)r j ≈ ND

∫
d r je

2i(k−k′′) r j = ND(2π)3δ
(
2
(
k−k′′)) (5.93)

and then,

S1 ≈
(

4
(
k−k′)2 + β 2

)−1(
4
(
k′ −k′′)2 + β 2

)−1
e−2i(k−k′)(r)

×e
−2i(k′−k′′)

(
r− h̄ k′

m (t−t′)
)

π3ND δ
(
k−k′′) (5.94)

S1 ≈ π3

[
4

4(k−k′)2 + β 2

]2

e
−2i(k′−k)

(
− h̄ k′

m (t−t′)
)

ND δ
(
k−k′′) (5.95)

Similarly, the cross terms of the product of exponential functions in (5.90) may
be written as

S2 ≈ π3

[
1

(k−k′′)2 + β 2

]2

e
2 i
4 (k−k′′)

(
− h̄ (k+k′′)

m (t−t′)
)

ND δ
(
k−2k′+ k′′)+ cc

(5.96)
Substituting (5.95) and (5.96) into (5.90) yields

Q fw (r,k, t) = − e4 ND

h̄2 π3 ε2

t∫

0

d t ′
{∫

d k′ fw
(
R′(t ′),k, t ′

)
e
−2i(k′−k)

(
− h̄ k′

m (t−t′)
)

×
(

4
(
k−k′)2 + β 2

)−2
+ cc

−
∫

dk′′ fw
(
R′(t ′),k′′, t ′

)
e2i(k2−k′′2)( h̄

m (t−t′))

((
k−k′′)2 + β 2

)−2
+ cc

}
(5.97)

The change of variable 2k′ = k+ k′′ in the first integral of (5.97) leads to

Q fw (r,k, t) = − e4 ND

h̄2 (2π)3 ε2

t∫

0

d t ′
{∫

dk′′
((

k−k′′)2 + β 2
)−2

[
fw
(
R′(t ′),k,t ′

)
e2i 1

4 (k2−k′′2)( h̄
m (t−t′))

− fw
(
R′(t ′),k′′,t ′

)
e2i 1

4 (k2−k′ ′2)( h̄
m (t−t′))

]
+ cc

}
(5.98)
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In the limit of fast collisions, as seen for electron–phonon scattering in (5.84), we
finally find:

[
∂
∂ t

+
h̄k
m

∂
∂r

]
fw(r,k,t) =

e4 ND

h̄ (2π)2 ε2
×
∫

d k′′
{((

k−k′′)2 + β 2
)−2

× δ
(
E (k)−E

(
k′′)) [ fw

(
r,k′′, t

)− fw (r,k, t)
]}

(5.99)

This equation is of the form of (5.85), and is exactly the same, as the one commonly
used to model the electron/ionized impurity scattering in the Boltzmann equation
(see e.g. [45] (4.24)). Once again the Wigner function allows modeling of this scat-
tering in an intuitive and familiar way that is ideal for electron device simulation.

4 Numerical Approaches: Particle Algorithms

The first applications of the Wigner function in computational electronics are al-
ready more than two decades old. Coherent transport in one-dimensional (1D)
structures have been successfully approached within deterministic methods [16].
Addressed have been issues related to the correct impose of the boundary conditions
which ensure the convergency of the method as well as the discretization scheme.
Latter deterministic approaches [12, 15]. have been refined towards self-consistent
schemes which take into account the Poisson equation, and dissipation processes
have been included by using the relaxation time approximation. The importance of
the dissipative processes for the correct distribution of the charge across the device
has very soon turned the attention towards the Boltzmann collision term [17]. The
three dimensional space of the before- and after- scattering wave vectors has been
reduced with the help of an assumption for overall transversal equilibrium to wave
vector components along the transport direction.

At that time it has been recognized that an extension of the deterministic ap-
proaches to more dimensions is prohibited by the enormous increase of the memory
requirements, a fact which remains true even for today’s computers. Indeed, despite
the progress of the deterministic Boltzmann simulators which nowadays can con-
sider even 3D problems, the situation with Wigner model remains unchanged. The
reason is that, in contrast to the Boltzmann scattering matrix, which is relatively
sparse due to the δ -functions introduced by the conservation laws, the counterpart
provided by the Wigner potential operator is dense.

One of the main difficulty in the implementation of the deterministic solution
comes from the discretization of the diffusion term ∇r fw because of the typically
rapid variations of the Wigner function in the phase-space. Though a second order
discretization scheme is widely used, it has been shown that first, second, third and
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fourth order schemes lead to very different I −V characteristics of RTDs [46]. In
the case of nano-transistors, the third order is required to provide good results in
subthreshold regime [47, 48].

A basic property of the stochastic methods is that they turn the memory require-
ments of the deterministic counterparts into computation time requirements. The
efforts towards development of stochastic methods for Wigner transport begun al-
most two decades ago [23, 49–51]. As based on the formal analogy between the
Wigner and Boltzmann equations, they have been inspired by the success of the clas-
sical device Monte Carlo methods, and thus brought the idea of numerical quantum
particles.

Particle models are developed for computation of physical quantities in the
framework of different kinetic theories. Actually, numerical particles emerged in
the field due to the probabilistic transparency of the Boltzmann equation: the nu-
merical concepts of the device Monte Carlo simulators are developed in accordance
with the underlying physics of the transport of classical carriers. The most simple
version of these simulators is built up on the free electron quasi-particle concepts
of effective mass and energy dispersion. Expansions of the physical concepts with
respect to the band structure, scattering mechanisms, Pauli exclusion principle etc,
retain the picture of developing particles.

Further particle models are already introduced by numerical approaches. Some-
times these introduced for numerical purposes models can be used to interpret and
explain the underlying physics even of pure quantum phenomena such as tunneling
and interference.

Below we summarize some particle models starting with the direct application
of the classical picture.

The smoothed effective potential approach, [52] utilizes classical particles to
account for quantum mechanical size quantization effects. The effective potential
is a smoothing of the real classical potential due to the finite size of the electron
wave packet. It has been shown that the classical trajectories resulting from the ef-
fective potential have important details in common with the corresponding Bohm
trajectories [53]. A further generalization of the approach replaces the action of the
Hamiltonian on the wave function by the action of a classical Hamiltonian on parti-
cles with an appropriately modified potential. A set of coupled equations is obtained
for the inhomogeneous equilibrium distribution function in the device and its first
order correction. The effective potential, defined in terms of a pseudo-differential
operator acting on the device potential, becomes also a function of the momenta of
the classical particles [54, 55].

Ultrafast phenomena in photo-excited semiconductors are described by a set
of coupled equations where the distributions of the electrons and holes and the
inter-band polarization are treated as independent dynamical variables. If interac-
tion processes are treated on a semiclassical level, so that all transition functions
become positive, the set of equations has the structure of rate equations which can
be solved by a Monte Carlo method [56]. The remarkable fact that a particle model
is associated with the evolution of the inter-band polarization, a complex quantity
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responsible for the coherence in the photo-generation processes, shows how the
method has evolved beyond the understanding of a computer experiment which em-
ulates natural processes.

Furthermore the positiveness of the transition functions is not a necessary con-
dition for a Monte Carlo approach. It has been shown that the action of the Wigner
potential, which is an antisymmetric quantity, gives rise to a Markov process which
can be regarded as a scattering of a particle between consecutive points in the phase
space [57].

Wigner trajectories have been defined by modified Hamilton equations, formu-
lated with the help of a quantum force [50]. The latter is manifestly nonlocal in
space and is expressed through the Wigner potential and function, and its derivative
with respect to the momentum coordinate. The quantum force has singularities at
the points where the momentum derivative of the Wigner function becomes zero.
At these points trajectories can be created or destroyed [50]. Due to this Wigner tra-
jectories can merely provide a pictorial explanation of the evolution of the quantum
system and in particular nicely illustrate tunneling processes [58, 59].

In general, Wigner trajectories remain an auxiliary tool for modeling of quantum
transport, unless the Wigner function in the quantum force term is assumed to be
known. An appropriate approximation for a nearly equilibrium system is a displaced
Maxwell–Boltzmann distribution function. It can be shown that such an assumption
corresponds to the zeroth order correction in the effective potential approach. In
this case the quantum force is defined everywhere except at the phase-space origin,
and gives rise to an effective lowering of the peaks of the potential barriers [49].
The increase of the particle flow observed through the barriers is associated with
tunneling processes.

Another particle model is introduced by Wigner paths [24, 37, 60]. It has been
shown that a ballistic evolution of a δ -like contribution to the Wigner function car-
ries its value following a classical trajectory [36]. The action of the Wigner potential
operator is interpreted as scattering, which, along with the scattering by the phonons,
links pieces of classical trajectories to Wigner paths. We note that, in this model,
the phonon interaction is treated fully quantum mechanically according to the first-
principle equation (5.65). That is, the scattering with phonons begins with exchange
of half of the phonon momentum and completes after a finite time. During this
time, an arbitrary number of interactions with other phonons can be initiated and/or
completed. In comparison, Levinson’s equation considers a single interaction with
finite duration while Boltzmann scattering is instantaneous, so that the trajectory
changes with the full phonon momentum. During the evolution particles accumu-
late a numerical quantity called weight, which carries the quantum information for
the system. The weight is taken into account in the computation of the physical
averages.

Next we introduce two particle models for solving the Wigner–Boltzmann equa-
tion. They unify classical and quantum regions within a single transport picture
where the scattering occurs in the full wave vector space, and two dimensional de-
vices can be considered [61–63].
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Since it can take negative values in some regions of the phase space, it may look
nonsensical to represent the Wigner function with particles which cannot have a
“negative presence”. Classically, electrons either do or do not exist. To solve this
apparent inconsistency with a view to developing a statistical particle approach to
the solution of the Wigner–Boltzmann equation it is necessary to give simulated
particles the strange property to carry negative contributions. With this in mind, it
has been suggested to describe the Wigner function as a sum of Dirac excitations still
localized in the phase-space but weighted by an amplitude, called affinity in [64,65].
The particle affinities contain all the information on the quantum state of the electron
system. They evolve continuously according to the local quantum evolution term of
the Wigner–Boltzmann equation generated by the potential and can take negative
values which are taken into account as weights in the reconstruction of the Wigner
function and in the computation of all physical averages.

An alternative particle approach interprets the Wigner equation, with a Boltz-
mann scattering term as a Boltzmann equation with a generation term. The interac-
tion with the Wigner potential gives rise to generation of particle pairs with opposite
sign. The sign is the basic property which outlines the introduced numerical particles
from classical quasi-particles. It is an important property, since positive and nega-
tive particles annihilate one another. The negative values of the Wigner function
in certain phase space regions can be explained in a natural way by the accumula-
tion of negative particles in these regions. The Wigner–Boltzmann transport process
corresponds to drift, scattering, generation and annihilation of these particles.

These models present the state of the art in the field and will be described in
detail in the rest of this section.

4.1 The Affinity Method

4.1.1 Principles

In this approach, the Wigner function is represented as a sum of Dirac excitations
of the form

fw (r,k,t) = ∑
j

δ (r− r j (t)) δ (k−k j (t)) A j (t) (5.100)

In contrast to classical particles, these excitations are weighted by an amplitude
A j, called affinity, which evolves continuously under the action of the quantum evo-
lution term of the Wigner–Boltzmann equation (5.58) which describes the non-local
effect of the potential. Since the Wigner function can take negative values in the
presence of quantum transport effects, the affinity may be negative too. Consis-
tently with the Heisenberg inequalities, such excitations of negative weight cannot
represent physical particles and will be called pseudo-particles. They should be
considered as mathematical objects useful to solve the Wigner transport equation.
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Let’s remember the quantum evolution term of this equation, which writes by
introducing the associated operator Q as

Q fw (r,k,t) =
∫

d k′ Vw
(
r,k−k′, t

)
fw
(
r,k′, t

)
(5.101)

with the Wigner potential defined by (5.59). Compared to the semi-classical Monte
Carlo algorithm, one of the main changes consists of adding, at each time step, the
update of the Wigner function and of the particle affinities. In a mesh of the phase-
space M (r,k) the quantum evolution term Q fw induces the change of the affinity of
particles in the mesh according to

∑
i∈M(x,k)

d Ai

dt
= Q fw (r,k) (5.102)

which means that at each time step the affinity of all pseudo-particles in a mesh of
the phase-space is updated according to the value of Q fw in this mesh. The non-
local effect of the potential is thus fully applied to the affinity evolution, in contrast
to the semi-classical case where the local effect of the potential gradient induces the
change of wave vector. The simple idea on which is based this quantum simulation
method now appears clearly. Along its trajectory a pseudo-particle scatter as a clas-
sical particle, and during a free flight the coordinates of the j-th particle obey, in the
effective mass approximation,

d
dt

r j =
h̄
m

k j (5.103)

d
dt

k j = 0 (5.104)

The wave vector of each pseudo-particle is thus constant during a free flight
and can take a new value only after scattering. However, if the potential may be
separated into slowly and rapidly varying parts, the slowly varying part may be
treated semi-classically through the evolution of the particle wave vector under the
influence of electric field while only the rapidly varying part is taken into account
in the computation of the Wigner potential and in the affinity (5.102).

In the semi-classical limit, i.e. if the full potential is treated as a slowly varying
quantity, the quantum evolution term Q fw is zero and the particle affinity is constant.
The method turns out to be equivalent to the semi-classical Monte Carlo algorithm.
It should be noted that the strong similarity and even compatibility of this technique
with the conventional Monte Carlo solution of the Boltzmann equation is one of its
highest advantage, which will be illustrated later.

We now detail some important specific features of the numerical implementation
of the affinity method. Additional discussion may be found in [66]. Though so far
the algorithm has been implemented for 1D transport problems only, i.e. with phase-
space coordinates of the Wigner function reduced to (x,k), the discussion below is
made in the general case of the full phase space (r, k).
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4.1.2 Conservation of Affinity and Pseudo-Particle Injection

First of all, it should be reminded that in semi-classical device simulation with
Ohmic contacts, the only condition of particle injection is the neutrality of real-space
meshes adjacent to the Ohmic contacts. After each time step, if particles are miss-
ing in some “Ohmic” meshes with respect to the charge neutrality, the appropriate
number of carriers (of affinity equal to 1) is injected in these meshes to recover the
neutrality. Assuming these “Ohmic” regions to be in thermal equilibrium, an equi-
librium distribution is used to select randomly their wave vector components. In this
way the consistence between the distribution of potential and the average number
and the distribution of particles in the device is reached. Obviously, this condition
of particle injection should still be used in Wigner simulation of Ohmic contacts if
the transport in the contact region is assumed to be essentially semi-classical. How-
ever, it is not enough to ensure the conservation of total affinity and charge within
an algorithm in which the particle affinity evolves continuously.

Indeed, one of the most important difficulties in this MC method lies in the fact
that even a particle with zero affinity may gain finite affinity through the quantum
evolution term Q fw according to (5.102). It means that if there is no particle in a
particular region of the phase space where the affinity should evolve, a significant
error may occur with possible non-conservation of charge since the contribution of
each particle to the total charge in the device is weighted by its affinity. This problem
is very important for device simulation and should be fixed by implementing an
appropriate algorithm to inject particles of convenient affinity.

The correct approach consists in filling the phase-space with pseudo-particles of
zero affinity as follows. After each time step the quantum evolution term Q fw (r,k)
is calculated in the full phase-space. If in a mesh M (r,k) of the phase-space, even
inside the device, the quantity |Q fw (r,k)| is finite, a pseudo-particle of zero affinity
is injected in the mesh [65]. In summary, it is necessary to combine the “semi-
classical injection” of particles of affinity equal to 1 at Ohmic contacts to guarantee
the electrical neutrality near the contacts and the “quantum injection” of pseudo-
particles of 0 affinity in all regions of the phase-space where particles are missing
and where Q fw takes significant values.

4.1.3 Computation of the Wigner Potential and of the Affinity Evolution

A fundamental problem lies in the choice of the limits of integration for the calcu-
lation of the Wigner potential (5.59). There are two possible approaches depending
on whether the contacts are assumed to be coherent or non-coherent. In the former
case the integration is cut at a maximum size from the contact corresponding to the
“coherence length” beyond which no quantum effect may occur [67], which raises
the question of the relevant choice of the coherence length in the contact. In the lat-
ter case, the integration should be limited to positions r′ such that both r− r′

/
2 and

r + r′
/

2 belong to the device [68]. This approach is used in the model we have de-
veloped. However, we have checked that in the devices considered in the application
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section (RTD, MOSFET), all limits of integration larger than that corresponding to
the hypothesis of decoherent contacts yield the same results. This insensitivity is
certainly due to the fact that in these cases contact regions, or access regions, have
a semi-classical behavior dominated by scattering.

To describe the time evolution of pseudo-particle affinities, a very stable dis-
cretization scheme is required. Indeed, we observed that due to the noise inherent to
the technique, the MC simulation acts as a stiff problem, which tends to make the
solution of (5.102) unstable. In our model, an implicit Backward Euler scheme was
finally implemented:

Ai (t + dt)−Ai (t) =
1
N

dt ×Q fw (r,k, t + dt) (5.105)

where N is here the number of pseudo-particles in the mesh M (r,k) of the phase
space. This backward Euler scheme is implicit. It may be implemented by matrix
inversion of the quantum evolution operator Q, or by using a predictor/corrector
technique of high order, at least fourth order. The two techniques give the same
results but the predictor/corrector one is faster. All higher precision schemes were
proved to be detrimental to the simulation stability and required longer simulation
time to obtain good average quantities. In particular Cayley’s scheme, known to be
the best technique for the evaluation of the time derivative in the deterministic solu-
tion of the Wigner–Boltzmann equation, leads to unstable results in MC simulation.

4.2 The Particle Generation Method

Monte Carlo algorithms can be devised based on the notion that the terms on right
hand side of the Wigner–Boltzmann equation represent gain and loss terms for the
phase space density. To introduce the ideas we consider the semiclassical Boltzmann
equation.

(
∂
∂ t

+ v(k) ·∇r +
1
h̄

F(r) ·∇k

)
f (r,k,t) =

∫
d k′ f (r,k′, t)S(k′,k)−λ (k) f (r,k, t)

(5.106)

S(k,k′) denotes the transition rate from initial state k′ to final state k, induced by
the physical scattering processes, and λ is the total scattering rate.

λ (k) =
∫

d k′S(k,k′) (5.107)

We note that the positive term on the RHS of (5.106) is an integral operator repre-
senting a particle gain term. In a Monte Carlo algorithm transitions from state k′ to
k are selected randomly from the normalized transition probability S(k,k′)/λ (k′).
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The negative term on the RHS of (5.106) is local in k-space. In a Monte Carlo
algorithm the term −λ f gives rise to the exponential distribution for the carrier free
flight time.

The Wigner–Boltzmann equation has the same structure as (5.106). We use (5.48)
and augment it by a Boltzmann scattering operator.

(
∂
∂ t

+ v(k) ·∇r +
1
h̄

Fcl(r) ·∇k

)
fw(r,k, t)

=
∫

d k′Γ (k,k′)μ(k′) fw(r,k′,t)− μ(k) fw(r,k, t) (5.108)

The integral kernel Γ in this equation has the form

Γ (r,k,k′) =
1

μ(r,k′)
[
S(k′,k)+Vw(r,k−k′)+ α(k,r)δ (k−k′)

]
, (5.109)

μ(r,k′) = λ (r,k′)+ α(r,k′) , (5.110)

where μ is the normalization factor. It holds

∫
d k′ Γ (k,k′,r) = 1. (5.111)

In (5.109) a fictitious scattering mechanism

Sself(k′,k) = α(r,k)δ (k−k′) (5.112)

is introduced, referred to as self-scattering [69]. Mathematically, the related con-
tributions in the gain and loss terms simply cancel and have no effect. Physically,
because of the δ -function, this mechanism does not change the state of the electron
and hence does not alter the free-flight trajectory. The choice of α offers a degree of
freedom in the construction of a Monte Carlo algorithm, as shown below.

4.2.1 Integral Form of the Wigner–Boltzmann Equation

Equation (5.108) can be transformed into a path integral equation [70]. The adjoint
integral equation, which will give rise to forward Monte Carlo algorithms, has the
following integral kernel.

P(k f , t f |ki, ti) = Γ [k f ,K(t f )] μ [K(t f )]exp

{
−
∫ t f

ti
μ [K(τ)]dτ

}
(5.113)

The kernel represents a transition consisting of a free flight starting at time ti with
initial state ki, followed by a scattering process to the final state k f at time t f . For
the sake of brevity the r-dependences of Γ and μ are omitted in the following. In a
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Monte Carlo simulation, the time of the next scattering event, t f , is generated from
the exponential distribution appearing in (5.113):

pt(t f ,ti,ki) = μ [K(t f )]exp

{
−
∫ t f

ti
μ [K(τ)]dτ

}
(5.114)

We denote by k′ the state at the end of the free flight, k′ = K(t f ). A transition from
the trajectory end point k′ to the final state k f is realized using the kernel Γ . In
contrast to the classical case, where P would represent a transition probability, such
an interpretation is not possible in the case of the Wigner equation because P is
not positive semidefinite. The problem originates from the Wigner potential, which
assumes positive and negative values.

Because of its antisymmetry with respect to q, the Wigner potential can be refor-
mulated in terms of one positive function V+

w

V+
w (r,q) = max(0,Vw(r,q)) (5.115)

Vw(r,q) = V+
w (r,q)−V+

w (r,−q) (5.116)

Then, the kernel Γ is rewritten as a sum of the following conditional probability
distributions.

Γ (k,k′) =
λ
μ

s(k,k′)+
α
μ

δ (k′ −k)+
γ
μ

[w(k,k′)−w∗(k,k′)] , (5.117)

s(k′,k) =
S(k′,k)
λ (k′)

, w(k,k′) =
V+

w (k−k′)
γ

, w∗(k,k′) = w(k′,k) (5.118)

The normalization factor for the Wigner potential is

γ(r) =
∫

d qV+(r,q). (5.119)

In the following, different variants of generating the final state k f from the kernel Γ
will be discussed.

4.2.2 The Markov Chain Method

We have now to decompose the kernel P into a transition probability p and the
remaining function P/p. More details on the Markov chain method can be found
in [71, 72]. With respect to (5.113), one could use the absolute value of Γ as a
transition probability. Practically, it is more convenient to use the absolute values of
the components of Γ , giving the following transition probability.

p(k f ,k′) =
λ
ν

s(k f ,k′)+
α
ν

δ (k f −k′)+
γ
ν

w(k f ,k′)+
γ
ν

w∗(k f ,k′) (5.120)

The normalization factor is

ν =
∫

d k f p(k f ,k′) = λ + α + 2γ . (5.121)
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Fig. 5.2 With the Markov chain method, the number of numerical particles is conserved. The
magnitude of the particle weight increases with each event, and the sign of the weight changes
randomly according to a given probability distribution

In the first method considered here, the free-light time is generated from the ex-
ponential distribution (5.114). To generate the final state k f for the given trajectory
endpoint k′, one of the four terms in (5.120) is selected with the associated probabil-
ities λ/ν , α/ν , γ/ν , and γ/ν , respectively. Apparently, these probabilities sum up
to one. If classical scattering is selected, k f is generated from s. If self-scattering is
selected, the state does not change and k f = k′ holds. If the third or fourth term are
selected, the particle state is changed by scattering from the Wigner potential and
k f is selected from w or w∗, respectively. The particle weight has to be multiplied
by the ratio

Γ
p

= ± ν
μ

= ±
(

1 +
2γ

λ + α

)
, (5.122)

where the minus sign applies if k f has been generated from w∗. For instance, for
a quantum mechanical system, where the classical scattering rate λ is less than the
Wigner scattering rate γ , the self-scattering rate α can be chosen such that λ +α = γ .
Then, the multiplier (5.122) evaluates to ±3. An ensemble of particles would evolve
as shown schematically in Fig. 5.2. As the multiplier (5.122) is always greater than
one, the absolute value of the particle weight will inevitably grow with the number
of transitions on the trajectory.

4.2.3 Pair Generation Method

To solve the problem of growing particle weights, one can split particles. In this
way, an increase in particle weight is transformed to an increase in particle num-
ber. The basic idea of splitting is refined so as to avoid fractional weights. Different
interpretations of the kernel are presented, that conserve the magnitude of the par-
ticle weight [73]. Choosing the initial weight to be +1, all generated particles will
have weight +1 or −1. This is achieved by interpreting the potential operator in the
Wigner–Boltzmann equation as a generation term of positive and negative particles.
We consider the kernel (5.117).

Γ (k f ,k
′) =

λ
μ

s(k f ,k
′)+

α
μ

δ (k f −k′)+
γ
μ
[
w(k f ,k

′)−w∗(k f ,k
′)
]

(5.123)
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If the Wigner scattering rate γ is larger than the classical scattering rate λ , the self-
scattering rate α has to be chosen large enough to satisfy the inequality γ/μ ≤ 1.
Typical choices are μ = Max(λ ,γ) or μ = λ +γ . These expressions also hold for the
less interesting case γ < λ , where quantum interference effects are less important
than classical scattering effects. In the following, we discuss the case γ > λ , where
quantum effects are dominant. We choose the self-scattering rate equal to α = γ and
regroup the kernel as

Γ (k f ,k′)=
λ
μ

s(k f ,k′)+
(

1− λ
μ

)[
δ (k f −k′)+w(k f ,k′)−w∗(k f ,k′)

]
. (5.124)

As in the classical Monte Carlo method, the distribution of the free-flight duration
is given by the exponential distribution (5.114). At the end of a free flight, classical
scattering is selected with probability ps = λ/μ . With the complementary probabil-
ity, 1− ps, a self-scattering event and a pair generation event occur. The weight of
the state generated from w∗ is multiplied by −1. The weights of the states gener-
ated from w and from self-scattering do not change. Therefore, the magnitude of the
initial particle weight is conserved, as shown in Fig. 5.3. In this algorithm, classical
scattering and pair generation are complementary events and thus cannot occur at
the same time, as shown in Fig. 5.4. Different choices of the self-scattering rate α
result in different variants of the Monte Carlo algorithm. A more detailed discussion
can be found in [73].

+1

w=1

+1

+1

−1

w=1Σ

+1
+1

+1

−1

−1

Σ w=1

Fig. 5.3 With the pair generation method the magnitude of the particle weight is conserved, but
one initial particle generates a cascade of numerical particles. At all times mass is exactly con-
served

2/γ 3/γ0 1/γ

+

+

+ + +

t

μ = λ + γ

Fig. 5.4 Trajectory in k-space of a sample particle resulting from the pair-generation method.
Discontinuities in the main trajectory indicate semi-classical scattering events, whereas arrows
indicate instances when particle pairs are generated
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In the pair-generation method described, the weights of the generated particles
are ±1, because the generation rate used equals 2γ (generation of one pair at a rate
of γ). If a generation rate larger than 2γ or a fixed time-step less than (2γ)−1 were
used, the magnitude of the generated weight would be less than one. The resulting
fractional weights are referred to as affinities. On the other hand, a generation rate
less than 2γ would result in an under-sampling of the physical process. Then, the
magnitude of the generated weights would be generally greater than one.

Instead of using V+
w (r,q) to generate the momentum transfer h̄q, one can con-

struct a Monte Carlo algorithm which uses the amplitude of the Fourier transform,
A(q) in (5.33). The advantage is that the numerical representation of A(q) only
requires a discretization of the momentum coordinate, whereas for the Wigner po-
tential V+

w (q,r) both momentum and spatial coordinates need to be discretized.
We start with the potential operator (5.58) defined in the three-dimensional

k-space, change variables q = k′ −k and q = k−k′, and build a symmetrized ex-
pression.

Q fw(r,k) =
1
2

∫
d qVw(r,q)

[
fw(r,k−q)− fw(r,k+ q)

]
. (5.125)

Expressing the Wigner potential through the three-dimensional Fourier transform of
the potential,

Vw(r,q) =
2

h̄π3 A(2q)sin
[
ϕ(2q)+ 2q · r], (5.126)

the potential operator (5.125) can be rewritten as

Q fw(r,k) =
1
h̄

∫
d q

(2π)3 A(q) sin
[
ϕ(q)+ q · r][ fw

(
r,k− q

2

)
− fw

(
r,k+

q
2

)]

(5.127)

An advantage of this formulation is that no discretization of the spatial variable r is
needed. The expression can be evaluated at the actual position r of a particle. The
structure of (5.127) suggests the usage of a rejection technique. The normalization
factor γ now is larger than the actual pair generation rate.

γ =
1
h̄

∫
d q

(2π)3 A(q) (5.128)

The rate of γ is used as in the algorithms described above to randomly generate the
times between two particle pair-generation events. From the distribution A(q) one
generates randomly the momentum transfer q. Then the sine function is evaluated
at the actual particle position r.

s = sin
[
ϕ(q)+ q · r] (5.129)

With probability |s| the pair-generation event is accepted, otherwise a self-scattering
event is performed. In the former case, two particle states are generated with mo-
menta k1 = k−q/2 and k2 = k + q/2 and statistical weights w1 = w0sign(s) and
w2 = −w1, respectively, where w0 is the statistical weight of the initial particle.
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4.2.4 The Negative Sign Problem

In the following, we analyze the growth rates of particle weights and particle
numbers associated with the different Monte Carlo algorithms. In the Markov chain
method discussed in Sect. 4.2.2, the weight increases at each scattering event by the
multiplier (5.122). The growth rate of the weight can be estimated for the case of
constant coefficients γ and μ . Because free-flight times are generated with rate μ ,
the mean free-flight time will be 1/μ . During a given time interval t, on average
n = μt scattering events will occur. The total weight is then estimated asymptoti-
cally for t � 1/μ .

|W (t)| =
(

1 +
2γ
μ

)n

=
(

1 +
2γt
n

)n

	 exp(2γt) (5.130)

This expression shows that the growth rate is determined by the Wigner scattering
rate γ independently of the classical and the self-scattering rates. The growth rate
2γ is equal to the L1 norm of the Wigner potential.

In the pair generation method, the potential operator

Q fw(k) =
∫

d qV+(q)
[

fw(k−q)− fw(k+ q)
]

(5.131)

is interpreted as a generation term. It describes the creation of two new states, k−q
and k+ q. The pair generation rate is equal to γ . When generating the second state,
the sign of the statistical weight is changed. It should be noted that the Wigner–
Boltzmann equation strictly conserves mass, as can be seen by taking the zeroth
order moment of (5.108):

∂n
∂ t

+ div J = 0 (5.132)

Looking at the number of particles regardless of their statistical weights, that is,
counting each particle as positive, would correspond to using the following potential
operator:

Q∗ fw(k) =
∫

d qV+
w (q)

[
fw(k−q)+ fw(k+ q)

]
(5.133)

Using (5.133), a continuity equation for numerical particles is obtained as

∂n∗

∂ t
+ div J∗ = 2γ(r)n∗ (5.134)

Assuming a constant γ , the generation rate in this equation will give rise to an ex-
ponential increase in the number of numerical particles N∗.

N∗(t) = N∗(0)exp(2γt) (5.135)

This discussion shows that the appearance of an exponential growth rate is inde-
pendent of the details of the particular Monte Carlo algorithm. It is a fundamental
consequence of the non-positive kernel.
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4.2.5 Particle Annihilation

The discussed particle models are instable, because either the particle weight or the
particle number grows exponentially in time. Using the Markov chain method, it has
been demonstrated that tunneling can be treated numerically by means of a particle
model [74]. However, because of the exponentially increasing particle weight at the
very short timescale (2γ)−1, application of this algorithm turned out to be restricted
to single-barrier tunneling and small barrier heights only. This method can be useful
for devices where quantum effects are weak, and the potential operator is a small
correction to the otherwise classical transport equation.

A stable Monte Carlo algorithm can be obtained by combining one of the particle
generation methods with a method to control the particle number. One can assume
that two particles of opposite weight and a sufficiently small distance in phase space
annihilate each other. The reason is that the motions of both particles are governed
by the same equation. Therefore, when they come close to each other at some time
instant, the two particles have approximately the same initial condition. They can
be considered a super particle of total weight zero, which indeed needs not be con-
sidered further in the simulation. In an ensemble Monte Carlo method, a particle
removal step should be performed at given time steps. During the time step, the
ensemble is allowed to grow to a certain limit, then particles are removed and the
initial size of the ensemble is restored.

For a stationary transport problem a one-particle Monte Carlo method can be de-
vised which annihilates numerical particles at the same rate as they are generated.
For this purpose a phase space mesh can be utilized [75]. In the following we de-
scribe an algorithm which traces only one branch of the trajectory tree originating
from a single particle injected at the contact.

After each generation event one has to deal with three particle states, namely the
initial state k and the two generated states, k1 and k2. In a first step the weights of
all three particles are stored on the annihilation mesh, that is, the statistical weight
of each particle is added to a counter associated with the mesh element. Then one
has to decide which of the three states is used to continue the trajectory. One may
choose the weight of the continuing particle to have the same sign as the incoming
one (Fig. 5.5). In this way the statistical weight along one trajectory does not change,

k

x

Fig. 5.5 The particle annihilation strategy attempts to minimize the weights stored in the mesh
elements. The weights of the initial and continuing particle have the same sign to ensure current
continuity. Particles and mesh elements carrying a positive weight are in black, the ones carrying a
negative weight are in grey
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which results in exact current conservation [76]. Note that because of the pair-wise
generation of particles with weights ±1 the algorithm also ensures exact mass con-
servation. If the initial state has a positive statistical weight, out of the three mesh
elements the one with the largest stored weight is selected. Continuing from that el-
ement will reduce the weight of the element. Conversely, a negative trajectory is to
be continued from the element with the smallest stored weight. A certain fraction of
negative trajectories needs to be constructed in order to resolve the negative parts of
the Wigner function. This rule for selecting the continuing particle is an attempt to
minimize the weights stored in the three elements after each pair-generation event.
The repeated execution of this rule in the Monte Carlo main loop results in a mini-
mization of the stored weight on the whole annihilation mesh. Particle annihilation
takes place when positive and negative particles are alternately stored in the same
mesh element. Note that because of the mass conservation property of the transport
equation and of the associated particle model, no net-charge can build up on the an-
nihilation mesh. The weights stored on the mesh sum up to zero. The local weights
on the mesh have to be kept small, as they are a measure for the numerical error of
the method. This can be controlled by the fraction of negative trajectories, which
has to be specified by the user.

5 Applications

For many years, the RTD was certainly the device operating at room temperature in
which the wave-like behavior of electrons played the most prominent role. Thanks
to the control of tunneling through the resonant state of a quantum well coupled
to two electrodes via tunnel barriers, the RTD provides a negative differential re-
sistance (NDR) in the I −V characteristics. Since the pioneering works of Tsu and
Esaki [77] and the first experimental evidence for NDR effect in an RTD at low
temperature [78] and at room temperature [79], an intense research effort has been
devoted to this fascinating device. Beyond its high potential of applications [80],
the RTD is also an incomparable “toy” for fundamental physics and quantum device
physics, in particular to understand the quantum features of shot noise, as in [81–87].
It is also a useful test device for new materials in which quantum transport is likely
to occur, as [88–90]. Here, the RTD has been used to develop and validate the affin-
ity technique of Wigner–Boltzmann Monte Carlo simulation. Some typical results
are presented in Sect. 5.1. This device has been used also to study the impact of scat-
tering on quantum transport and to discuss the physics of de-coherence, as reported
in Sect. 5.2.

The model is then applied to the simulation of an ultra-short double-gate Metal-
oxide-semiconductor Field-effect transistor (DG-MOSFET) in Sect. 5.3.

Among the new silicon-on-insulator (SOI) device architectures based on thin
undoped channel controlled by multiple gates which are currently developed and
envisioned to be the future of CMOS technology [91, 92], the double-gate pla-
nar configuration is one of the most promising [93] to overcome the limitations
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of conventional bulk-device towards further scaling, in particular the limitations
linked with the multiple sources of leakage and variability [94–97]. Compared to
the single-gate SOI transistor, a second back-gate is “introduced” underneath the
channel [98–101] thanks to the molecular bonding of two substrates. The electro-
statics of this architecture is excellent [102]. Its main issue is the self-alignment of
both gates which is required for optimized performance [98, 103]. This challenge
has been recently taken up by including metal gates, high-κ dielectrics, metallic
source/drain with gate length down to 6 nm [104].

5.1 Application to Resonant Tunneling Diodes

As shown schematically in Fig. 5.6 the simulated GaAs/GaAlAs RTD consists of
a 5 nm-thick quantum well sandwiched between two AlGaAs barriers 0.3 eV high
and 3 nm wide. The quantum well, the barriers, and 9.5 nm-thick buffer regions
surrounding the barriers are slightly doped to 1016 cm−3. The 50 nm-long access re-
gions are doped to 1018 cm−3. The temperature is 300 K. The scattering mechanisms
considered are those due to polar optical phonons, acoustic phonons and ionized im-
purities, in a single Γ band with effective mass of 0.06 m0. The transport algorithm
is self-consistently coupled with the 1D Poisson equation.

Current–voltage characteristics are plotted in Fig. 5.7. The result obtained from
the Wigner–Boltzmann model including scattering (circles, solid line) is compared
with that given by the ballistic simulation for which scattering mechanisms have
been artificially deactivated (squares, solid line) and with that obtained using a
well-established ballistic Green’s function technique self-consistently coupled to
Poisson’s equation [87]. An excellent agreement was found between both ballistic
results, which suggests that the Wigner–Boltzmann Monte Carlo approach correctly
handles the quantum transport effects including the resonance on a quasi-bound
state. It is also clearly seen here that scattering effects dramatically reduce the peak-
to-valley ratio. It is thus essential to consider them properly for room-temperature
simulation of RTDs.

ND =
1018 cm−3

ND =
1016 cm−3

ND = 

1018 cm−3

GaAlAs barriers

EE CC
9.5
nm

9.5
nm

60
nm

60
nmEE CC

Fig. 5.6 Schematic cross-section of the simulated RTD. The GaAlAs barriers and the GaAs quan-
tum well are 3 nm- and 5 nm-thick, respectively
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Fig. 5.7 I−V characteristics of the RTD schematized in Fig. 5.6 obtained using Wigner MC simu-
lation with scattering mechanisms activated (circles, solid line) or artificially deactivated (squares,
solid line) and using ballistic Green’s function simulation (dashed line)

Fig. 5.8 Cartography in phase-space of the Wigner function computed (a) for a resonant state
(V = 0.3V) and (b) a non-resonant state (V = 0.475V)

It is instructive to examine the cartography in phase-space of the Wigner func-
tion displayed in Fig. 5.8. Near the contacts, i.e. for x < 40nm and x > 120nm,
the Wigner function appears to be very close to a displaced Maxwellian function.
The transport may be thus considered to be semi-classical in these regions. In con-
trast, the situation is very different in the quantum well. For the resonant state, i.e.
V = 0.3V (Fig. 5.8a), between the barriers schematized by dashed lines one can see
a peak (a spot) centered on k = 0 similar to that obtained for the Wigner function
associated with the first energy level of a quantum well. This peak is due to the
contribution of electrons crossing the double-barrier through the resonant state in
the well. For a non-resonant state (Fig. 5.8b) this peak vanishes and becomes almost
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invisible. It should also be noted that, in both cases, the oscillations of the Wigner
function give rise to some negative values in small part of the phase-space (darkest
shaded areas), which is the signature of quantum coherence.

The conduction band profiles plotted in Fig. 5.9 highlight the importance of the
self-consistence for RTD simulation. In particular, when scattering is included a
potential drop appears in the emitter region while the conduction band is flat in
the ballistic case. This potential drop may induce an energy spreading of electrons,
which modifies the resonant condition at V = 0.3V for electrons reaching the double
barrier and contributes to the suppression of current peak at the resonance.

As shown in Fig. 5.10, a peak of electron density appears in the quantum well
under resonant bias (V = 0.3V), which is in accordance with the spot observed on

Fig. 5.9 Conduction band profile obtained by Wigner simulation, at peak (V = 0.3V, solid line,
circles) and valley (V = 0.475V, dashed line) biases from simulation with scattering, and at peak
bias (solid line, squares) from ballistic simulation

Fig. 5.10 Electron density in the RTD, obtained simulation at peak (V = 0.3V, solid line) and
valley (V = 0.475V, dashed line) voltages from Wigner simulation with scattering
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the Wigner function map (Fig. 5.8a). In off-resonance bias V = 0.475V, this peak
suppresses and an electron accumulation is formed in front of the double-barrier as
a consequence of its weak transparency.

Finally, it should be noted that the peak-to-valley ratio obtained for typical
GaAlAs/GaAs RTDs at room temperature and 77 K have been found in good agree-
ment with experimental data [65], which suggests this MC technique is actually able
to provide realistic simulation results for nano-devices exhibiting quantum transport
effects with significant rates of scattering.

5.2 Interpretation of Device Behavior Through
De-Coherence Theory

Understanding quantum transport in the presence of scattering has always been a
difficult problem. Originally, there were limited available models to approach this
question in electron devices, where scattering is ubiquitous. Now, with the progress
of Wigner function based models – as we have seen – and of the Green’s function
formalism, powerful simulation tools are starting to emerge, including relatively
detailed physics of scattering. However, the interpretation of their results remains
difficult. This is because we are tied in our vision to the collision-less picture of
quantum mechanisms that is traditionally taught in introductory quantum mecha-
nism class. To understand device quantum physics better, a novel point of view
would be therefore highly desirable.

It is thus insightful to look in fields more tightly linked to quantum mechanics
than electron devices for inspiration. Particularly, in atomic physics and quantum
optics, de-coherence theory has been widely successful to understand the effect of an
environment (source of scattering) on a quantum system. De-coherence theory stud-
ies how the intrication between a quantum system and its environment may emerge
from their interaction. This tends to lead to a separation of the system states: two dif-
ferent system states can intricate differently with the environment. If the system was
initially in a superposition of these two states, interference between them becomes
impossible after intrication with the environment. This thus leads to a suppression
of some coherence effects – and to the occurrence of a more classical behavior for
the system since interference may vanish. With this point of view we can even see a
sort of competition between quantum coherence, and scattering leading to classical
behaviors. Many more details may be found in recent excellent textbooks like [105].
It is a good lead to see if this theory highly successful in atomic physics may apply
to electron devices.

The Wigner function and the density matrix are used very often in atomic physics
to study de-coherence. Besides, it is encouraging to realize that our derivation of the
impact of phonon scattering in Sect. 3.2 is analogous to the models commonly used
for de-coherence problems. Indeed, we considered a full system consisting of the
system of interest (an electron) and its environment (a phonon mode). We performed
advanced derivation on the full system and then went to a reduced Wigner function
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for the electron system only through a trace on the environment states (phonon
numbers). It is thus very natural to look for phonon-induced de-coherence effects
using our model.

In practical de-coherence studies, the density matrix is usually complementary to
the Wigner function. Although our model computes a Wigner function, it is easy to
switch from one formalism to another by appropriate Fourier transform. The emer-
gence of semi-classical behaviors is very clear on the Wigner function due to the
continuity between this formalism and Boltzmann’s formalism. Quantum coherence
is however more clearly identified in the density matrix elements.

5.2.1 Study of the Free Evolution of a Wave Packet in GaAs:
Scattering-Induced De-Coherence

To understand how de-coherence occurs in electron devices we may start with a
simple case: the propagation of a free wave packet. In collision-less quantum me-
chanics, wave packets tend to spread infinitely when propagating, becoming always
more de-localized spatially, as seen in many textbooks. Is it the case in an electron
device?

To answer this question we consider a simple Gaussian wave-packet

ψ (x) = N exp

[
− (x− x0)

2

2σ2

]
exp [ik0x] (5.136)

the Wigner function of which is written

fw (x,k) = N′ exp

[
− (x− x0)

2

σ2

]
exp

[
−(k− k0)

2σ2
]

(5.137)

where N and N′ are normalization constants. Figures 5.11a and b show the carto-
graphy of the Wigner function and the density matrix (DM), respectively, associated
with the initial state defined by k0 = 4× 108 m−1, σ = 10nm. Figures 5.11c and e
display the Wigner function of the wave packet after 130 fs of ballistic (no cou-
pling with phonons) and diffusive (with phonon coupling) propagation, respectively.
Phonon scattering tends to widespread the Wigner function over smaller wave vector
and displacement values (Figs. 5.11e) than in the purely coherent case (Figs. 5.11c).

The density matrix allows us to analyze the situation in a smarter way. The DM
associated with Wigner functions of Figs. 5.11c and e are plotted in Figs. 5.11d
and f, respectively. In the ballistic case (Fig. 5.11d) all diagonal and off-diagonal el-
ements grow from the initial state according to the natural coherent extension of the
wave packet, as described in many textbooks of quantum mechanics. When includ-
ing interactions with phonons (Fig. 5.11f), the result is very different. The diagonal
elements still grow similarly but they extend over a larger range, as indicated by the
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Fig. 5.11 Evolution of a free Gaussian wave packet coupled or uncoupled with a phonon bath at
room temperature in GaAs. (a) Wigner function (WF) and (b) modulus of density matrix (DM)
elements of the initial pure state. Simulated WF and DM after 130 fs without (c, d) or with (e, f)
coupling to the phonon bath. DM elements are expressed in nm−1

distribution tail at small x values. However, the off-diagonal elements do not extend
as in the coherent case. They actually reduce as a function of time. It seems that actu-
ally the wave packet does not extend but splits into different wave packets which are
not more de-localized than in the initial state. The quantum extension of the wave
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packet is inhibited by interactions with phonons. In other words, phonon scattering
prevent the wave packet from de-localizing as in the case of free propagation. Many
more details may be found in [10].

5.2.2 Reinterpretation of the RTD Behavior: De-Coherence
and Quantum/Semi-Classical Transition

After this academic study of wave packets, we may turn to the simulation of the
RTD presented in the previous section, including the same phonon and impurity
scattering mechanisms.

Figure 5.8 shows the Wigner function of the RTD operating at peak voltage
(V = 0.3 V). In a large part of access regions (x < 30 nm and x > 120 nm) the
transport is essentially semi-classical and the Wigner function matches very well
a semi-classical distribution function represented by a displaced Maxwellian func-
tion. Inside the quantum well the Wigner function around k = 0 is similar to that of
the Wigner function of the first bound state in a square potential [106]. In the overall
active region of the device, oscillations of the Wigner function reveal the presence
of spatial coherence. Hence, there is apparently a transition between coherent quan-
tum and semi-classical regions within the device. To understand better this behavior
and the de-coherence effect, it is insightful to analyze the density matrix associated
with the Wigner function for different strengths of electron–phonon scattering.

Accordingly, the density matrix is displayed in Figs. 5.12a–c for three different
scattering situations. In Fig. 5.12a the transport is fully ballistic in the active region,
which means that phonon scattering has been artificially switched off. In Fig. 5.12b
standard scattering rates were used as for the Wigner function plotted in Fig. 5.8. In
Fig. 5.12c phonon scattering rates have been artificially multiplied by five.

In the ballistic case a strong coherence is observed between electrons in the quan-
tum well and in the emitter region. The amplitude of off-diagonal elements is even
significant between electrons in collector and emitter regions, which is a clear indi-
cation of a coherent transport regime. When including standard scattering rates the
off-diagonal elements are strongly reduced. When phonon scattering rates are arti-
ficially multiplied by five, the off-diagonal elements of the density matrix vanish,
i.e. the coherence between electrons on left and right sides almost disappears. The
process of double barrier tunneling is thus no longer fully resonant. Electrons can
be seen as entering and leaving the quasi-bound state in distinct processes, with the
possibility of energy exchange with the phonons. This illustrates the well-known
coherent versus sequential tunneling situation.

This phonon-induced transition between coherent and sequential tunneling
regimes manifests itself in the current–voltage characteristics of the RTD plotted
in Fig. 5.13 for the three scattering situations. Phonon scattering tends to suppress
the resonant tunneling peak while the valley current increases to such a point that
the negative differential conductance effect almost disappears. The device tends
to behave as two incoherent tunneling resistances connected in series for which a
semi-classical-type description could be accurate enough.
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Fig. 5.12 Density matrix of a
RTD operating at peak
voltage for three: (a) no
scattering, (b) standard
phonon scattering rates,
(c) standard rates
multiplied by 5

All these considerations give a clear view of how electrons are de-localized in the
active part of the device and become more localized in the access region. As already
observed from the Wigner function displayed in Fig. 5.8, this suggests a transition
from “quantum” to “semiclassical” transport from the active region to the access
ones. More advanced considerations about this transition may be found in [10].
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Fig. 5.13 I −V characteristics for the RTD obtained from Wigner simulation, with scattering
artificially deactivated (empty circles), with standard scattering (squares), and scattering rates arti-
ficially multiplied by 5 (diamonds)

5.3 Application to Nano-Scale Transistors

As a last illustration of application of the Wigner–Boltzmann MC method, we
present here some results obtained for the ultra-small MOSFET with self-aligned
double-gate, schematized in Fig. 5.14. It is inspired by the recommendations of the
2005 and 2007 ITRS Edition for the High-Performance 16 nm technology node [93]
scheduled to be available in 2019. This DG-MOSFET structure is typical of a pos-
sible design for implementation in standard CMOS technology in the future.

The gate length is LG = 6nm, the silicon film thickness is TSi = 3nm and the
equivalent gate oxide thickness is aggressively scaled to EOT = 0.5nm. The source
and drain access are 15nm long and doped to 5× 1019 cm−3. The gate metal work
function is 4.36eV and the supply voltage is VDD = 0.7V. The tunneling through
gate oxide layers is not considered here. It is assumed indeed that silicon oxide
may be replaced by high-κ material of same EOT and higher physical thickness
to control this effect without degrading the interface quality. All simulations were
performed at room temperature.

The DG-MOSFET is simulated here in the multi-sub-band mode-space approx-
imation which decouples the gate-to-gate z direction and the xy plane parallel to
interfaces. Assuming the potential V to be y-independent, the formation of un-
coupled sub-bands may be simply deduced from the effective 1D Schrödinger’s
equation to be solved at each position xi in the channel self-consistently with 2D
Poisson’s equation. Each resulting sub-band profile En(x) is used as potential en-
ergy for the particle transport along the source-to-drain axis in the sub-band. The
transport can be treated either semi-classically using the Boltzmann algorithm or in a
quantum way using the Wigner–Boltzmann method. In this approach, the sub-bands
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Fig. 5.14 Schematic cross-section of the simulated DG-MOSFET structure

are assumed to be independent and coupled only by scattering mechanisms. In its
semi-classical form this technique has been developed in several groups [107–110].

To treat the 2D electron gas, the MC procedure makes use here of scattering rates
calculated according to the envelope functions whose dependence on time and po-
sition generates an additional difficulty. In contrast to the case of standard Monte
Carlo simulation, it is no longer possible to store the scattering rates in a look-up
table prior to the simulation. They have to be regularly updated throughout the sim-
ulation. Phonon and ionized impurity scattering rates are derived as in [111] where
2D electron mobility in Si/SiGe heterostructures was calculated in good agreement
with experimental data. The oxide interface roughness scattering rate is calculated
by considering both the classical effect of electrostatic potential fluctuations [112]
and the quantum effect on eigen-energies [113] which becomes significant for Si
film thickness smaller than 5 nm [114]. Standard parameters, i.e. root-mean-square
Δm = 0.5nm and correlation length LC = 1.5nm, are used to characterize the surface
roughness.

5.3.1 Quantum Transport Effects

First of all, we look at the current–voltage characteristics of the transistor. The trans-
fer characteristics ID −VGS obtained at room temperature are plotted in Figs. 5.15
and 5.16 for low and high drain bias, respectively. In these figures the Wigner
simulation results are systematically compared with that of two other mode-space
approaches: (i) the comparison with the semi-classical Boltzmann MC model
(triangles, solid lines) which includes scattering will show the impact of quantum
transport and (ii) the comparison with a quantum ballistic model based on the non-
equilibrium Green’s function formalism (NEGF) (circles, dashed lines) [115] will
show the impact of scattering.
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Fig. 5.15 Transfer characteristics obtained at VDS = 0.1V using three types of mode-space sim-
ulation, i.e. Wigner MC (squares, solid lines) Boltzmann MC (triangles, solid lines) and ballistic
Green’s function (circles, dashed lines). Both MC simulations include scattering. Results are dis-
played in both log and linear scale. T = 300K

Fig. 5.16 Transfer characteristics obtained at VDS = 0.7V using three types of mode-space sim-
ulation, i.e. Wigner MC (squares, solid lines) Boltzmann MC (triangles, solid lines) and ballistic
Green’s function (circles, dashed lines). T = 300K

Let us first consider the results obtained at low VGS (subthreshold regime) and low
VDS (see Fig. 5.15). Wigner and Boltzmann curves are very different in this regime.
The semi-classical simulation gives a better subthreshold slope than the quantum ap-
proach (70 mV dec−1 vs 80 mV dec−1) and an off-state current IOFF (extrapolated at
VGS = 0V) five times smaller. The subthreshold current is thus strongly influenced
by quantum transport at this ultra-small gate length, which may be easily under-
stood. The additional current is nothing but a tunneling current of electrons flowing
from the source to the drain through the gate-induced potential barrier.
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Fig. 5.17 Drain current as a function of drain voltage obtained at VGS = 0.7V using Wigner MC
(squares, solid lines) and Boltzmann MC (triangles, dashed lines) simulation

Since the source-drain tunneling current is especially strong in the subthreshold
regime, it is interesting to compare quantum models, i.e. Wigner MC and ballis-
tic NEGF results. It is remarkable that they coincide closely, which confirms that
scattering mechanisms have a very small impact in this regime.

The situation is dramatically different at high gate voltage. One observes in
Figs. 5.15 and 5.16 that Wigner and Green simulations provide very different re-
sults, which means that scattering has an important influence on the current, both at
low VDS (Ohmic regime) and at high VDS (saturation regime). In contrast, the Wigner
current becomes quite close to the Boltzmann one and even similar at low VDS. Sur-
prisingly enough, by looking at the currents obtained at high VDS (Fig. 5.16), one can
observe that beyond a given gate voltage the Wigner current becomes smaller than
the Boltzmann current [62]. To understand this behavior the ID−VDS characteristics
obtained at VGS = VDD = 0.7V from both Wigner and Boltzmann models are plotted
in Fig. 5.17.

As already remarked just above, both currents are very similar at low VDS, which
suggests that quantum transport effects are negligible in Ohmic regime. At higher
drain voltage two quantum effects compete. In one hand the tunneling source-drain
current tends to enhance the total drain current, but on the other hand quantum
reflections may occur at high drain bias due to the sharp potential drop at the drain-
end of the channel, which contributes to reducing the drain current. Actually, the
height of the gate-induced barrier being small in this regime the contribution of the
tunneling current becomes quite weak, which makes the reflection effect significant.
More details on this effect may be found in [62].

To illustrate these quantum effects the phase-space cartography of the Wigner
function in the first sub-band is compared to that of the Boltzmann function in
Fig. 5.18 at given bias VGS = 0.45V and VDS = 0.7V. Both functions are very similar
in the source region. The main feature of the Boltzmann function in the channel is
the stream of hot electrons which forms the ballistic peak (Fig. 5.18a). In contrast,
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Fig. 5.18 Cartography of (a) Boltzmann and (b) Wigner functions of the first sub-band for
VGS = 0.45 V and VDS = 0.7 V. The gated part of the channel extends from x = 0 to x = 6 nm

though this peak is still visible on the Wigner function (Fig. 5.18b), strong posi-
tive/negative oscillations of the Wigner function are observed where the quantum
reflections occur, i.e. in the part of the channel falls abruptly, between the top of the
barrier and the drain-end.

5.3.2 Impact of Scattering

We now examine the impact of scattering on device performance and operation
above threshold voltage since it has been shown to be important at high gate volt-
age VGS. In conventional MOSFET with long gate, the current is proportional to
the carrier mobility in the channel. It is thus strongly dependent on scattering in
the channel. In nano-transistors the channel resistance is reduced and may become
comparable to that in the access regions. Hence, scattering in the access might have
a significant influence on the device characteristics.

To understand the overall impact of scattering in the different parts of the de-
vice, transfer characteristics are compared in Fig. 5.19. Results of three types of
simulation are plotted: (a) Ballistic Green’s function method (“Ball. NEGF”), with
ballistic transport in both access regions and in channel, (b) Wigner MC with scat-
tering everywhere (“Wigner”) and (c) Wigner MC with scattering activated in the
access regions but deactivated in the channel (“Wigner–Ball. Channel”).
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Fig. 5.19 Transfer characteristics for VDS = 0.1V and VDS = 0.7V. The results are shown for three
types of simulation: ballistic NEGF, Wigner MC and Wigner MC with all scattering mechanisms
deactivated in the gated part of the channel

In Ohmic regime, i.e. at low VDS, the current is strongly limited by access resis-
tances for VGS > 0.5V. For VGS = 0.6V the Wigner drain current is two times smaller
than in the NEGF simulation. The source access resistance reaches 140Ω μm
while the target value of ITRS 2005 was 60Ω μm only. This problem is critical
in ultra-thin structures where TSi is reduced to control short-channel effects. How-
ever, it should be noted that in the 2007 edition the ITRS target for HP16 node is
raised to 145Ω μm, i.e. close to the simulated value.

At high VDS the impact of scattering is less pronounced but still important.
The transconductance gm = ∂ ID

/
∂VGS is frequently used as factor of merit to as-

sess the transistor performance. Ballistic NEGF simulation strongly overestimates
gm which appears to be limited by scattering occurring both in the access and
in the channel. With ballistic channel and scattering only in access regions, the
transconductance is improved by 18% with respect to standard Wigner simulation
(7090μAμm−1 instead of 5970μAμm−1) and the ON-current ION is enhanced by
16% (2290μAμm−1 instead of 1970μAμm−1). Thus, in spite of the strong part
of ballistic transport in ultra-short MOSFET [116], scattering still has a significant
influence, both in the channel and the highly-doped source access region. When
artificially enhancing the scattering rates in DG-MOSFET, the detailed analysis
of de-coherence has shown that scattering plays an important role in the emer-
gence of the semi-classical behavior at longer gate length, i.e. of the localization
of electrons [21].
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