Stratosphere – Data Management on the Cloud

Odej Kao

Complex and Distributed IT Systems Computer Science and Electrical Engineering Technische Universität Berlin

This presentation is a joint work with Volker Markl, Andreas Kliem, Björn Lohrmann and Daniel Warneke

Stratosphere

Explore the power of Cloud computing for complex information fusion

Database-inspired approach

Analyze, aggregate, and query

Textual and (semi-) structured data

Research and prototype a web-scale data analytics infrastructure

Current Research Landscape

Large scale data management is area of vivid research
 Google, Yahoo!, Microsoft, Facebook, IBM, UC Berkeley, UC Irvine, etc.

Outline

- Overview Stratosphere
- Massive-parallel execution with Nephele
- Topology detection and streaming
- Conclusions

Stratosphere in a Nutshell

- PACT Programming Model
 - Declarative definition of data parallelism
 - Centered around second-order functions
- ⇒ Generalization of map/reduce
- Nephele
 - Executes schedules compiled from PACTs
 - Exploits scalability/flexibility of clouds
 - Fault tolerance mechanisms
 - Designed to run on top of laaS
 - Heterogeneity through different VM types

Architecture: Nephele Layer

• Key Concepts

berlir

 Massively parallel, fault-tolerant engine

Architecture: PACT Layer

- Key Concepts
 - Massively parallel, fault-tolerant engine
 - Declarative specification through parallelization contracts (PACTs)

Architecture: Continuous Optimization

- Key Concepts
 - Massively parallel, fault-tolerant engine
 - Declarative specification through parallelization contracts (PACTs)
 - Adaptive execution

Re li

Architecture: Robustness

- Key Concepts
 - Massively parallel, fault-tolerant engine
 - Declarative specification through parallelization contracts (PACTs)
 - Adaptive execution
 - Robust Optimization

Architecture: SOPREMO Layer

- Key Concepts
 - Massively parallel, fault-tolerant engine
 - Declarative specification through parallelization contracts (PACTs)
 - Adaptive execution
 - Robust Optimization
 - Semi-structured/text data model
 - Uncertainty
 - Declarative data flow programs with compute- and data intensive operations
 - Information extraction
 - Data cleansing

What is a PACT?

 Second-order function that defines properties on the input and output data of its associated first-order function

- Input Contract
 - Generates independently processable subsets of data
 - Generalization of map/reduce
 - Enforced by the system
- Output Contract
 - Describes properties of the output of the first-order function
 - Use is optional but enables certain optimizations
 - Guaranteed by the user

Map and reduce as PACTs

- Map and reduce are PACTs in our context
- Map
 - All pairs are independently processed

- Reduce
 - Pairs with identical key are grouped
 - Groups are independently processed

PACTs beyond Map and Reduce

Cross

- Cartesian product of multiple inputs is built
- All combinations are processed independently
- Match
 - Multiple inputs
 - All combinations of pairs with identical key over all inputs are built and processed independently
 - Contract resembles an equi-join on the key
- CoGroup
 - Pairs with identical key are grouped for each of multiple input
 - Groups of all inputs with identical key are processed together

Outline

• Cloud Computing for Data Management

- Massive-parallel execution with Nephele
- Topology detection and streaming
- Conclusions

Research Question

"How to improve the efficiency of massively parallel data processing on Infrastructure as a Service (IaaS) platforms"

- Opportunities: Elasticity
 - Scale-up/scale-down to respond to changes in the workload
 - Exploit resource heterogeneity to improve cost efficiency
- Challenges: Loss of control due to required virtualization
 - Shared infrastructure, loss of knowledge about I/O capacities
 - Network topology between machines is unknown

Parallel Execution Engine IaaS Cloud

• Shared resource management

- Abandon assumption that execution engine "owns" nodes
- Instead nodes are temporarily "leased"

- Job must express tasks' data dependencies
 - Which task's input is required as which task's output
 - Required to safely terminate virtual machines

- Mapping between tasks and VM types
 - Which task shall run on which type of virtual machine?
 - Information could be provided by programmer

Odej Kao – Stratosphere – Data Management on the Cloud

Nephele Job Description

- Nephele job is represented as DAG
 - Vertices represent tasks
 - Edges denote communication channels
- Mandatory information for each vertex
 - Task program, (Input/output data location)
- Optional information for each vertex
 - Degree of parallelism
 - Degree of parallelism per node
 - Node type (#CPU cores, RAM...)
 - Channel types, ...

Internal Scheduling Representation

- Explicit parallelization
 - Individual degree of parallelization for each task
- Explicit assignment to VMs
- Communication channels
 - Network channels
 - In-memory channels
 - File channels

Experimental Evaluation

Challenges for Exploiting Elasticity

• Which degree of parallelization is suitable for which task?

- Cloud philosophy: one core x 1000 hours = 1000 cores x one hour
- Hard to anticipate for arbitrary user code, must be assessed online

Bottleneck Detection

- Profiling component runs on every worker node
- Profiling provides
 - *pt(v_i)*: % of time parallel instance *i* of vertex *v* used its given CPU time during last *t* seconds (seq. code, independence of par. instances)
 - st(e_j): % of time parallel instance *j* of edge *e* was saturated during last *t* seconds (capacity contr. channels)
- Values of $pt(v_i)$ and $st(e_i)$ are propagated to master every t seconds

Bottleneck Detection Algorithm

 $L_{RTS} \leftarrow ReverseTopologicalSort(G)$

for all v in L_{RTS} do
 v.isCpuBottleneck ← IsCPUBottleneck(v, G)
end for

if $\exists v \in L_{RTS}$: *v.isCPUBottleneck* then for all *v* in L_{RTS} do $E_v = \{(v,w) \mid w \in V_G \quad (v,w) \in E_G\}$ for all $e \in E_v$ do *e.isIOBottleneck* \leftarrow *IsIOBottleneck(e, G)* end for end for end if

Criteria CPU bottleneck:

- $pt(v) > \alpha \ (\alpha = 90\%)$
- No successor vertex of v is CPU bottleneck

Criteria I/O bottleneck:

- $st(e) > \beta \ (\beta = 90\%)$
- No successor edge of e is I/O bottleneck

Evaluation (1/2)

- Evaluation job
 - Conversion of article DB
 - 40 GB of bitmap images to PDF
- Properties of job
 - Different computational complexities of tasks
 - Each parallel instance runs on separate VM (with 1 CPU core)
 - Input data reside on external storage
- Goal of evaluation
 - Find ideal degree of parallelization for each task

Evaluation (2/2)

Odej Kao – Stratosphere – Data Management on the Cloud

- Cloud Computing for Data Management
- Massive-parallel execution with Nephele
- Topology detection and adaptive compression
- Conclusions

Motivation

• The network is a scarce resource

- Used for communication among nodes
- Used by distributed file system
- Possibly used by other virtual machines
- Network performance hard to predict
 - Available throughput may change over time
 - Can lead to I/O bottlenecks starvation
- Idea: Handle varying I/O performance on application layer
 - Adaptive compression
 - Topology detection

Adaptive Online Compression

- Selection of different compression algorithms
 - Each algorithm has different time/size ratio

- Calibration of decision model during data transfer
 - Try out different compression levels
 - Learn from previous compression decisions
 - Reward good decisions, penalize bad ones

berlin

Odej Kao – Stratosphere – Data Management on the Cloud

berlin

Odej Kao – Stratosphere – Data Management on the Cloud

berlir

- Cloud costumer's perspective:
 - IP addresses to VMs only ⇒ Underlying network topology is not revealed
 - Data locality cannot be exploited inside application

warneke@hadoop	p-dev:~\$ euca-de	scribe-instances				
RESERVATION	r-310C06F3	marrus default				
INSTANCE	i-348C06AC	emi-AE291B0F	192.168.198.14	192.168.198.14	running mykey	2
INSTANCE	i-3A1E062D	emi-AE291B0F	192.168.198.13	192.168.198.13	running mykey	0
INSTANCE	i-46BC0853	emi-AE291B0F	192.168.198.12	192.168.198.12	running mykey	1

• Can we infer the physical network topology from the VMs?

Topology Inference (TI) from End Nodes

- Rely on assistance of internal network nodes
 - Use ICMP, traceroute-like tools

Benefits	Challenges
✓ Simple	 Unable to detect switches/bridges
✓ Robust for IP-level topologies	× Anonymous routers

- Do not rely on assistance of internal network nodes
 - Observe network behavior from end nodes only
 - Use observations to infer existence of internal network nodes

Benefits	Challenges
\checkmark > 10 years research history for WANs	× No research for data center networks
✓ Potentially identifies switches/bridges	× Impact of virtualization unknown

TI based on End-to-End Measurements

- One sender node, two or more receiver nodes
 - Connected through unknown, tree-like network
 - Sender sends probe packets to receivers
 - Receivers observe link characteristics like throughput, delay, packet loss

Odej Kao – Stratosphere – Data Management on the Cloud

Link Characteristic Packet Loss

- Packet loss hard to observe due to high throughput links
- Virtualization destroys packet correlation on shared link

Link Characteristic Delay

 Poor delay correlation for KVM with unmodified device drivers

 Modest increase of interarrival times for both KVM and XEN (paravirtualization)

Link Characteristic Delay (RTT)

RTT can be used to detect co-located VMs with paravirt.

Odej Kao – Stratosphere – Data Management on the Cloud

Inferred Tree is always Binary

• Binary trees fit measured data most closely

- Highest degree of freedom
- "Overfitted" version of actual network topology

Re-Rooting the Inferred Tree

- Remember: Data center networks have regular structure
- Idea:
 - Determine depth of each leaf node

– New root minimizes difference between smallest and highest depth

- After Re-rooting, depth of the inferred tree is reduced
 - Assumption: Tree depth greater than d is unlikely to occur in data center
- Idea:
 - Until tree depth $\leq d$, identify leaf node with highest depth
 - Merge parent and parent's parent

- After Re-rooting, depth of the inferred tree is reduced
 - Assumption: Tree depth greater than d is unlikely to occur in data center
- Idea:
 - Until tree depth $\leq d$, identify leaf node with highest depth
 - Merge parent and parent's parent

- After Re-rooting, depth of the inferred tree is reduced
 - Assumption: Tree depth greater than d is unlikely to occur in data center
- Idea:
 - Until tree depth $\leq d$, identify leaf node with highest depth
 - Merge parent and parent's parent

- After Re-rooting, depth of the inferred tree is reduced
 - Assumption: Tree depth greater than *d* is unlikely to occur in data center
- Idea:
 - Until tree depth $\leq d$, identify leaf node with highest depth
 - Merge parent and parent's parent

Current Work: Streaming

- Nephele and PACTs currently focus on batch-job workloads
 - Usual goal: "minimize time-to-solution"
 - Translates to "maximize throughput"
- What about streaming workloads?
 - Possible with Nephele, but (as of now) not PACTs
 - May have different goals
 - Meet pipeline latency and throughput requirements
 - Minimize pipeline latency, don't care about throughput
 - Max/Min other custom metrics

Conclusion

- Parallel data processing on clouds is promising research area
 - Elasticity/cost model provides new use cases
- Future work
 - Streaming and profile comparisons
 - CloudNets move part of the computation into the networks
- Plenty of opportunities for future work
 - Currently 20+ developers, Apache License
 - Check www.stratosphere.eu for downloads, tutorials

Thank you

berlin

Technische Universität Berlin	Institut für Telekommunikationssysteme Komplexe und Verteilte IT-Systeme	TUB-Login mit Passwort mit Campuskarte
Startseite der <u>TUB</u> Fakultät IV		
Institut für Telekommunikationssysteme	MPGI4(VL) VS(VL) BKITS(VL) P2P(SE) BKITS(SE)	🖸 OCITS(SE) 🗖 VS(PJ)
Fachgebiet Komplexe und Verteilte IT-Systeme Termine/Aktuelles		Direktzugang Gehe zu: 2806
Personen		Hilfsfunktionen
Lehre		I Hilfsfunktionen einblenden
Publikationen		Kontakt
Abschlussarbeiten	Complex and Distributed IT Systems	Sekr. EN 59
Jobs	Aktuelles	Einsteinufer 17 10587 Berlin Tel: 030 314 25154 Fax: 030 314 21114
	 27.08.2009 - 11:15 Uhr Vortrag: Capacity Planning in a Market for Tradable Cloud Computing Resources 	 E-Mail-Anfrage Anfahrt Auto (Google Maps)
	▶ Lehrangebot WS09/10 online!	So finden Sie uns
	Tutoren für MPGI gesucht	
	Programmierer gesucht	 Campusplan(PDF)
	schon entdeckt	Google-Maps
	Offene Abschlussarbeiten	
	▶ BIS-Grid meets the Cloud (BA)	
	Security Proxy für Web Services (BA)	
	OnlineCA für Short Living Certificates (BA)	
	Transparenz in Compute Clouds (MA)	
	Scheduling für massiv-parallele Datenverarbeitung in Clouds (MA)	
	Job Profiling für massiv-parallele Datenverarbeitung (BA)	

www.cit.tu-berlin.de