
Declarative Languages for Querying Portal Catalogs

Vassilis Christophides Dimitris Plexousakis Greg Karvounarakis So�a Alexaki

ICS-FORTH, Vassilika Vouton, P.O.Box 1385, GR 711 10, Heraklion, Greece

fchristop, dp, gregkar, alexakig@ics.forth.gr

1 Introduction

As data is increasingly captured, aggregated, and digitized worldwide, new types of information sys-
tems, such as digital libraries and information (subject) gateways, emerge as core technologies of the
21st-century economy. After a �rst generation of systems focusing on the accessibility of available
information resources, nowadays, high quality information collections are smoothly transformed into
Community Web Portals. These Portals provide the means to select, classify and access, in a seman-
tically meaningful and ubiquitous way, diverse information resources in order to develop and maintain
speci�c communities of interests (e.g., professional, trading, etc.) on corporate intranets or the Web.
A key Portal component is the Knowledge Catalog holding descriptive information, i.e., metadata,
about the community resources (e.g., sites, documents, data, etc.). Despite the current developments
in standards for describing the content and meaning of information resources (see the W3C Metadata
Activity1), declarative languages suitable for querying both their semantic descriptions and the em-
ployed schemas are still missing. In this paper we present such a high-level query language for Portal
Catalogs (e.g., as Open Directory, CNET, XMLNews2) created according to the Resource Description
Framework (RDF) standard [15, 4].

RDF [15] aims at facilitating the creation and exchange of metadata as any other Web data. RDF
resource descriptions are represented as directed labeled graphs (where nodes are called resources or
literals and edges are called properties) which can be serialized in XML. Furthermore, RDF schema [4]
vocabularies are used to de�ne the labels of nodes (called classes) and edges that can be used to
describe and query resources in speci�c communities. These labels can be organized into appropriate
taxonomies, carrying the inclusion semantics of subjects/topics in a Portal Catalog. In this context,
our query language, called RQL, relies on a graph data model allowing us to interpret semistructured
RDF descriptions by means of one or more RDF schemas. Note that RDF schemas (a) do not impose a
strict typing on the data (by e.g., permitting multiple classi�cation, optional and repeated properties);
(b) can be easily extended (e.g., through specialization of both classes and property types); (c) may
provide only a partial or overlapped interpretation of the underlying data (e.g., by having several,
eventually incomplete schemas for the same resource descriptions); and (d) are not entirely separated
from the resource descriptions (i.e., they can be queried like normal data). Thus, RQL shares the

exibility and utility of the recent proposals for semistructured or XML query languages, while, at the
same time, extending their functionality to the RDF schema level by exploring in a transparent way
the de�ned taxonomies of classes and properties, as well as, the multiple classi�cation of resources.
To the best of our knowledge, RQL is the �rst language to smoothly combine features from thesauri-
based information retrieval systems (i.e., term expansion mechanisms [12]) with semistructured or
XML query languages featuring variables on both property and class names (i.e., generalized path
expressions [1]).

Our work is motivated by the fact that existing semistructured models (e.g., OEM [18], YAT [8])
cannot capture the semantics of node and edge labels provided by RDF schemas (i.e., taxonomies of
classes and property types), while semistructured or XML query languages (e.g., LOREL [2], UnQL [5],
StruQL [11], XML-QL [10], XML-GL [7]) are not suited to exploit RDF schema information (i.e.,
pattern vs. semantic matching of labels). On the other hand, database (relational or object) schema
query languages as SchemaSQL [14], XSQL [13] or Noodle [17] fail to fully accommodate RDFS

1
www.w3.org/Metadata

2
www.dmoz.org, home.cnet.com, www.xmlnews.org

features such as specialization of properties. Furthermore, they have been designed for data that are
more strongly typed than RDF resource descriptions. Finally, existing RDF-enabled systems [19] and
logical languages (SiLRI [9], Metalog [16]) su�er from a number of de�ciencies: (a) RDF schemas
are either ignored or substituted by other formalisms (e.g., F-Logic); (b) RDF containers (e.g., bags,
sequences) are not captured; (c) they do not consistently support complex querying on data and
schema.

We believe that declarative query languages for metadata like RQL, open new perspectives for
e�ective and e�cient metadata management. Hence, Portal applications have to specify only which
resources need to be accessed, leaving the task of determining how to e�ciently access them to the
Portal query engine. As a matter of fact, RQL is a generic tool that can be used by several applications
aiming at building, accessing and personalizing Community Web Portals.

2 Example of a Cultural Community Web Portal

In this section, we brie
y recall the main modeling primitives proposed in the Resource Description
Framework (RDF) Model & Syntax and Schema (RDFS) speci�cations [15, 4]. Our presentation
relies on an example of a Portal Catalog created for a Cultural Community. To build this Catalog
we need to describe cultural resources (e.g., Museum Web sites, Web pages with exhibited artifacts)
both from a Portal administrator and a museum specialist perspective. The former is essentially
interested in management metadata (e.g., mime-types, �le sizes, modi�cation dates) of resources,
whereas the latter needs to focus more on their semantic description using notions such as Artist,
Artifact, Museum and their possible relationships. These semantic descriptions can be constructed
using existing ontologies (e.g., the International Council of Museums CIDOC Reference Conceptual
Model3) or vocabularies (e.g., the Open Directory Topics hierachy4) employed by communities5 and
cannot always be extracted directly from resource content or hyperlinks.

In the lower part of Figure 1, we can see the descriptions created for two Museum Web sites
(resources &r4 and &r7) and three images of artifacts available on the Web (resources &r2, &r3 and
&r6). In the rest of the paper we use the notation & to denote the involved resource URIs (i.e.,
identity). For example, &r4 is �rst described as an ExtResource having two properties: title with
value the string \Reina Sophia Museum" and last modified with value the date 2000/06/09. Then,
&r4 is also classi�ed under Museum, in order to capture its semantic relationships with other Web
resources such as artifact images. For instance, we can state that &r2 is of type Painting and has a
property exhibited with value the resource &r4 and a property technique with string value \oil on
canvas". Resource &r2 as well as &r3 and &r6 are also multiply classi�ed under ExtResource. Finally,
in order to interrelate artifact resources, some intermediate resources for artists (i.e., which are not
on the Web) need to be generated, as for instance, &r1 and &r5. More precisely, &r1 is a resource
of type Painter and its URI is given internally by the Portal description base. Associated with &r1

are: a) two paints properties with values the resources &r2 and &r3; and b) an fname property with
value \Pablo" and an lname property with value \Picasso". Hence, diverse descriptions of the same
Web resources (e.g., &r2 as ExtResource and Museum) are easily and naturally represented in RDF

as directed labeled graphs. The labels for graph nodes (i.e., classes or litteral types) and edges (i.e.,
properties) that can be employed to describe and query resources are de�ned in RDF schemas.

In the upper part of Figure 1, we can see two such schemas: the �rst intended for museum
specialists while the second for Portal administrators. The scope of the declarations is determined
by the corresponding namespace of each schema, e.g., ns1 (www.icom.com/schema1.rdf) and ns2

(www.oclc.com/schema2.rdf). For simplicity, we will hereforth omit the namespaces pre�xing class
and property names. In the former schema, the property creates, has been de�ned with domain
the class Artist and range the class Artifact. Note that properties serve to represent attributes
(or characteristics) of resources as well as relationships (or roles) between resources and they have
unique names. Furthermore, both classes and properties can be organized into taxonomies carrying
simple inclusion semantics (multiple specialization is also supported). For example, the class Painter
is a subclass of Artist while the property paints (or sculpts) re�nes creates. In a nutshell,

3
www.ics.forth.gr/proj/isst/Activities/CIS/cidoc

4www.dmoz.org

5
Note that the complexity of semantic descriptions depends on the diversity of resources and the breadth of com-

munity domains of discourse.

String
String

String

String

Integer

subPropertyOf (isA)

"Rodin"

subClassOf (isA)

typeOf (instance)

"August"

creates

"oil on canvas"

Date
last_modified

Ext.Resource

exhibited

titlemime-type

title

creates
Artist Artifact

Painter Painting

Sculptor Sculpture
material

technique

paints

exhibited

paints

Museum
exhibited

lname
&r5

"Pablo"

String

"Picasso"

technique

paints

title

last_modified

r1:www.culture.net#picasso132

2000/02/01

sculpts

r6:www.artchive.com/crucifixion.jpg

file_size

r7:www.rodin.fr

r5:www.culture.net#rodin424

last_modified

2000/06/09

r4:www.museum.es

"oil on canvas"

r2:www.museum.es/guernica.jpg

String

ns2:www.oclc.org/schema2.rdf

technique

r3:www.museum.es/woman.qti

mime-type

lname

fname

ns1:www.icom.com/schema1.rdf

P
or

ta
l r

es
ou

rc
e

de
sc

ri
pt

io
ns

P
or

ta
l S

ch
em

as

lname

fname

fname

"Rodin Museum"

"image/jpeg"

&r6

&r3

&r7

Museum"
"Reina Sofia&r4

&r1

&r2

Figure 1: An example of RDF resource descriptions for a Cultural Portal

RDF properties are decoupled from class de�nitions and are by default unordered (e.g., there is no
order between the properties fname and lname), optional (e.g., the property material is not used),
multi-valued (e.g., we have two paints properties), and they can be inherited (e.g., creates).

A speci�c resource (i.e., node) together with a named property (i.e., edge) and its value (i.e., node)
form a statement in the RDF jargon. Each statement is represented by a triple having a subject (e.g.,
&r1), a predicate (e.g., fname), and an object (e.g., \Pablo"). The subject and object should be of a
type compatible (under class specialization) with the domain and range of the predicate used (e.g.,
&r1 is of type Painter). In the rest of the paper, the term description base will be used to denote
a collection of RDF statements. Although not illustrated in Figure 1, RDF also supports structured
values called containers (i.e., bag, sequence) for grouping statements as well as higher-order statements
(i.e., rei�cation). Finally, both RDF graph schemas and descriptions can be serialized in XML using
various forests of XML trees (i.e., there is not a root XML node).

3 The RDF Query Language: RQL

RQL is a typed query language relying on a functional approach (a la OQL [6]). It is de�ned by a set of
basic queries and iterators which can be used to build new ones through functional composition of side-
e�ect free functions. Furthermore, RQL supports generalized path expressions, featuring variables on
labels for both nodes (i.e., classes) and edges (i.e., properties). The novelty of RQL lies in its ability
to smoothly combine schema and data path expressions while exploiting - in a transparent way - the
taxonomies of classes and properties as well as multiple classi�cation of resources. As we will see in
the sequel this functionality is required by several Community Web Portal applications (e.g., simple
browsing, personalization, interactive querying, etc.).

3.1 Browsing Portals using RQL Basic Queries

The core RQL queries essentially provide the means to access RDF description bases with minimal
knowledge of the employed schema(s). These queries can be used to implement a simple browsing
interface for CommunityWeb Portals. For instance, in Web Portals such as Netscape Open Directory,
for each topic (i.e., class), one can navigate to its subtopics (i.e., subclasses) and eventually discover
the resources which are directly classi�ed under them. In this subsection we will see how the basic
RQL queries can be used to generate such Portal interfaces, either o�-line (i.e., by materializing the
various query results in HTML/XML �les) or online (by computing query answers on the
y).

To warmup readers, we start with queries which can �nd all the schema classes or properties used
in a Portal Catalog. Class and Property are two basic queries which return all the labels of nodes and
edges that can be used in an RDF description base. In our example, they will return the URIs of the
classes and properties illustrated in Figure 1. Then, for a speci�c property we can �nd its de�nition by
applying the corresponding domain and range functions. For instance, domain(creates) will return
the class nameArtist. To traverse the class/property hierarchies, RQL provides various functions such
as subClassOf (for transitive subclasses) and subClassOf^ (for direct subclasses). For example, the
query subClassOf^(Artist) will return the class URIs Painter and Sculptor. More generally, we can
access any RDF collection by just writing its name. This is the case of RDF properties considered as
binary relations. The basic query creates will return the bag of ordered pairs of resources belonging
to the extent of creates (source and target are simple position indices):

source target

www.culture.net#rodin424 www.artchive.com/cruci�xion.jpg

www.culture.net#picasso132 www.museum.es/guernica.jpg

www.culture.net#picasso132 www.museum.es/woman.qti

We can observe that, in the extent of properties we consider the extents of their subproperties
(e.g., paints and sculpts) as well. We believe that using only few abstract labels (i.e., the top-level
classes or properties in an RDF schema) to query complex descriptions is an original feature of RQL.
As we will show in the sequel, properties are the main building blocks for formulating RQL path
expressions. Finally, common set operators (e.g., union, intersect) applied to collections of the

same type are also supported.

3.2 Personalizing Portal Access using RQL Filters

In order to personalize access to Community Web Portals, more complex RQL queries are needed.
Portal personalization is actually supported by de�ning information channels to which community
members may subscribe. Channels essentially preselect a collection of the Portal resources related to
a theme, subject or topic (e.g., Museum Web sites) and they are speci�ed using the recent RDF Site
Summary (RSS) schema [3]. An RSS channel is speci�ed by a static XML document containing the
URIs of the resources along with some administrative metadata (e.g., titles, etc.). Not surprisingly,

we can use RQL to de�ne channels as views over the Portal Catalog and generate their contents
on-demand. For instance, the following query is used to de�ne a channel with Museum resources
available in our Cultural Portal.

Q1: Find the Museum resources and their title.
select X, Y
from MuseumfXg.titlefYg

Here MuseumfXg is a basic data path expression where X ranges over the resource URIs in the
extent of class Museum and Y over the target values of the title extent. As we can see in Figure 1, the
title property has been de�ned with domain the class ExtResource but, due to multiple classi�cation,
the source values of title may be resources also labeled with any other class name (e.g., Artifact,
Museum, etc.). Then in Q1 we essentially ignore the schema classes labeling the endpoint instances
of the properties. The \." used to concatenate the two path expressions is just a syntactic shortcut for
an implicit join condition between the source values of the title extent and X. Hence, Q1 is equivalent

to the query MuseumfXg; fZgtitlefY g where X = Z. Recall that RDF classes do not de�ne types
on which attribute extractor operators like \." could be de�ned and therefore the expression X:title

is meaningless in out setting. The �nal result will contain the sites www.museum.es and www.rodin.fr

along with their tiltes.

3.3 Querying Portals with Large Schemas

In the previous subsections we have illustrated how RQL can be used to specify, in a declarative way,
the access functionality actually supported by Portals like Netscape Open Directory. However, such
simple browsing interfaces force the user to navigate through the whole hierarchy of topics (i.e., classes)
in order to �nd resources classi�ed under the leaf topics. It is evident that for large Portal schemas
this is a cumbersome and time consuming task (e.g., the Art hierarchy of the Open Directory alone
contains 20000 subtopics and currently 200000 indexed resources). Clearly, we also need declarative
query support for navigating through the schema taxonomies of classes and properties. Consider, for
instance, the following query:

Q2: Find the resources of a type more speci�c than Painter and more general than Neo-Impressionist
which have created something.
select X, Y
from fX:$ZgcreatesfYg
where $Z <= Painter and $Z >= Neo-Impressionist

In the from clause of Q2 we can see a mixed path expression featuring both data (e.g., X) and
schema variables on graph nodes (e.g., $Z). More precisely, class variables pre�xed by the symbol
$ are implicitly range restricted to Class. Then, $Z will be valuated to the domain class of the
property creates (i.e., Artist) and recursively to all of its subclasses (i.e., Painter, Sculptor, or
Neo-Impressionist). The conditions in the where clause will in turn restrict $Z to the classes in the
hierarchy having as superclass Painter and as subclass Neo-Impressionist. Naturally, without any
restriction to $Z the whole extent of creates will be returned and $Z will be valuated to the actual
classes of its source values. Note that if the class in the where clause is not a valid subclass of the
domain of creates then the query will return an empty bag without accessing the extent of creates. To
make this kind of path expressions more compact for class equality (e.g., $Z = Painter), shortcuts
as \fX:PaintergcreatesfYg" are also supported.

3.4 Querying Portal Schemas

In this subsection, we focus our attention on querying RDF schemas, regardless of any underlying
instances. The main motivation for this is to use RQL as a high-level language to implement schema
browsing. This is quite useful when Portal Catalogs use large schemas (e.g., the Open Directory Topic
hierachy) to describe resources. In this context, Portal administrators may not be aware of all the
classes and properties they can use to describe resources while RDF schemas carry information which
is only implicitly stated (e.g., the polymorphism of the domain and range of properties). Consider for
instance the following query:

Q3: Find all the properties which specialize the property creates and may have as domain the class
Painter along with their corresponding domain and range classes.

select @P, $Y
from f:Painterg@Pf:$Yg
where @P <= creates

@P $Y

creates Artifact

creates Painting

creates Sculpture

paints Painting

The schema path expression in the from clause of Q3 introduces two variables: @P ranging over
Property, and $Y ranging over the range class (and its subclasses) of each @P valuation ($Y <=
range(@P)). Furthermore, @P should be a subproperty of creates for which the domain is Painter or
one of its superclasses. This expression is just a shortcut for f: $Xg@Pf: $Y g where $X = Painter

and $X <= domain(@P). Given the schema of Figure 1, @P will be valuated to the properties
creates and paints. Due to class inheritance, creates may have as range any subclass of Artifact. The
same is true for the range classes of paints. In cases where an automatic expansion of class hierarchies
is not desired, RQL allows one to obtain only the classes which are directly involved in the de�nition

of properties. We can issue, for instance, the following query:
Q4: For all the classes in the hierachy rooted at Artist �nd the properties and their range classes

which are directly de�ned.

select domain(@P), @P, range(@P)
from Propertyf@Pg
where domain(@P) <= Artist

domain(@P) @P range(@P)

Artist creates Artifact

Artist fname string

Artist lname string

Painter paints Painting

Sculptor sculpts Sculpture

Compared to Q3 the result of this query will contain only the classes for which a property is explicitly
de�ned, along with its name and range. Note also that the functional nature of RQL allows the use
of functions anywhere in a �lter as long as typing rules are respected: domain(@P) is of type class
name, as also is the name Artist.

References

[1] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, and J. Sim�eon. Querying
Documents in Object Databases. Inter. Journal on Digital Libraries, 1(1):5{18, April 1997.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel Query Language for
Semistructured Data. Inter. Journal on Digital Libraries, 1(1):68{88, April 1997.

[3] G. Beged-Dov, D. Brickley, R. Dornfest, I. Davis, L. Dodds, J. Eisenzopf, D. Galbraith, R. Guha,
E. Miller, and E. van der Vlist. RSS 1.0 Speci�cation Protocol. Draft, August 2000.

[4] D. Brickley and R.V. Guha. Resource Description Framework (RDF) Schema Speci�cation 1.0,
W3C Candidate Recommendation. Technical Report CR-rdf-schema-20000327, W3C, March
2000. Available at http://www.w3.org/TR/rdf-schema.

[5] P. Buneman, S.B. Davidson, and D. Suciu. Programming Constructs for Unstructured Data.
In Proceedings of International Workshop on Database Programming Languages, Gubbio, Italy,
1995.

[6] R.G.G. Cattell and D. Barry. The Object Database Standard ODMG 2.0. Morgan Kaufmann,
1997.

[7] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-GL: a Graphical
Language for Querying and Restructuring XML Documents. In Proceedings of International
World Wide Web Conference, Toronto, Canada, 1999.

[8] S. Cluet, C. Delobel, J. Sim�eon, and K. Smaga. Your Mediators Need Data Conversion! In
Proceedings of ACM SIGMOD Conf. on Management of Data, pages 177{188, Seattle, WA.,
June 1998.

[9] S. Decker, D. Brickley, J. Saarela, and J. Angele. A query and inference service for rdf. In W3C
Query Languages Workshop, Cambridge, Mass., 1998.

[10] A. Deutsch, M.F. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language for XML.
In Proceedings of the 8th International World Wide Web Conference, Toronto, 1999.

[11] M.F. Fernandez, D. Florescu, J. Kang, A.Y. Levy, and D. Suciu. System Demonstration - Strudel:
A Web-site Management System. In Proceedings of ACM SIGMOD Conf. on Management of
Data, Tucson, AZ., May 1997. Exhibition Program.

[12] D.J. Foskett. Theory of clumps. In K. Sparck Jones and P. Willett, editors, Readings in Infor-
mation Retrieval, pages 111{134. Morgan Kaufmann, 1997.

[13] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 393{402, 1992.

[14] L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian. SchemaSQL - a language for interoper-
ability in relational multi-database systems. In Proceedings of International Conference on Very
Large Databases (VLDB), pages 239{250, Bombay, India, September 1996.

[15] O. Lassila and R. Swick. Resource Description Framework (RDF) Model and Syntax Speci�-
cation. W3C Recommendation, February 1999. Available at http://www.w3.org/TR/REC-rdf-
syntax.

[16] M. Marchiori and J. Saarela. Query + metadata + logic = metalog. In W3C Query Languages
Workshop, Cambridge, Mass., 1998.

[17] I.S. Mumick and K.A. Ross. Noodle: A Language for Declarative Querying in an Object-
Oriented Database. In Proceedings of International Conference on Deductive and Object-Oriented
Databases (DOOD), pages 360{378, Phoenix, Arizona, December 1993.

[18] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across Heterogeneous
Information Sources. In Proceedings of IEEE International Conference on Data Engineering
(ICDE), pages 251{260, Taipei, Taiwan, March 1995.

[19] Some proposed RDF APIs.
GINF: http://www-db.stanford.edu/~melnik/rdf/api.html,
RADIX: http://www.mailbase.ac.uk/lists/rdf-dev/1999-06/0002.html,
Netscape Communicator: http://lxr.mozilla.org/seamonkey/source/rdf/base/idl/,
RDF for Java: http://www.alphaworks.ibm.com/formula/rdfxml/.

