
Searching the Web with SHOE

Jeff Heflin and James Hendler

Department of Computer Science
University of Maryland

College Park, MD 20742
{heflin, hendler}@cs.umd.edu

Abstract
Although search engine technology has improved in recent
years, there are still many types of searches that return
unsatisfactory results. This situation can be greatly
improved if web pages use a semantic markup language to
describe their content. We have developed SHOE, a
language for this purpose, and in this paper describe a
scenario for how the language could be used by search
engines of the future. A major challenge to this system is
designing a query tool that can exploit the power of a
knowledge base while still being simple enough for the
casual user. We present the SHOE Search tool, which
allows the user to specify a context for his or her query,
and then uses the context to help the user build a query by
example.

1. Introduction

The World Wide Web is an information resource with
virtually unlimited potential. However, this potential is
relatively untapped because locating relevant information
can often be time consuming and fruitless. Search engines
are constrained by the limitations of string matching and
link analysis while directories such as Yahoo are
constrained by the staff-hours that they can devote to
cataloging the Web. However, if machines could
“understand” the content of web pages, then searches with
high precision and recall would be possible. Of course,
accurate natural language processing is still not possible
in general domains. However, the focus of the Extensible
Markup Language (XML) on describing content rather
than presentation opens up new possibilities. Still, XML is
only a syntax and it is likely that many incompatible tag
sets will evolve to describe similar concepts. Although
XML promotes interoperability between organizations
that agree on standards ahead of time, the divergent
vocabularies will make it of little use for general searches
on the Web. A semantic markup language is needed for
these purposes.

We have defined the Simple HTML Ontology
Extensions (SHOE) language, an application of SGML
and XML that allows users to define extensible
vocabularies and associate machine understandable
meaning with them. These vocabularies are ontologies
that consist of category and relation definitions, which
can be augmented with additional axioms as desired.
SHOE promotes interoperability by having all ontologies
publicly available on the Web and allowing domain

specific ontologies to be created by the process of
ontology extension. SHOE also addresses the evolution of
the Web by explicitly including versioning features in the
language (Heflin and Hendler 2000). Rather than describe
the SHOE language in detail here, we point the interested
reader to the SHOE Specification (Luke and Heflin 1997).

In this paper, we specifically address how SHOE can be
used to perform more effective web searches. We begin
by describing how SHOE markup is added to pages, how
this information is collected, and how it is stored. We
then present SHOE Search, a general purpose query tool
that allows users to query SHOE information with a
minimal understanding of how it is structured.

2. Overview of the SHOE Process

In this section we discuss the key steps for use of the
SHOE language. Since SHOE is essentially a common
language that can be used to exchange Web data by any
number of applications, many architectures are possible.
Here we focus on the architecture that we are currently
using for our projects; this architecture is shown in Figure
1.

The first step in using SHOE is to add markup to the
web pages, a process we call annotation. In order to
annotate a web page, the user must select an appropriate
ontology and then use that ontology’s vocabulary to
describe the concepts on the page. In SHOE, each concept
is called an instance and is assigned a key, typically the
URL of the web page that best represents the concept.
The user can then express that the concept is a member of
a particular category or that it has certain relationships.
These relationships may either involve literal values such
as strings or numbers (as may be the case with the
relations name or height) or can be with other instances,
in which case the key of the related instance must be
known. Since there are no guarantees about the accuracy
of information on the Web, category and relation
declarations such as these are referred to as claims.

As with HTML, SHOE markup can be added to a page
using a simple text editor. However, unlike HTML
processors, SHOE processors are not very forgiving, and
errors can result in large portions of the annotations being
ignored. To ease the burden on the author, we have
designed the Knowledge Annotator, a tool that makes it
easy to add SHOE knowledge to web pages by making
selections and filling in forms. This tool has an interface

that displays instances, ontologies, and claims. Users can
add, edit or remove any of these objects. When creating a
new object, users are prompted for the necessary
information. In the case of claims, a user can choose the
source ontology from a list, and then choose categories or
relations from a corresponding list. The available relations
will automatically filter based upon whether the instances
entered can fill the argument positions. A variety of
methods can be used to view the knowledge in the
document. These include a view of the source HTML, a
logical notation view, and a view that organizes claims by
subject and describes them using simple English. In
addition to prompting the user for inputs, the tool
performs error checking to ensure correctness and
converts the inputs into legal SHOE syntax. For these
reasons, only a rudimentary understanding of SHOE is
necessary to markup web pages.

When SHOE pages are annotated and placed on the
Web, they can be queried and indexed. Although it is
possible to create agents that query pages in real time, we
believe that it will be easier to parallel the way modern
search engines work, that is collect the knowledge from
the pages and store it in a repository. For this purpose, we
have developed Exposé, a web-crawler that searches for
web pages with SHOE mark-up and interns the
knowledge. A web-crawler essentially performs a graph
traversal where the nodes are web pages and the arcs are
the hypertext links between them. When Exposé discovers
a new URL, it assigns it a cost and uses this cost to
determine where it will be placed in a queue of URLs to

be visited. In this way, the cost function determines the
order of the traversal. We assume that SHOE pages will
tend to be localized and interconnected. For this reason,
we currently use a cost function which increases with
distance from the start node, where paths through non-
SHOE pages are more expensive than those through
SHOE pages and paths that stay within the same directory
on the same server are cheaper than those that do not.
When Exposé loads a web page, it parses it, and if the
web page references an ontology that Exposé is
unfamiliar with, it loads the ontology as well. In order to
update its list of pages to visit, it identifies all of the
hypertext links, category instances, and relation
arguments within the page, and evaluates each new URL
as above. Finally, the agent stores SHOE category and
relation claims, as well as any new ontology information,
in a knowledge base (KB).

Currently, we store SHOE knowledge in a Parka KB
(Stoffel, Taylor, and Hendler 1997), but all of our tools
are designed with a generic KB API, so that an alternate
knowledge representation (KR) system could be used with
a minimum of effort. Considering the size of the Web,
any KR system that is used must be scalable. This is why
we use Parka, it provides a good tradeoff between query
efficiency and the most common types of inferences for
SHOE. Parka has been shown to answer queries on KBs
with millions of assertions in seconds, and when used on
parallel machines, it provides even better performance.

It is important to point out that in SHOE, two
ontologies could use the same term to mean different

Figure 1. The System Architecture

things. This is necessary because ontologies can be
designed by anyone, and there is no way to prevent terms
from being used by multiple ontology authors. Therefore,
when ontology terms are stored in the knowledge base,
they are renamed by appending an ontology specific
string.

Any number of query tools can access SHOE
knowledge that has been loaded into a KB. Since the
average web user does not want to take the time to learn
complex KR languages,1 we must provide query tools that
are graphical in nature. Our first query tool was the Parka
Interface for Queries (PIQ), which essentially allowed
users to draw a graph in which nodes represented constant
or variable instances and arcs represented relations. To
answer the query, the system would perform subgraph
matching on the user’s graph. However, this was too
complicated for all but the most advanced users and
drawing queries was time consuming.

In order to support the application of SHOE to food
safety (Heflin, Hendler, and Luke 1999), we developed
the TSE Path Analyzer, a tool that allows a user to trace
the possible pathways of food product contamination. The
user only needs to select a few values from hierarchical
lists to specify a query. The results are presented in the
form of a graph, and clicking on any node in the graph

1 Even the boolean searches offered as “advanced”
features by contemporary search engines are too
confusing for most users.

will open the web page that provides details on that node.
Note that because the Path Analyzer relies solely on
SHOE information that has been gathered from web
pages, it is possible for spatially distant communities with
different levels of computational resources to contribute
information.

The problem with the query tools described above is
that the general-purpose tool is too complicated for the
average user, while the tool that is easy to use is specific
to a particular domain. This led us to try to find a balance:
a general-purpose query tool that could used with a
minimal learning curve.

3. SHOE Search

The idea behind the SHOE Search tool is that if queries
are issued within a context, the tool can prompt the user
with context specific information and can more accurately
locate the information desired by the user. SHOE Search
is written in Java, and can be launched from a web page
via an applet. A screen shot of SHOE Search is shown in
Figure 2.

The user selects a context by choosing an ontology
from a drop-down list. The list of available ontologies are
those that are known by the underlying KB. The
identifiers and the version numbers of each ontology are
displayed, so that users may choose to issue their queries
against earlier versions of ontologies.

Figure 2. SHOE Search

After the user chooses an ontology, the system creates a
list of categories that are defined in that ontology. This
list is organized so that specializations of categories are
indented beneath them. This taxonomy makes it possible
for the user to quickly determine the kinds of objects that
are described in the ontology and to choose a class that is
of sufficient granularity for his or her needs. Since one of
the main purposes of choosing an ontology is to reduce
the number of choices that the user will have to make
subsequently, the list of categories generally does not
include categories defined in ontologies extended by the
selected ontology, even if they are ancestors of categories
defined locally. It is assumed that if these categories are
of interest to the user, then he can first select an
appropriate ontology. However, ontologies may rename
an element from an extended ontology and effectively
“import” them. Such categories are included in the list,
and displayed with their local name.

When the user chooses a category and presses the
Select button, the system responds with a set of properties
that are applicable for that category (in a frame-slot
system, this would essentially be the slots of the selected
frame). Applicable properties are inheritable; thus any
properties that apply to an ancestor of the selected
category are also included in the set. However, as with the
list of available categories, it is important to provide some
filtering for the user, so only those relations that are
defined or aliased in the selected ontology will appear,
even if other ontologies define relations that could be
relevant.

Technically, SHOE does not define properties, instead
it defines relations which can have some number of typed
arguments. As such, a property of a class can be
considered a relation where the first argument must be a
member of that class. However, this makes the
determination of properties dependent on the somewhat
arbitrary ordering of arguments as chosen by the ontology
designer. That is, the relation workFor(Person,
Organization) would be a property of the class Person,
but the inverse relation hasEmployee(Organization,
Person) would be a property of Organization. In order to
prevent SHOE Search queries from be restricted by these
kinds of representational decisions, a relation in which the
class is a subclass of the second argument is considered an
inverse property and is included in the set available to the
user. Such properties are clearly labeled in the display.

The property list allows the user to issue a query by
example. He can type in values for one or more of the
properties, and the system will only return those instances
that match all of the specified values. Some of these
property values are literals (i.e., strings, numbers, etc.)
while others may be instances of classes. In the later case,
it is unlikely that the user will know the keys for these
instances, since these keys are typically URLs and the
purpose of a search system is to locate URLs. Therefore,
arbitrary strings are allowed in these fields and the query
will attempt to match these strings to the names of

instances. To increase the chance of a match, case-
insensitivity and partial string matching are used.

When the users presses the Query button, the system
constructs a conjunctive query and issues it to the KB.
The first atom of the query specifies that the instance
must be of the selected category, e.g.,
everyInstanceOf(Person, ?K).2 The remaining atoms
depend on the type of the argument that the value
represents. In the case of numbers, the atom is simply
looking for an instance that has the specified value for the
relation. In the case of strings, two atoms are added, one
to find the values of the relation, and the other to perform
a partial string match on them to the string specified by
the user. Finally, if the type of the argument is a
category, then three clauses are added: one to get the
values for the relation, one to get the corresponding
names of these instance keys, and a third to match the
name strings to the string specified by the user. Note that
even if the user only specified values for two properties,
the resulting query could contain as many as seven
conjuncts. One of the advantages of SHOE Search is that
useful but complex queries are constructed automatically.
For example, the query constructed by the user in Figure 2
corresponds to a Parka query of the form:

everyInstanceOf(Article, ?K) ∧
publicationResearch(?K, ?X1) ∧ name(?X1, ?N1) ∧
strMatch(?N1, “%Simple HTML Ontology Extensions%”) ∧
publicationAuthor(?K, ?X2) ∧ name(?X2, ?N2) ∧
strMatch(?N2, “%Heflin%”)

Many users would have difficulty constructing such
queries by hand.

When the KB returns the results of the query, they are
displayed in tabular format. The KB is likely to return
many duplicate results; some of these will be due to
redundancies of different web pages, others might be
because the same page was visited many times using
different URLs. Either way, duplicate results would
simply clutter the display, and therefore they are removed
before the system displays them. Generally, both the
names and keys are displayed for related instances. In this
way, the user can distinguish between instances that
happen to have identical names. If the user clicks on an
instance key, whether it is the instance that matches the
query, or one that matches one of its properties, the
corresponding web page is opened in a new browser
window. This allows the user to browse the Web with
more control over the queries.

Sometimes users may have trouble deciding what
values to use for a given a property and may end up
getting no results because incorrect values were entered.
To remedy this problem, we have added a Find button
next to each property that finds valid values for that

2 In Parka, the everyInstanceOf predicate is used to return
all instances of a category using the transitivity of
category membership, as opposed to the instanceOf
predicate which only returns those instances which have
explicitly been asserted as a member of the category.

property. If this button is pressed the system will
essentially issue a query to find all instances that have a
value for the selected property and return those values in
the tabular display. The user may then select one of these
values and press the Add To Query button to insert it into
the query field for the property. In order to do this, the
system always keeps track of which columns of query
results correspond to which properties.

The user may wish to view the values for a certain
property without restricting the query. The Show
checkbox allows the user to specify that an additional
property should be displayed in the results. Note that
properties for which the user has specified a value have
this box checked by default. However, because the current
system only supports conjunctive queries, this option can
have unintuitive results. For example, if the user chooses
to show a property for which no instances have a value,
then no answers are returned, even if there are many
possible answers for the rest of the query.

The Show checkbox and the Add To Query button can
be used together to help the user gradually filter results
and find the desired instances. The user starts by checking
some of the Show boxes and issuing a query. One of the
results can be selected and added to the query. When the
query is reissued, fewer results should be returned. By
repeating this process the user can continue to reduce the
results returned to a manageable set.

It may be the case that all of the relevant web pages are
not described by SHOE markup. In such cases, the
standard query method of SHOE Search will not be able
to return an answer, or may only return partial answers.
Therefore, we have a Web Search feature that will
translate the user’s query into a similar search engine
query and allow them to submit it to any one of a number
of popular search engines. Using SHOE Search in this
way has two advantages over using the search engines
directly. First, by prompting the user for values of
properties it increases the chance that the user will
provide distinguishing information for the desired results.
Second, by automatically creating the query it can take
advantage of helpful features that are often overlooked by
users such as quoting phrases or using the plus sign to
indicate a mandatory term. Currently, we build a query
string that consists of a quoted short name for the selected
category and, for each property value specified by the
user, a short phrase describing the property followed by
the user’s value, which is quoted and preceded by a plus
sign. For example the search engine query string
generated for Figure 2 would be:

“Article” about research +“Simple HTML Ontology
Extensions” by author +“Heflin”

The quality of results for these queries vary depending on
the type of query and the search engine used. For search
engines with advanced query capabilities, these queries
could be expanded to included synonyms for terms using
disjunction or positional information could be used to
relate properties to their values.

One problem that SHOE Search queries have is that in
their annotations users often specify relations between
instances without explicitly declaring categories for these
instances. Since the first conjunct of a SHOE Search
query restricts answers to those instances that are
members of a particular class, all such relations are
ignored. However, we did not want to remove the
classification conjunct because it is often useful, for
example if the user specifies a query to find “All Journal
Articles whose author is John Smith” then we do not want
to return instances of conference papers by John Smith.
Therefore, when a web page uses an instance in a relation
and does not declare a category for it, the system assumes
that the user implicitly means it is of the required type,
and asserts the appropriate category declaration as well.
This improves the number of relevant answers that SHOE
Search can return, but may result in false classifications if
the user did not understand the defined typing for the
relation.

4. Related Work

There are numerous efforts to create semantic languages
for the Web. The Ontobroker project (Fensel et al. 1998)
uses a language to describe data that is embedded in
HTML, but relies on a centralized broker for ontology
definitions. Tool support for Ontobroker includes a
hyperbolic view for exploring ontologies, a simple text-
based interface for specifying queries in frame logic, and
an advanced interface that helps the user build frame logic
queries using pull-down lists. The Ontology Markup
Language (OML) and Conceptual Knowledge Markup
Language (CKML) (Kent 1999) are used together for
semantic markup that is based on the theories of formal
concept analysis and information flow. The W3C has
developed the Resource Description Framework (RDF)
(Lassila and Swick 1999), which uses XML to specify
semantic networks of information on web pages but has
only a weak notion of ontologies. The RDF Schema
proposal (Brickley and Guha 1999) improves this
situation somewhat, but does not sufficiently handle the
notions of revising or integrating ontologies.

5. Conclusion

We have described a process for using SHOE to improve
search on the Web and have presented tools that
demonstrate these capabilities. It is important to note that
this system parallels the way the Web works today: a
standard language allows a diverse tool set to interact
indirectly. Markup can be performed using a text editor,
the Knowledge Annotator, or other custom-built
annotation tools. Any number of web-crawlers or agents
can be built that extract SHOE content from web pages
and this content can be stored and queried in different
ways. Thus, SHOE-enabled search engines could

differentiate themselves by coverage, inferential
capability, speed and user interfaces.

The SHOE Search tool is unique in that it allows the
user to specify a context for search, and then provides the
user with options that are relevant to that context. It is
essentially a frame-based query by example interface, but
includes features that allow the user to discover the
content of the knowledge base and to extend the search
beyond the knowledge base by translating the query into a
format that can be issued to standard search engines.
Since the user has been prompted to enter values for
defining characteristics of the object in question, search
engine queries created by SHOE Search are more likely to
return relevant results.

The biggest barrier to the SHOE solution is the
knowledge acquisition problem. However, adding SHOE
annotations to web pages is only moderately more time
consuming than converting them to standard XML. We
feel that if users can be convinced of the benefits of
semantic markup, then they would be more willing to take
the time to do it. Nevertheless, automatic and semi-
automatic solutions will be necessary to achieve a critical
mass. Therefore we are examining approaches to extract
SHOE from semi-structured web pages, to translate
documents that use common XML DTDs to SHOE, and to
translate other semantic web languages such as RDF to
SHOE.

Knowledge representation tools for the Web must be
geared toward the average user, who often does not have
the time or desire to learn first-order logic. The suite of
SHOE tools, particularly SHOE Search, are a step in this
direction, but there is much room for improvement. Most
of these tools are available as on-line demos, and we
encourage the interested reader to visit our website at
http://www.cs.umd.edu/projects/plus/SHOE/ and provide
feedback. We believe that in the future, languages and
tools such as those we have developed for SHOE will be
crucial in locating relevant information in the ever
expanding and changing Web.

Acknowledgments

This work was supported by the Army Research
Laboratory under contract number DAAL01-97-K0135.
We would like to thank Carolyn Gasarch who contributed
to the development of the SHOE Search tool. Professor
Hendler is currently working as a Program Manager for
the Defense Advanced Research Projects Agency
(DARPA). The opinions expressed in this paper are his
own, and not do not necessarily reflect the opinions of
DARPA, the Department of Defense, or any other
government agency.

References

Brickley, D. and Guha, R. 1999. Resource Description
Framework (RDF) Schema Specification, W3C (World
Wide Web Consortium). At http://www.w3.org/TR/1999/
PR-rdf-schema-19990303

Fensel, D., Decker, S., Erdmann, M., and Studer, R. 1998.
Ontobroker: How to enable intelligent access to the
WWW. In AI and Information Integration, Technical
Report WS-98-14, 36-42. Menlo Park, CA: AAAI Press.

Heflin, J., and Hendler, J. 2000. Dynamic Ontologies on
the Web. In Proceedings of American Association for
Artificial Intelligence Conference (AAAI-2000). Menlo
Park, Calif.: AAAI Press.

Heflin, J., Hendler, J., and Luke, S. 1999. Applying
Ontology to the Web: A Case Study. In: J. Mira, J.
Sanchez-Andres (Eds.), International Work-Conference
on Artificial and Natural Neural Networks, IWANN'99.
Proceedings, Volume II. 715-724. Berlin: Springer.

Kent, R.E. 1999. Conceptual Knowledge Markup
Language: The Central Core. In Proceedings of the
Twelfth Workshop on Knowledge Acquisition, Modeling
and Management (KAW’99). Banff, Alberta, Canada.

Lassila, O. and Swick, R. 1999. Resource Description
Framework (RDF) Model and Syntax. W3C (World-Wide
Web Consortium). At http://www.w3.org/TR/1999/REC-
rdf-syntax-19990222

Luke, S. and J. Heflin. 1997. SHOE 1.0, Proposed
Specification. At http://www.cs.umd.edu/projects/plus/
SHOE/spec.html

Stoffel K., Taylor, M., and Hendler, J. 1997. Efficient
Management of Very Large Ontologies. In Proceedings of
American Association for Artificial Intelligence
Conference (AAAI-97). Menlo Park, Calif.: AAAI Press.

