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Abstract
Modern organizations face increasingly complex information man-
agement requirements. A combination of commercial needs, le-
gal liability and regulatory imperatives has created a patchwork of
mandated policies. Among these, personally identifying customer
records must be carefully access-controlled, sensitive files must
be encrypted on mobile computers to guard against physical theft,
and intellectual property must be protected from both exposure and
“poisoning.” However, enforcing such policies can be quite difficult
in practice since users routinely share data over networks and derive
new files from these inputs—incidentally laundering any policy re-
strictions. In this paper, we describe a virtual machine monitor sys-
tem called Neon that transparently labels derived data using byte-
level “tints” and tracks these labels end to end across commodity
applications, operating systems and networks. Our goal with Neon
is to explore the viability and utility of transparent information
flow tracking within conventional networked systems when used in
the manner in which they were intended. We demonstrate that this
mechanism allows the enforcement of a variety of data manage-
ment policies, including data-dependent confinement, mandatory
I/O encryption, and intellectual property management.

Categories and Subject DescriptorsD.4.6 [Operating Systems]:
Security and Protection—Information Flow Controls, Access Con-
trol

General Terms Security, Design, Management

1. Introduction
Information wants to be free because it has become so cheap to
distribute, copy, and recombine — too cheap to meter. It wants to be
expensive because it can be immeasurably valuable ... That tension
will not go away.– Stewart Brand, 1987.

Two decades after Brand’s prescient statement, the value of in-
formation, the ease of manipulating it, and the complexity of man-
aging its use have only become greater. Today commercial corpo-
rations, non-profits and governmental bodies alike mandate a wide
range of information management policies that govern who may
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access data, how it may be manipulated, and for what purposes it
may be used. However, in today’s interconnected computing envi-
ronment such policies are generally far easier stated than enforced.
Indeed, entire industries have emerged around providing and val-
idating different kinds of information “policy compliance” within
the enterprise.

Consider the simple policy “any customer records should be en-
crypted on disk.” Implicit in this statement is the assumption that
customer records can be easily identified and that there is a pol-
icy control in place that forces the encryption of such information.
However, in practice, neither is usually true. Most control mecha-
nisms mediate access to objects (such as files) and not the informa-
tion contained therein. Moreover, commodity applications, operat-
ing systems and networks provide little means for tracking the flow
of informationbetweensuch objects. Returning to the policy exam-
ple, while some operating systems do provide interfaces to specify
that a particular file should be transparently encrypted (e.g., Win-
dows XP’s EFS), this policy does not carry over toderived data.
Thus, if the file is compressed, if records are “cut and pasted” into
a new file, if it is sent over the network, if it is attached to an e-
mail, or if it is subject to any of a myriad of normal data manip-
ulations, the resulting data will be be laundered of any connection
to the original encryption policy. Put succinctly, operating systems
and applications generally provide controls only over information
containers— such as files or network connections — but not over
the actual data they contain. This failing is the Achilles heel that
undermines the practical enforcement of virtually all information
management policies.

Solving this problem — without requiring changes to existing
binary applications or operating systems — requires a transparent
system-wide mechanism for tracking information flow. Moreover,
for today’s distributed environment, it is insufficient to simply track
information flow on a single machine, but this capability must ap-
ply transitively across the network as well. In this paper we de-
scribe how such a mechanism can be integrated within a virtual
machine monitor (VMM) and used to enforce a wide range of prac-
tical information management policies in a distributed enterprise
environment. We demonstrate this approach using a prototype sys-
tem, calledNeon, that implements byte-level policy labels, called
“tints,” that are transparently propagated and combined as part of
normal instruction execution. Critically, this capability requires no
changes to applications or operating systems.

Moreover, Neon propagates tints across the network and to and
from storage, thus maintaining the binding between a policy and
any derived data. For example, consider the following scenario: a
user opens a file over NFS using Emacs, edits its contents, selects
a portion and then pastes it into a separate mail application —
in a different window — then encrypts the message and sends it
to a third party via SMTP. If the source file was tinted “red” (an



arbitrary designation) then packets containing the message will be
tinted red as well (at least in part). Thus, if the red tint was meant
to indicate confinement, the policy can be enforced by dropping
red packets at the host or a network gateway. We have used Neon
to easily implement a variety of such information management
policies, including network-level confinement and access control,
mandatory encryption, enforced virtual private network use and
licensing compliance for compiled code.

Neon is not a panacea. Our goal with Neon is to exploretrans-
parentinformation flow tracking within conventional applications,
systems, and networks when they are used in the manner in which
they were intended in the enterprise environment. We do not strive
to enforce policy against sophisticated adversaries, such as prevent-
ing covert channels that might defeat information flow tracking
(e.g., photographing information displayed on the screen). Given
that one recent survey of 145 information security breaches impli-
cated employee negligence in over 75% of incidents [12], our focus
seems appropriate. Also, while acceptable performance is always
desirable, performance optimization is not a goal of this paper. Our
aim is to show the general applicability of our approach rather than
to demonstrate the best method for implementing it. Indeed, our
performance results leave substantial headroom for performance
optimization in both software and hardware as future work.

This paper is structured as follows. We motivate the need for
transparent information flow tracking and describe closely related
work in Section 2. Next we describe our overall design in Section 3
followed by a description of Neon’s implementation in Section 4.
The remainder of the paper, Section 5, describes the baseline over-
head added by the Neon prototype and describes how the system is
used in a variety of applications. We summarize our findings and
conclude in Section 7.

2. Background and Related Work
The need for information management policies is driven by a range
of concerns, including protection of trade secrets, third-party liabil-
ity, and corruption of intellectual property. Moreover, compliance
with regulations such as the U.S. Health Insurance Portability and
Accountability Act (HIPAA), the U.S. Sarbanes-Oxley Act and the
European Parliament’s Directive 95/46/EC all require restrictions
on the use and disclosure of particular forms of data and their de-
rived counterparts. Finally, the combination of data loss disclosure
laws (such as California’s SB 1386) and increased attention to at-
tendant issues such as identity theft and data piracy have focused
considerable attention on these issues.

Moreover, these are not mere hypothetical concerns, but re-
flect growing reports of misappropriation, loss, or misuse of data
that should have been appropriately protected. For example, in one
highly publicized case, a staff member in the office of the U.S.
House Majority Leader was able to exfiltrate Judiciary Commit-
tee documents from the opposing political party by encapsulating
them within e-mails to a separate account [34]. Even more com-
mon are accidental exposures of private data, either from employ-
ees who misunderstand the policy governing such data or through
inadvertent sharing or accidental sharing. For example, many pop-
ular applications implement versioned file formats that may include
information from previous versions even if it has been deleted, or
blacked out, using the application. Similarly, many file sharing ap-
plications or indexing services are easily misconfigured to export
potentially sensitive data without user knowledge.

Physical data mobility presents additional challenges, and
stolen laptop computers have exposed a wide range of sensitive
data stored therein, including millions of personnel records [29],
classified intelligence documents [30] and credit card informa-
tion [33]. Indeed, in a 2006 CSI/FBI survey of Fortune 1000 com-

panies, nearly half of all losses due to cyber security incidents were
the result of data loss/leakage of some type [17].

Finally, unmanaged data infiltration can sometimes cause as
many problems as data leakage. In particular, the copyright of a
software program is derived from the provenance of its constituent
source files. However, the success of the open source movement has
made it easy to share source code across the Internet — potentially
undermining the qualities of derived works, open source and pro-
prietary alike. Indeed, violations of the Free Software Foundation’s
GNU Public License are commonplace in commercial products and
yet most of these violations are accidental [16].

In general, simply determining who is allowed access to which
pieces of information and how they may use them is difficult
enough, but enforcing such policies in a distributed environment
poses significant challenges. Underlying this challenge is the im-
pact of networked computers and the client-server architecture that
together decentralized control over information. A document is
rarely stored in any single location, but may also be attached to
email messages, posted to Wikis or Web pages, copied onto em-
ployee computers and laptops, indexed and copied into a database,
and so on. Thus, there are naturally a wide range of points over
which a policy must be enforced.

2.1 Existing solutions

The commercial marketplace has responded to these problems in-
dividually. For example, a new market has emerged around “data
leakage” protection — with the first generation of startups now be-
ing integrated into mainstream security and data management com-
panies (e.g., Vontu (Symantec), Tablus (EMC), Oakley Networks
(Raytheon), Port Authority (Websense), Provilla (Trend Micro) and
others). Users of these systems typically identify confidential infor-
mation (either explicitly or implicitly via crawler/scanners), which
is then transformed into content fingerprints used to lexically scan
network traffic or application I/O requests to the operating system.
Thus, these systems operate under the assumption that derived data
will be textually similar to a corpus of strings being protected.1

These approaches have the benefit of detecting violations indepen-
dent of how they were generated (thus even data manually entered
from paper documents can be detected). However, these solutions
are inherently limited in dealing with derived data and data trans-
formation. For example, a file that is encrypted will bear no lexical
similarity to the source file.2 Similarly, simple actions such as ex-
erting small amounts of data (e.g., a single cell in a spreadsheet)
or converting a spreadsheet into an image or Adobe PDF file, may
make such analysis impossible. These systems also rely upon a rep-
resentative set of sensitive content and fuzzy fingerprinting to iden-
tify content which may not detect lexically innocuous content.

To address the problem of laptop theft, organizations are in-
creasingly requiring sensitive data to be encrypted on mobile
drives. This policy can be implemented either as a software layer
in file system (as with Windows EFS) or block device interface (as
with WinMagic’s SecureDoc) or in hardware in the hard drive itself
(as with new drives being manufactured by Seagate, LaCie, HDD
and Stonewood electronics) [21]. The former represents a protec-
tion that is too lenient (encrypted files can be easily laundered of
their encrypted status) and the latter too severe (unimportant files
are subject to the overhead of encryption and the data loss risks
associated with user-managed authentication keys).

A similar situation exists for use of the network. Organizations
are increasingly configuring laptops that enforce mandatory use

1 Some of these systems also provide a degree of contextual and semantic
analysis, but the underlying assumptions are still largely the same.
2 As a fallback most of these systems are equipped to detect high-entropy
data transfers.



of corporate virtual private networks (VPN). While this ensures
that private data on a laptop will be protected on the Internet and
will be subject to a corporation’s data inspection mechanisms (as
above), it can also create undue burden for access to public data
sources. Mandatory VPN use can be incompatible with the firewall
rules of local networks and incurs unnecessary latency (and hence
reduction in throughput due to the congestion control behavior of
the Transmission Control Protocol (TCP)).

Finally, a completely different market has emerged around val-
idating the intellectual property provenance of source files in soft-
ware development efforts. For example, companies such as Black
Duck and Palamida provide “IP compliance” software that lexically
matches source lines against large corpora of known open source
projects. The strengths, and weaknesses, of this approach are simi-
lar to data leakage products using similar techniques.

In general, the weaknesses in all of these approaches relate to
their inability to track the flow of information independent of its
representation. To wit, if it could be determined unambiguously
that a given data object wasderived from a source that requires
confinement, encryption or a compatible copyright license, enforc-
ing the associated policy would be vastly simplified.

2.2 Information Flow Tracking

The notion of tracking information flow arose over thirty years ago
in the context of security policy enforcement [10]. One major thrust
of subsequent work, first proposed by Denning and Denning, has
been the use of static analysis to provide efficient, high-precision
flow tracking [11]. In this community, one of the best known exam-
ples of this approach is Myers and Liskov’s model for static type-
checking of program information flow labels [25]. The subsequent
Jif compiler and Web frameworks, which operates on an annotated
version of Java, allows the combination of both static and run-time
checking to support dynamic information flow labels [4, 5, 24].
Trishul [27] uses similar mechanisms to provide information flow
tracking in the Java Virtual Machine. They took a hybrid approach
of using static analysis to capture implicit data flow, as well as using
taint in the JVM to track information flow during execution.

Despite the benefits of native language and compiler support for
information flow, virtually all systems and applications are written
using languages and compilers without such a capability. Thus, an-
other major body of work has focused on the use of binary rewrit-
ing to provide transparent dynamic information flow tracking for
existing binaries. Most of this work has been specifically motivated
by control flow hijacking attacks, such as buffer overflows, and
typically involves the “tainting” of program inputs, the dynamic
propagation of taint through program execution, and the trapping
of control transfers to tainted target addresses [7, 19, 28]. These
approaches add significant overhead since each operation thatpo-
tentiallypropagates information flow must access an ancillary data
structure. Even the fastest of such systems introduces typical slow-
downs of over 500% [3]. Moreover, binary rewriting systems typ-
ically only track data-dependent information flow within asingle
program and are not trivially extended to track information flow
between applications and operating systems.

Recently, several systems have implemented whole-system taint
tracking, using either instruction emulation [6, 8, 26], dynamic
translation [31], or combinations of these with virtual machine
monitors [18]. This last approach, which is the basis for our own
implementation (described more fully in Section 4), can potentially
run at full speed when accessing untainted data and only slows to
propagate taint information. Thus, the total slowdown is a function
of the workload and is typically below a factor of two (although
the worst case can be more than fifty times worse). Further, many
of these systems focus singularly on detecting control hijacking at-
tacks, hence only necessitating a single taint bit and permitting a

variety of propagating heuristics for pointer arithmetic. An excep-
tion is data flow tomography [26], which, similar to our system,
broadens the scope of taint to a range of labels (and similarly adopts
color as a useful analogy). However, the goal of DFT is to un-
derstand and visualize data flow across systems and applications,
rather than enforcing policies or preventing data exfiltration, and
uses full instruction emulation via QEMU as offline visualization
is less performance sensitive.

To address the overhead of dynamic tainting, the computer ar-
chitecture community has investigated the use of dedicated hard-
ware support for dynamic information flow tracking. Typically
these designs can reduce overhead to roughly 1% by adding an
individual taint bit to each register and storage location and au-
tomatically propagating taint during memory and arithmetic op-
erations [8, 36, 39]. Others hardware approaches include adding
word-level memory tagging such as Loki [42] to reduce the num-
ber of lines in the trusted computing base. Dalton et al. provide a
critical evaluation of these hardware-based approaches [9].

As with previous software solutions, many architectural pro-
posals have focused on control hijacking attacks. One exception
is the RIFLE architecture which anticipates the value of a range of
information flow labels combined through computational depen-
dencies [37]. RIFLE further tracks implicit information flow that
arises through control dependencies, such as conditional branches,
on tainted operands. We view all of these architectural approaches
as complementary to our own and the availability of even limited
hardware support for information flow could clearly be used to im-
prove the performance of our system.

Moreover, a number of systems have explored making informa-
tion flow a first-class operating system abstraction. For example,
the Asbestos and HiStar systems export first-class information flow
labels that are explicitly managed by programmers and directly in-
terpreted by the operating system [14, 15, 40, 41]. This approach
permits both a very efficient implementation of information flow
tracking and allows application semantics to be tightly and pre-
cisely bound with the information flow policies of interest. Others
include provenance-aware storage systems that record system calls
to track derived data and file versioning and storing them as file
metadata [22, 23]. This part of the design space is of great interest
in influencing the construction of future operating systems, but is
not well suited to enforce fine-grained information flow between
legacy applications and operating systems.

Other systems such as Flume [20] attempt to achieve process-
level distributed information control flow (DIFC) without modify-
ing the underlying operating system by implementing a reference
monitor in user space. Flume is not well suited for fine-grained in-
formation flow control for the same reasons as the other labeling
systems: Flume’s drawbacks include requiring a large trusted com-
puting base, and it is vulnerable to security flaws in the underlying
operating system.

3. System Design
As we have discussed, the design space for tracking information
flow is large and mirrors the range of applications and constraints
faced by system builders. We have no illusions of providing a fully
general approach, but instead have designed our system around
what we believe are the needs of the existing enterprise environ-
ment.

3.1 Design Goals

Our design is driven by the following goals and constraints:

• Transparency.While there is a range of approaches for tracking
information flow, many of them require changes to applications,
operating systems or both. By contrast, we focus exclusively on



supporting legacy environments and thus only consider infor-
mation flow mechanisms that are transparent to the applications
and systems they monitor.

• Fine-grained tracking.Since our need for transparency pre-
cludes access to application semantics, we cannot precisely
name objects or data structures. To make up for this limitation,
we track information flow at the granularity of individual bytes.
We could have chosen a more coarse-grained approach, such
as file-level tracking, but this would not track shared-memory
communications (e.g., such as to cut buffers or to window man-
agers) and would require excessive conservativism for applica-
tions that manage multiple files (e.g.., editors or mail transfer
agents).

• I/O enforcement.In a traditional reference monitor, an enforce-
ment predicate can be evaluated at arbitrary granularity (e.g.,
each instruction). However, such an approach is overkill in the
enterprise environment, since each client host is typically used
by a single user at a time and data is only shared via the network
or storage. Thus, in our design, we enforce information flow
policies exclusively during I/O. This approach also simplifies
any implementation since low-level I/O actions typically use
canonical representations (e.g., disk block, IP datagram) that
are straightforward to interpret.

• Orthogonal policies.While traditional taint tracking systems
focus on enforcing a single policy — preventing control flow
hijacking — we believe that there are a range of distinct infor-
mation management policies that would offer real-world value
if enforceable. Moreover, many of these policies are potentially
orthogonal: a piece of data may require encryption, network
confinement, reference counting (who currently has this data),
limited data lifetime, and so on. Thus, we require the ability to
track multiple information flows and combine policies for data
derived from multiple sources.

Equally important as our design goals, are our non-goals —
what we do not hope to accomplish in this paper. In general, we
do not hope to enforce policy against sophisticated adversaries. As
Butler Lampson is fond of saying publicly, “In computer security,
the perfect is the enemy of the good.” Our focus is on tracking in-
formation flow within conventional applications, systems and net-
works, being used in the manner they were intended. In particular,
we do not strive to prevent covert or hidden communication chan-
nels that might defeat information flow tracking (trivially an in-
sider might write down information and then re-type it from notes).
Moreover, we are not currently concerned with adversaries who
write code to launder data dependencies into control dependencies,
although we recognize that information flow tracking purely based
on data dependencies is subject to this threat.3

3.2 Abstract Design

In our design, each byte of memory is associated with a separate
n-bit label called a “tint” (a pun on taint). Each bit position is
used to represent a distinct policy and thus a tint can represent
any combination ofn policies. Data is originally tinted using a
special administrative tool. We envision this tool will be restricted
to carefully managed file servers, which will subsequently make
data available to other clients.

Upon loading any tinted memory location, the associated tint is
automatically propagated to any target register or memory location.
Similarly, stores from a tinted register propagate the tint value to
the target address. As well, stores from untinted registers untint the

3 For example, an adversary able to introduce new code could trivially laun-
der tint using a simple program:foreach bit b in the input;
if (b == 1) then output 1 else output 0;

target, ensuring that tint does not grow forever. The target operand
of arithmetic instructions is tinted with the logical OR of its source
operands. Colloquially, if one adds the contents of ablue register
and ared register, the target is tintedpurple. As described earlier,
our initial design does not attempt to handle implicit control flow
arising from conditional branches on tinted registers. This problem
is difficult to handle precisely and the naive approach — assigning
the tint of the branch operand to all subsequent instructions — is
needlessly conservative. However, we have not yet found situations
where this sort of transformation occurs within our design target of
normal application and system use.

When a tinted buffer is provided to the network or disk inter-
face, its corresponding tint should be associated with the data. For
example, each network packet could carry a header specifying the
tints of its encapsulated data bytes. Similarly, an inbound I/O la-
beled with tint must be correctly propagated to the receiving buffer.

We assume that the memory holding tint values is protected
from the operating system and application software being executed
and thus is only changed through normal information flow activity.
Moreover, we assume that the network is secure and protected from
tint manipulation (this restriction can be relaxed if we permit cryp-
tographic integrity checks on each packet). Finally, we assume that
all systems on the network participate in monitoring information
flow. This assumption can be relaxed if each packet is authenti-
cated and encrypted with a secret key known only to participating
systems. In this case, non-participating machines would be able to
exchange untinted data, but would be unable to receive tinted pack-
ets or generate valid instances of newly tinted data.

4. Implementation
In this section we describe the Neon prototype system, its con-
struction and the tradeoffs we make for ease of implementation.
We specifically describe how memory tinting is represented, how it
is transparently propagated both on local hosts and across the net-
work, how we introduce tint to the system, and how we enforce
tinting policies.

Our implementation is based on the 3.0 release of the Xen Vir-
tual Machine Monitor (VMM) [13] combined with the demand em-
ulation modifications of Ho et al. [18]. In this environment, appli-
cations normally execute natively on the raw hardware as does the
operating system with minor modifications to efficiently interact
with the VMM. Later versions of Xen, working in concert with ar-
chitectural extensions such as Intel’s VT and AMD’s SVM, provide
support for a fully–virtualized hypervisor. Our use of paravirtual-
ization is incidental and does not bear on the system implementa-
tion in any significant way.

A processor emulator, QEMU [1], provides demand emulation
executes in a privileged VM context (Domain 0). Thus, when in-
dividual instructions must be emulated to propagate tint, control
flow is redirected through the VMM to the emulator along with a
comprehensive description of the current processor state (roughly
350 bytes in total). Exiting the emulator occurs in the same fash-
ion, vectoring through the VMM to restore the updated processor
context. Combining the efficiency of native execution via Xen by
default with the hardware extensibility of emulation via QEMU
substantially increases performance of using a processor emulator
alone [26].

4.1 Neon Data Structures

Neon maintains byte-level tint for eachmachine byte(i.e., a byte
interpreted as a physical address by the guest OS) that is tinted. We
allocate this memory dynamically using a multi-level table, similar
to a page table, to maintain a compromise between space efficiency
and lookup overhead for sparse allocations. Thus, as shown in
Figure 1, the first 12 most significant bits of a byte address index
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Figure 1. Tint table data structure.

into a first-level table, which in turns uses the 12 bits to reference
a second-level table, each entry of which points to an array of 256
tint elements. Each tint element is 32-bits wide, allowing 32 distinct
tints to be represented orthogonally — a number that significantly
exceeds our present need for distinct policies. Thus, in the worst
case (if every byte were tinted) tint overhead could be four times
that of allocated memory. However, it is likely rare in practice that
all tint combinations are in use. Thus, an obvious optimization is to
distinguish between a canonical tint representation (32 bits) and a
compact label that is simply an index into specific tint combinations
that are in use. In our experiments such an optimization could
reduce memory overhead by a factor of five or more. However,
for ease of debugging the system we have solely used the larger
canonical representation.

To speed lookups and help implementtint faults in the guest
VM, we also maintain a per-machine page bitmap indicating which
machine pages contain at least one tinted value.

Finally, we provide a fixed array data structure to track 32 bits
of tint for each data register. We do not track precise tint through
control registers since these should never be loaded with tinted
data; thus, a single bit — corresponding to any non-zero tint value
— would be sufficient to detect this case (although our current
prototype does not track this case).

All of these data structures are implemented in Domain 0,
within the address space of the QEMU emulator. We choose this
location for convenience since it does not require any interfacing
with the VMM; however, it does impose unnecessary overheads
when performing I/O and handling tint faults, as we discuss later.

4.2 Propagating Tint Locally

Propagating tint requires the invocation of the emulator and thus a
means to involuntarily transfer control from the VM when a tinted
address is accessed — atint fault. While the Intel architecture does
provide a means for byte-level address traps through theDR0-DR3
registers, this mechanism is limited to only four addresses at a time
and, thus, is only appropriate in very limited settings (in which less
than 16 distinct bytes require monitoring).

Instead, the demand emulation code approximates this mecha-
nism by unmapping machine pages containing tinted values. Upon
such a page fault, control vectors to the emulator (since this is
where the tint data structures are stored) and the target address is
checked to see if it is tinted. If so, the address is used as part of
a memory load and the destination register’s tint value is replaced
with that of the target. If the address is part of a store then the tint

value of the destination address is set to that of the source register
(typically zero if this is the first such fault). Regardless, subsequent
execution proceeds within the CPU emulator (system calls and syn-
chronous faults are vectored back through the VMM to the guest
virtual machine) obeying the same tint propagation rules. When
memory addresses are untinted (and associated data structures re-
claimed) they are overwritten with a literal or untinted source reg-
ister.

In addition, we have modified QEMU to propagate tint across
instructions that maintain both source and target data registers.
Thus, tints may be combined as a side effect of arithmetic oper-
ations or address arithmetic (such as indexed addressing). We do
not currently implement idiomatic optimizations such as removing
tint as a result ofxor reg, reg or sub reg, reg optimiza-
tions [6]. To exit from emulated mode we use the heuristic of Ho et
al. and do so after 50 memory references have not accessed tinted
dataand all live registers are free of tint. This heuristic is admit-
tedly untuned and can introduce significant overhead when sparsely
tinted data is located on pages with high reference locality. In the
worst case, accessing a page containing tinted data can incur long
emulation overheads even if the tinted data is never accessed it-
self. Similar to the false sharing problem in multi-processor mem-
ory coherency protocols, this arises from the mismatch between the
granularity of the faulting mechanism and the granularity of access.
Finer-grained memory fault mechanisms, such as Qin et al.’s ECC-
based trapping [32] would reduce this mismatch and hence reduce
unnecessary emulation overhead.

4.3 Propagating Tint Remotely

To ensure that data tints also propagate remotely, we invoke the
QEMU process for each tinted outbound packet buffer and insert
the associated tint into the packet header. For convenience, we reuse
the 8-bit “Type of Service” (ToS) field in the IP packet header to
specify tint values. The tint encoded in the ToS field applies to a
packet’s entire contents. Since packet reception and forwarding are
atomic events, this coarse granularity makes little difference for the
implementation of enforcement actions. However, if the recipient
of the data uses it to further propagate tint this may lead to spurious
tinting. To fully represent per-byte tint a finer-grained packet tinting
representation is necessary, which we leave for future work.

Inbound packets are handled in a similar fashion. Packet buffers
are vectored to the QEMU process where their header fields are
inspected for tint labels. If present, this tint propagates to the buffer
containing the packet, which is mapped into the address space of
the guest OS and propagates normally thereafter.

4.4 Creating Tint

Our system provides no native means to introduce tint on a client
workstation. We envision tint as being managed centrally over the
set of files needing specific protections. Thus, all tint in our system
originates,deus ex machina, from a modified NFS file server.

Administrators of the file server can set per-file tint explicitly
through an interface that overloads the file’s GID field. Moreover,
files that are written from clients store their tint values in a similar
fashion. Again motivated by convenience in prototyping, this ap-
proach allows easy modification of tint using the existingchgrp
program. Again, using file GIDs only provides a coarse-grained
tint representation for persistent data. As with using the ToS field
in packets for representing tint, extending file I/O to support the full
per-byte fine-grained representation remains future work.

We choose not to modify the NFS server code itself but instead
implement a network-level filter for packets arriving to or leaving
from the server. In particular, we use netfilter to queue all incoming
and outgoing NFS packets to a user-space application which is able
to interpret packet-level tint representations [38]. This application,
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callednfswall, performs two tasks: tint marking and tint propaga-
tion. It can monitor, mangle, and in some cases drop selected NFS
packets. For simplicity, nfswall only supports NFS over UDP be-
cause the boundaries between RPC calls are clearly identified.

4.4.1 Tint Marking

Nfswall does tint marking by monitoring NFS traffic and setting
per-packet ToS bits appropriately for reply messages to read re-
quests on tinted files. The procedure type of an NFS reply message
is not directly stored in the packets of the reply; therefore, nfswall
also monitors the RPC call stream. We uniquely identify each RPC
call by its RPC XID, source IP address, and UDP source port stored
in anxid entrystructure. We use acall entrystructure to store the
procedure number of the call and the file handle the operation is
called upon. All callentries are stored in a hash table keyed by
their corresponding xidentries. Together, these allow the proce-
dure of each NFS reply to be identified — and tint is propagated
solely via read reply messages. Since NFS version 3 includes file
attributes in the reply of all successful operations [2], we extract
the GID from the read reply packet to check its tint. The 8-bit ToS
field is not large enough to hold all possible GIDs; hence, we map
a small range of GIDs (GID 1001-1255) as tinted (ToS 1-255) and
all other GIDs as not tinted (ToS 0).

NFS replies are often larger than the link layer MTU, forcing
the server to fragment them. We track read reply fragments to ap-
propriately mark their tint. We distinctly identify a set of fragments
using their IP source address and IP identification fields and store
them in afrag entrydata structure. When nfswall encounters a read
reply with the “more fragments” (MF) flag set, it stores the tint in
a hash table keyed by its fragentry. Since iptables cannot filter IP
fragments based on the target port number, nfswall receives all IP
fragments leaving the system rather than just those on the standard
NFS port 2049. Nfswall forwards any fragment that is not matched
in the hash table because it assumes it to be untinted NFS or another
protocol.

4.4.2 NFS Tint Propagation

When a remote Neon client issues a write on a file or creates a new
file on the NFS server, the tint of the file may be different than
the GID on the server because of mixing with other tinted data.
To remain transparent, nfswall keeps its own table of file attributes
keyed by the file’s NFS file handle and interacts with the file system
only through NFS calls. It uses a zero-padded opaque definition of
a file handle from the NFS RFC to allow compatibility with any
RFC compliant NFS server. Nfswall tracksgetattr replies to
populate the file table with the current attributes for each file. The
attributes in the file table may be out of date due to modifications
to the file locally executed on the NFS server. On an NFS write,
nfswall knows what the most up to date GIDshouldbe; therefore,
it only uses this table to reduce unnecessary updates to the GID.

Upon receiving an NFS write call, nfswall checks if the write
call is tinted. If it is not tinted, nfswall never explicitly clears the tint

from the GID on the file server. Due to the difference in granularity
between Neon hosts (byte- or packet-level tint) and the file server
(file-level tint), an untinted write does not imply that the entire file
is untinted. If the write call is tinted, nfswall looks up the file handle
in the file table and checks it against the GID stored in the table.
When there is a mismatch between the GID of the write and the
GID stored in the table, it sets the GID on the file server to the new
value. The GID is propagated to the serverbeforethe tinted write
to prevent another host from accessing improperly marked tinted
data, as shown in Figure 2.

To update the GID of a file, nfswall generates an NFSsetattr
call which appears to originate from the client issuing the write.
The user performing the write must have permission to change the
GID because nfswall reuses the file handle and RPC credentials
from the write call. We use a raw IP socket to deliver the spoofed
setattr packet directly to the local NFS daemon. Nfswall ran-
domly generates an RPC XID for the spoofed packet; with very
high probability, this XID should not collide with another simulta-
neous request from the same host. To make the spoofedsetattr
transparent to the client, nfswall drops the outgoing reply message
for the spoofedsetattr . The GID update appears to the client to
have been a server modification to the attributes, which the client
will retrieve upon accessing the file.

4.5 Tint Policy Enforcement

In general, Neon enforces tint policies at the network layer, either
in Domain 0 on the client host, or in a physically separate network
firewall element.

In either case, we utilize iptables firewall rules to enforce con-
finement policies. We use the u32 iptables module to match arbi-
trary ToS values (including use of nonstandard fields and combina-
tions). We can then drop, reroute, or log the tinted packets as spec-
ified by policy. Since all outgoing packets are processed and sent
by the Domain 0 kernel, we can disallow tinted data from leaving
the machine at all as well as block it at the firewall. The firewall is
an iptables router which uses the same ToS matching mechanism
to enforce policy at the network perimeter.

Neon does automatic I/O encryption/decryption in Domain 0.
There are two modes in which we can encrypt: Neon peer com-
munications and NFS traffic. For all TCP and UDP traffic to other
Neon systems, we encrypt the payload of all packets which con-
tain tinted data using a stream cipher (e.g., RC4, XOR substitution)
with a fixed shared key. In future work, we envision the use of more
powerful key management and cryptographic primitives.

For all NFS traffic destined to and received from the NFS server,
we automatically encrypt/decrypt the payload of the write requests
and read replies. Because we do not store information on which
byte extents of a file are actually tinted, we must assume that the
tinted data is already encrypted. Neon will further ensure that the
data stays encrypted, either from edits to the original or copying (or
otherwise deriving) the file. We also use only the XOR substitution
cipher to avoid problems with stream alignment on subsequent
writes to the same region.

5. Tint Applications
We evaluate our proof-of-concept Neon implementation by mea-
suring both the overhead of various operations as well as its per-
formance in a variety of real-world scenarios. Our test setup con-
sists of an NFS server, Neon hosts, and a firewall. For single-VM
tests, we use a local RAM disk. For tests involving a remote storage
server, we run a tint-enabled NFS Server (running Linux 2.6.17) on
VMware Server 1.02 with 512 MB of RAM. Neon hosts are guest
virtual machines in a development release of Xen 3.0 with QEMU
0.7.2. Each guest has 256 MB of RAM and runs a Linux 2.6.12-
xenU kernel. The firewall usesiptables to enforce confinement



No-QEMU QEMU
Untinted 389 Mbps 187 Mbps
Tinted 381 Mbps 29 Mbps

Table 1. Network throughput with and without the tint thread.

Tint (µs) Check (µs) Untint (µs)
Machine word 0.056 0.057 0.043
Ethernet frame 5.84 6.38 1.67

Table 2. Time overhead of the tint table for tinting, checking tint,
and untinting a particular region of memory.

policy and runs a 2.6.12-xen0 kernel. All the test systems and Xen
domains are hosted on Dell PowerEdge SC1450s with two 2.8-GHz
Pentium 4 Xeon processors and 2 GB of RAM.

5.1 Overhead

We perform a series of micro-benchmarks to measure QEMU over-
head, the effect of tinting and untinting operations on network
throughput, and the timing overhead of the tint tracking table.

5.1.1 Emulation

To begin, we measure the overhead of transitioning between Xen
and QEMU on our hardware. On average, it takes 51.3K cycles to
transition from virtualized to emulated execution (V2E), and 42.9K
cycles to transition back from emulated to virtualized execution
(E2V). These results are similar to previously published perfor-
mance measurements of QEMU in Xen [18], and show that our
implementation does not introduce a significant transition penalty
to the existing Xen/QEMU implementation.

5.1.2 Network Processing

In our prototype, QEMU inspects both incoming and outgoing
packets to check for tint. Because QEMU executes as a user
process, there is significant context switching overhead before a
packet completely traverses the dom0-QEMU-domU path. With-
out QEMU’s networking thread present, pinging a machine on the
local Ethernet segment from a guest VM has an average round
trip time of 0.19 ms in our configuration. With the networking
thread running, the average round trip time increases to 5.6 ms.
Pinging a host a few hops away yields round trip times averaging
4.15 ms without the network inspection thread and 9.54 ms with
the networking thread, suggesting a constant additive latency of
approximately 5 ms in the current configuration. Because packet
processing is dependent on a user process, an increased load in
dom0 will increase the latency of the guest.

While sub-optimal, a minor increase in latency is unlikely to
impact most applications. More worrisome, however, would be a
decrease in network throughput. Usingiperf , we measure the
throughput; the results are summarized in Table 1. Latency has lit-
tle impact on throughput when no tint is present. As a control, we
transfer ‘tinted’ data without QEMU, i.e., we set the ToS field man-
ually to measure any possible impact due to special ToS handling.
Our results indicate a negligible difference in throughput. When the
QEMU networking thread is present, however, we see a significant
decrease in throughput, especially when handling tinted data.

5.1.3 Tint Tracking

We also measure the time required to manipulate entries to the
tint tracking table when tinting memory, checking for tint, and
untinting memory. Specifically, we repeatedly tint, check, and then
untint X bytes of memory at the same address for a large number
of iterations. We initially setX = 4, since a primary method of

Figure 3. Propagating tint across applications, operating systems,
and the network.

propagating tint through the CPU is the loading and storing of 4-
byte words. We also considerX = 1514 as the network device
is another critical pathway for importing and exporting tint for the
system.

Table 2 shows the results. For tinting 4 bytes at a time, the table
operations incur an overhead of 40–60 ns; MTU-sized Ethernet
packets incur roughly a 6-µs overhead. These numbers represent
worst-case costs, however, because in this configuration the tint
operation will allocate the maximum number of tables for the given
memory range, the check operation will traverse the table to the
deepest level, and the untint operation will deallocate every sub-
table that was allocated during tinting.

5.2 Application Performance

While the overheads associated with tint tracking are non-trivial,
we expect the vast majority of data to be untinted. In this sec-
tion, we provide performance measurements of a number of real-
world scenarios using tinted data to determine the practical impact
of Neon. Each experiment is carried out on the test bed described
previously. For each test, we provide a use-case scenario and quan-
tify the overhead due to Neon, both in terms of execution time and
memory consumption due to tint tracking.

5.2.1 Derived Data

In our first test we demonstrate system-wide tint propagation across
applications, operating systems, and the network. Consider the fol-
lowing scenario in Figure 3: FileA contains some data tinted with
the tintX. A user retrievesA from the file server onto hostI, and
copies the contents of fileA into file B. Now, when fileB is trans-
mitted to other hosts (including the NFS server), its contents are
tinted appropriately. Additionally, we can enforce a confinement
policy on the data at the firewall if fileB is ever transmitted across
the network. Assuming there are no other hosts that modify the file
B, the packets containing fileB should have the same tint as fileA,
namelyX.

We implement the various stages of this experiment and give
the performance results in Table 3. The Local Copy test is the time
taken to copy a 4-MB file already retrieved from NFS to another file
local to the system. Consistent with our expected use case, we make
the file sparsely tinted: 1 out of every 64 bytes is tinted (for this
experiment, after we retrieve the file from NFS and have it stored
in local memory we can specify fine-grained tints while the file
remains in memory). The ‘Remote Copy’ test takes a previously-
retrieved file and copies it back to the NFS server. We see that the
performance of both operations degrades by a factor of 2–10. There
is considerable variance in the performance, however, due to the
fact that QEMU processing runs at user level as described earlier.
In both cases, Neon consumes slightly less than 1 MB of memory



Experiment Non-QEMU (s) QEMU (s) Tinted (s) Space (MB)
Local Copy 0.010 0.011 0.098 0.86
Local Copy (2 tints) 0.010 — 0.055 0.73
Local Copy (4 tints) 0.010 — 0.081 1.14
Local Copy (8 tints) 0.010 — 0.100 1.62
Remote Copy 1.279 1.136 2.002 0.90
Remote Copy (2 tints) 1.243 — 4.535 0.84
Remote Copy (4 tints) 1.450 — 5.056 1.30
Remote Copy (8 tints) 1.237 — 4.882 1.88
Local Compress 0.087 0.082 8.346 0.85

Table 3. Neon overhead for each application processing a sparsely tinted 4-MB file.

Figure 4. Combining Tints

tracking the tinted bytes. Of course, the sparse tinting represents a
worst case: much more compact extent-based data structures can
be constructed for large contiguous regions of tinted data.

5.2.2 Combining Tints

In our next scenario, we combine data fromN different files, each
with unique tint values, into one file and send it over the network.
Given filesA, B andC, with tint valuesX, Y andZ, we append
filesB andC to file A and send the resulting file over the network as
shown in Figure 4. The tint value observed in the packets containing
data from the concatenated file isXY Z. This experiment shows
that our system not only tracks tint values, but it performs tint
aggregation and it uniquely identifies multiple sources of tinted
data.

We repeat the copy tests for varying numbers of source files
(with unique tints). In each case, we concatenate a number of files
with distinct tints together to form a single, mixed tint output file.
For Remote Copy, we combineandcopy the file back to NFS. Both
the time and space overhead of the tracking data structures increase
with added tint complexity.

5.2.3 Automatic I/O Encryption

Neon can also automatically encrypt tinted data before writing it to
the network or saving to disk. In our configuration we use the tint-
enabled NFS server as the storage medium. When Neon needs to
send a packet with tinted data to another Neon host, it automatically
encrypts the payload with a shared key. Similarly, when a host
issues a write call with tinted data, Neon automatically encrypts
the payload of the NFS write, leaving the RPC and NFS headers in
clear text (Figure 5). Neon automatically decrypts tinted data from
peers or the NFS server, and the guest OS is unaware of the process.

Because of the difference in granularity of the NFS server (file-
level tint) and Neon (byte-level tint), automatic disk encryption
only works when a file is already encrypted. Neon will ensure
that any additional data is encrypted, or new files derived from
encrypted content (written in their entirety) are also encrypted.
Hence, we do not include the results in Table 3, but encrypting
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Figure 5. Automatic NFS Encryption

fully-tinted data decreases performance by a factor of 10–15 in our
configuration.

5.2.4 Compression

Our system also handles tracking tint in compressed data. Com-
pression presents nontrivial complications to standard data taint
tracking approaches because many compression algorithms do not
directly reuse any data from the original file. The algorithms build
the resulting compressed file using a table of substitution values
(e.g., gzip , bzip ). Even though the tables introduce a level of
indirection in constructing the derived data, Neon is able to handle
this scenario by propagating tint values in operations that use tinted
values to index memory.

We perform the ‘Local Compress’ test by compressing a tinted
file previously retrieved from the NFS server withgzip . As shown
in Table 3, the execution time slows by nearly a factor of 10 and
requires just under a megabyte of tracking structures to compress a
4-MB file.

5.2.5 Compilation

As another common example of tint combination, we compile an
executable using tinted headers; this scenario corresponds to the
task of identifying which object files in an application depend upon
GNU source, for instance. Assume header fileA.h is tinted X
and header fileB.h is tintedY . The resulting executable, which
includesA.h andB.h , will be tintedXY . Additionally, object files
which only include one header or the other will either have just tint
X or Y . As a motivating example, we compile and link thegzip
utility from source. Table 4 presents the time and space overheads
of this experiment. Specifically, we tintlzw.h and tailor.h
with different tint values. As a result, of the 13 object files ten
of them were tinted with one tint, and two of them were tinted
the other. The final executable was tinted with both. By writing
the resulting executable back to NFS, we confirm that it retains
the proper mixed tint when stored persistently. We also note that



Non-QEMU (s) QEMU (s) Tinted (s) Space (MB)
Compile (1 tinted file) 13.711 15.009 18.466 0.41
Compile (2 tinted files) 13.700 15.065 86.268 0.81

Table 4. Compilation of gzip with tinted headers.
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Figure 6. Memory consumed by the tint-tracking data structures
over time while compiling gzip both with tinted header files (“T”
phases) and without tinted header files (“Un” phases).

(a) Fromssns.txt (b) To
stolen.txt

(c) SSNs copied

Figure 7. Copy & paste between two Emacs instances. The first
Emacs edits filessns.txtand the second editsstolen.txt.

intermediary object files from source which includes the tinted
headers are also tinted appropriately.

The data structures used to track tint are dynamically allocated
and destroyed as bytes are tinted. The space overheads listed in Ta-
ble 4 are the maximal values during the entire experiment. Figure 6
shows a representative time-series of the growth of the tint data
structure as well as the number of tainted bytes in the system over
time. We divide this experiment into four phases to quantify the im-
pact of the residual tint. In the first and third phases (labeled “Un”
in the graph), we compile untintedgzip source. In the second and
fourth phases (labeled “T” in the graph), we compilegzip with
two tinted header files (same as in the “Compile (2 tinted files)”
experiment in Table 4).

We observe a few trends. First, tinted compiles result in an
increase in both tinted bytes and tint structure overhead. Second,
we see the first untinted compile results in no overhead, as expected
(aside from the fixed cost of the top-level tint table). The other
interesting trend is that the tint overhead and number of tint bytes
decreasesduring the second untinted compile phase. The decrease

(a) File stolen.txt written to NFS
server.

(b) NFS packets have tint “0x04” encoded in the
ToS/DSC field.

(c) Filestolen.txthas same tint as orig-
inal ssns.txt, encoded in the file GID.

Figure 8. Tint propagation made persistent whenstolen.txtis writ-
ten to the NFS server.

in this phase shows that data will not be untinted until another
application claims and overwrites the same memory.

5.2.6 Copy & Paste

In this experiment, we exercise the propagation of tint through
standard copy and paste mechanisms. Figures 7 and 8 illustrate the
steps in this experiment. We start with two instances of Emacs.
We open and copy a portion of a tinted filessns.txt containing
social security numbers from the first instance of Emacs into a file
stolen.txt loaded into the second Emacs. We then store the
derived file on the NFS server.

Manually examining the packets on the network using Wire-
shark, we see that Neon correctly propagates the tint to the packet
payloads. Examining the attributes of the file on the server, we see
that Neon correctly encodes and preserves the tint value in the GID
of the file.



5.2.7 Multi-hop Tests

The previous tests propagate tint only to the NFS server or other
local VMs and not to other Neon peers. Here, we verify the ability
of Neon to attribute data from multiple hops while mixing tints.

Consider the following general scenario: hostI retrieves a file
A with tint valueX and sends it to hostJ . HostJ already has some
tinted data with tintY . HostJ then combines fileA with file B with
tint Y . This data, when propagated to a peer or to NFS, will be
tinted XY . This scenario exercises propagating tint values along
multiple hops through multiple machines within a network.

We perform an example of the above test usingscp to demon-
strate multi-hop encrypted tint tracking. We retrieve a 4-MB file
with tint valueX and usescp to copy a fileA to another Neon
host that contains another fileB with a different tintY . We con-
catenate the two files together,AB, and examine the tint value of
AB on the destination host by copying it back to the NFS server.
The expected tint value ofXY is properly encoded and preserved
in the GID of the remote file.

A more advanced example of this scenario involves port for-
warding. In a more elaborate experiment, we usessh to port-
forward the samescp test described above through a third ma-
chine running Neon. Though the extra host is just an intermediary
and does not store the data, it still correctly propagates the source
tint to the final destination.

6. Discussion
Neon as a prototype demonstrates the feasibility and utility of
transparent information flow tracking for derived data management
within conventional networked systems. However, a number of
interesting challenges remain open as future work to fully realize
and validate the potential of the approach. We have discussed a
number of issues already throughout the paper, and here we bring
them together as part of a larger discussion that also considers other
aspects of a practical deployment.

One concern with an information flow tracking system like
Neon is false negatives, where data is derived from a tinted source
but does not acquire the tint. As discussed in Section 3.1, programs
could launder data dependencies through control dependencies, by-
passing Neon’s tint tracking. However, since our goal is to pre-
vent unknowing or unintentional accidents more than thwart adver-
saries, we consider this tradeoff reasonable.

Another concern is false positives where memory becomes
tinted through an unintended dependency that “leaks” tint in the
system. The extreme scenario of such false tinting would uninten-
tionally spread tint throughout the file system while mixing all tints
together. Such a scenario would not only result in substantial time
and space overhead, but would also undermine the utility of tint in
the first place. For instance, consider usingtar on a directory of
similar files with different tints and then compressing the result-
ing tar file. The tarred and compressed file will be a mix of the
tints of the original files, as intended. However, false sharing would
intermix the tints of the files after uncompressing and untarring.

By design, we mitigate false tinting in our system in several
ways. First, as discussed in Section 4.1, we do not tint system regis-
ters such as the program counter or stack pointer. As a result, Neon
avoids the “taint explosion” that can occur in other taint-based sys-
tems [35]. Another possibility of false tinting is unintentional mem-
ory reuse from resource sharing over time. Neon avoids these situ-
ations by clearing tint before reuse, such as when the OS zero-fills
a page before assigning it to an address space, an operation which
naturally clears the tint as a side effect.

Second, Neon’s use of fine-grained per-byte tint granularity al-
lows it to track tint very precisely, ensuring that only data derived
from a tinted region will be tinted. Referring back to the com-

pressed tar example above, in this situation Neon properly recovers
the original individual tints for each file when uncompressed and
untarred — although the files share codewords during compression,
individual tints are associated with the indexes for those codewords
separately for each file. As another example, tinting an executable
does not necessarily spread tint to its output files. Tintingcat on
Neon, for instance, does not spread tint to the output it generates.
However, if the output of an executable depends on static data in
the tinted executable file, then its output will be tinted — precisely
as intended. These experiments with Neon suggest that its design
prevents false tinting when systems are used in the manner in which
they were intended, but ultimately only long-term systematic expe-
rience can validate this claim.

Tint management also presents some interesting scaling chal-
lenges. One is ensuring that tint representations are globally con-
sistent across all machines in the network, i.e., that the same tint
value corresponds to the same policy on each machine. As cur-
rently implemented, Neon supports 32 distinct tints as a bit vector.
As discussed in Section 4.1, as a space optimization on a given host
it is possible to efficiently encode tint values as an index into unique
policy combinations that are in use on that machine. When travers-
ing the network or saving to disk, though, it would be necessary to
canonicalize this representation into one that will be globally con-
sistent. Further, although we envision 32 distinct policies as suffi-
cient for supporting a wide range of needs, the system may need to
support a larger set of policies for unanticipated creative uses (e.g.,
compilation with open-source files) or for large networks — again
motivating canonicalization between an efficient local representa-
tion on a machine and a global representation for an enterprise.

Another scaling challenge is managing persistent tints over long
time scales. A system like Neon will require some mechanism for
interpreting data whose information policy is no longer in effect
(perhaps because the data has not been accessed for years); an anal-
ogy is files with user IDs whose accounts have expired. A contain-
ment default policy might be appropriate, but an auditing tool that
can identify the set of files tinted with both current and unknown
policies would assist administrators in proactively preventing this
situation. Such a tool would also be helpful when a site reuses a
policy representation (e.g., redefines what policy number “5” cor-
responds to).

Finally, a number of efficiency challenges remain open with
the Neon prototype. For transparent daily use, the execution time
overhead is too high in the current implementation; potential ap-
proaches to mitigate such overhead include finer-grained memory
fault mechanisms or caching and program slicing techniques to pre-
compute tint updates for frequently executed code sequences. Fur-
ther, we have made some expedient implementation decisions with
the Neon prototype that need revisiting in an actual deployment
scenario. The current implementation does not support per-byte tint
tracking for data sent on the network or stored persistently on disk,
which limits the granularity of tint tracking once data leaves host
memory or introduces false tinting. A practical system will need
to efficiently track and encode per-byte tint representations in both
cases. In further work for the network case, we have experimented
with an in-packet representation that uses run-length encoding that
works reasonable well as long as all of the communicating end-
points understand tints (the network gateway strips them after en-
forcing policy). A system will also need to efficiently represent per-
sistent tint in the file system to reduce per-byte tracking overhead.
Workload experience will indicate whether a common case is in-
deed that all bytes in a file typically share the same tint value, but
even so a complete implementation will require a representation
that handles per-byte tint.



7. Summary
In today’s globally networked environments, mandating restrictions
on information use is futile unless one has a mechanism for enforc-
ing their use both on individual hosts and between them. Today
few mechanisms exist that are both effective and compatible with
existing operating systems and applications. In this paper we have
motivated the need for transparent system-wide information flow
tracking for enforcing policies on derived data. We have demon-
strated the viability of this approach using a prototype system,
Neon, that propagates and combines orthogonal per-byte policy la-
bels. Neon provides transparent information flow tracking across
applications, systems, and networks, confining changes to just the
virtual machine monitor — notably, applications and operating sys-
tems remain unmodified. Finally, we have used these mechanisms
to implement a variety of information management policies includ-
ing mandatory encryption of sensitive data, network-based confine-
ment, and tracking copyright license compliance. These mecha-
nisms demonstrate the ease with which a wide variety of policies
can be implemented using this approach. At the same time, our cur-
rent Neon prototype implementation is a proof-of-concept of the
general applicability of our approach, and further performance op-
timization in both software and hardware remains as future work.
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