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In metagenomics, the goal is to analyze the genomic confensample of organisms collected from
a common habitat. One approach is to apply large-scale rargfmtgun sequencing techniques to
obtain a collection of DNA reads from the sample. This dathé compared against databases of
known sequences such as NCBI-nr or NCBI-nt, in an attempdéatify the taxonomical content of
the sample. We introduce a new software called MEGAN (Metad®&e ANalyzer) that generates
species profiles from such sequencing data by assigning teadxa of the NCBI taxonomy using
a straight-forward assignment algorithm. The approacHustiated by application to a number of
datasets obtained using both sequencing-by-synthesiSanger sequencing technology, including
metagenomic data from a mammoth bone, a portion of the Sargas data set, and several complete
microbial test genomes used for validation proposes.

1. Introduction

Genomicss the study of the genome sequence of individual organiskigst genome
sequences available in databases today were obtained bgéBaequencing”, using a
shotgun approach that involves cloning small inserts of Dl then determining their
sequence using fluorescent dideoxynucleotides for tetmnmand electrophoresis for
measurement The NCBI website\iww. ncbi . nl m ni h. gov) lists hundreds of bac-
terial, tens of archaeal and about one hundred eukaryotiorges as being completely
sequenced, or in the process of being sequenced.

Metagenomickas been defined as “the genomic analysis of microorganigrdsdrct
extraction and cloning of DNA from an assemblage of micramigms®, and its impor-
tance stems from the fact th@2% or more of all microbes are deemed unculturable. If we
take a genome to be the entire genetic information of a sorgianism, then enetagenome
can be defined as the entire genetic information of an engeaildrganisms, living in a
common habitat. The aim of metagenomics is to understandehetic diversity of a
metagenome, ideally, by identifying the (relative aburwsnof) species present. Metage-
nomics promises to lead to the discovery of new genes that hagful applications in
biotechnology and medicih&

One main technique in metagenomics is to apply large-saaldom shotgun sequenc-
ing. A number of recent projects use Sanger sequencing &becdatasets in this way, for
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example, from an acid mine biofilih, sea-water samplés, deep sea sediméntor soil
and whale falls!. Recently, a new sequencing approach “sequencing-byegist was
published that uses emulsion-based PCR application ofja lenmber of DNA fragments
and high-throughput parallel pyro-sequenéing single instrument is able to sequence
25 million bases within four hours, at a lower price, per halsan Sanger-based methods.
Current drawbacks of the method are short read lengthsidfobp, in contrast ta= 800bp
using Sanger sequencing, and a higher error rate. Moresmaarencing of pair-ended reads
is not yet possible.

Given present-day technology, obtaining the completeesecgs of all genomes present
in a metagenome is not feasible, even using Sanger seqgeararpaired-end reads, as the
amount of data required is too large and the assembly protaemiifficult. More realistic
goals are to determine the presence or absence of specifiespéinterest, or to obtain a
rough overview of the taxa represented in a given metagenome

In this paper we present a straight-forward approach tcettterlproblem. We describe
a strategy for processing DNA reads collected within thenfrawork of a metagenomics
project and provide a new program callRiEEGAN (MEtaGenome ANalyser) that can be
used to explore a metagenomics data set in a taxonomicahdofithe program employs
a combinatorial algorithm, which we call “LCA-assignmenti estimate the taxonomical
content of a metagenome, based on sequence comparisons.

We first illustrate this approach by application to a sei@#, 692 reads obtained from a
sample of mammoth bofgusing the sequencing-by-synthesis approach. We theessldr
the question whether species can be identified with confeléomn short reads of length
100. Finally, to demonstrate the applicability of the appro&zidata sets obtained using
other sequencing approaches, we apply it to a subset of tigasa sea data

Ease-of-use is a main design criterion of MEGAN. An analysisitiated by simply
opening a BlastX, BlastN or BlastZ file and is then perfornredriactively. For maximum
portability, the program is written in Java and installersfinux/Unix, MacOS and Win-
dows are freely available for academic use from:
http://wwe+ab. i nfornmati k. uni -tuebi ngen. de/ sof t war e/ megan.

2. Processing metagenomic data

The following simple approach to metagenome analysis ip@ay starting point for more
sophisticated strategies (see Figure 1): First, randoegysnce a collection of DNA reads
from the given sample. Second, perform Blasbmparisons of the reads against one or
more reference databases, such as NCBI-nr, NCBI-nt, N@Bire, NCBI-env-nt, and
additional genome specific databases, when appropriatequé®ce comparison is the
main computational bottle neck, which will grow more sergettae sizes of datasets and
databases continue to grow.) Third, analyze the output @etcomparisons and then
assign individual reads to taxa, including higher-ordgataFinally, for each taxon impli-
cated, evaluate the provided evidence for its presencesingmple.
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Figure 1. For a given sample of organisms, a randomly selacitection of DNA fragments is sequenced. The
resulting reads are then compared with one or more refedatabases using an appropriate sequence comparison
program such as Blast. The resulting data is processed byARE® produce an interactive analysis of the
taxonomical content of the sample.

2.1. Analysis of the Mammoth dataset

As an example, we recenflyised a metagenomics approach to analyze the DNA presentin
a sample of one gram of bone taken from a mammoth that wasrpegsi@ permafrost for
27,000 years. The project proceeded in the following stepst, we used the Roche GS20
sequencing technology to randomly collect DNA from the skmbtaining302, 692 reads
of mean lengtl95 base pairs (bp). We will refer to this as thteammoth dataset

To identify those reads that come from the mammoth genomeenfermed Blast?
comparisons of genome sequences for elephant, human andddagnloaded from
WWw. genome. ucsc. edu. As a result of this computation, in the mentioned p&per
we estimate that at lea$5.4% of the reads represent mammoth DNA.

We were interested in determining the possible sourceseafaimaining reads, as they
probably represent micro-organisms that were present ahroediately after, the time of
the mammoth’s death. To this end, we first used BlastX to coengthreads against the
NCBI-nr (“non-redundant”) protein datab&seThis resulted in a file of siz&.4GB con-
taining2, 911, 587 local alignments of reads to sequences in the databasee®§2h692
reads, onlys2, 179 have one or more alignments. We then loaded the results @&fl#seX
search into a preliminary version of MEGAN (then called GeedaxonomyBrows&y
and applied the LCA-assignment algorithm to compute argaesent of reads to taxa,
thus obtaining an estimation of the taxonomical contenhefsample.

Here we repeat this analysis, but are slightly more conteevand now employ a
threshold of30 for the bit score of matches, and will discard any isolatesigasnents,
that is, any taxon that has only one read assigned to it. (Wieve isolated assignments
to avoid false positive identification of taxa due to sequmgerrors or chance matches.)
The LCA-assignment algorithm assigsts 093 reads to taxa ang, 086 remain unassigned
either because the bit score of their matches fall belowttteshold or because they give
rise to an isolated match.

A total of 19,841 reads are assigned to Eukaryota, of which69 are assigned to
Gnathostomata (jawed vertebrates) and thus presumably from mammoth genes. Fur-
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ther, a total ofl 6, 972 reads are assigned to Bactefié] to Archea and 52 to viruses, re-
spectively. These numbers are slightly lower than preWoteported due to our slightly
more conservative settings. MEGAN can be used to summarzeedsults at different
levels of the NCBI taxonomy, see Figures 2 and 3.
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Figure 2. High-level summary of a MEGAN analysis of the marntimataset, based on a BlastX comparison
of the 302, 692 reads against the NCBI-nr database. In all figures, eacle aiepresents a taxon in the NCBI
taxonomy and is labeled by its name and the number of reatistbassigned either directly to the taxon, or
indirectly via one of its sub-taxa. The size of the circledalsd logarithmically to represent the number of reads
assigned directly to the taxon.
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Figure 3. A more detailed MEGAN analysis of the mammoth dztas
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2.2. ldentifiability of species from short reads

The average read length currently obtainable using RocH20G8quencing technology
is = 100bp. The question arises whether this sequence length isepaggh to provide
meaningful information on the taxonomical content of a mgeteome. This can be ad-
dressed by collecting a set of reads from a known genome amdaifocessing the data as
a metagenome dataset.

In a first experiment, we consider@d00 reads sequenced froB. coli K12 using
Roche GS20 sequencing technology.ERA<oliis widely used in laboratories, this dataset
may potentially give rise to many false positive identifioas, as parts of its sequence
occur by error in a number of different genome sequences.

In Figure 4 we show the resulting MEGAN analysis, based oreat® comparison of
the reads against the NCBI-nr database, using a bit scashbid of35 and discarding any
isolated assignments. Of tl600 reads, approximatelys% (448) have no hits and16
reads are not assigned. Of the remainings reads, approximatef0% (699) are assigned
to Enterobacteriacegdhus making a correct assignment up to the family level.oftller
reads, except two, are assigned to super taxa, thus prademirect, if increasingly weak,
predictions.

The two false positive assignmentsiiaemophilus somnusppear to be due to false
entries in the NCBI-nr database: one of the assigned reeazls lpeerfect BlastN match
to 16S rRNA sequence iB. coli and the other has a perfect BlastN match to 23S rRNA
sequence iliE. coli. On the other hand, the matched sequences represeétaemophilus
somnusn NCBI-nr are both labeled “hypothetical” proteins.

Gammaproteobacteria 925 Escherichia coli 100 [——©Escherichia coli 0157:H7 4

Proteobacteria 1097
Bacteria 1304 O*O*O Escherichia coli CFT073 19

cellular organisms 1390 -—Q L—Oescherichia coli K12 24
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Figure 4. MEGAN analysis 02000 reads collected frori. coli K12using Roche GS20 sequencing, based on
a BlastX comparison with the NCBI-nr database.

In a second experiment, we conside®0 reads sequenced froBdellovibrio bac-
teriovorus HD100using Roche GS20 sequencing technology. In Figure 5(a) o #ie
resulting MEGAN analysis, based on a BlastX comparison efréads against the NCBI-
nr database, using a bit score threshol@®and discarding any isolated assignments. Of
the 2000 reads, approximateB0% (397) have no hits and% (105) are not assigned. Of
the remainingl498 reads, approximately0% (1062) are assigned t@dellovibrio bac-
teriovorus HD100 All other reads are assigned to super taxa, thus produadrrgat, if
increasingly weak, predictions. There are no false p@sjiredictions.

In Figure 5(b) we show the MEGAN analysis obtained when uaingpy of the NCBI-
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nr database from which all sequences represeBtiailovibrio bacteriovorus HD10Bave
been removed. This mimics the case in which reads are obthio®m a genome that is not
represented in the database. Of2060 reads, approximatel§5% (1361) have no hits and
approximatelyl5% (272) are not assigned. A small number of false positives occuoup
the level of bacteria.
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Figure 5. MEGAN analysis dt000 reads collected frorBdellovibrio bacteriovorus HD100sing Roche GS20
sequencing technology. (a) Analysis based on a BlastX casggawith NCBI-nr. (b) Similar analysis, but with
all hits to database sequences represerBitgllovibrio bacteriovorus HD10€emoved, mimicking the situation
in which the reads originate from a genome that is not reptedan NCBI-nr.

These two experiments show that the LCA-assignment alguori quite conservative,
avoiding false positive assignments at the price of prasyquite large numbers of inspe-
cific assignments. Further, they also indicate that theoperdince of this type of approach
depends heavily on the set of sequences represented ifeheree database. In particular,
if close relatives are missing in the database, then reads &n unknown organism will
give rise to many unassigned reads and possibly some fadstvp@ssignments, as well.

2.3. Analysis of the Sargasso Sea data set

In the Sargasso sea projegtsamples of sea water were collected and organisms of size
0.1 — 3.0 um were extracted to produce a metagenome datasétsdparate experiments,
approximatelyl.9 million reads of average lengt¥il8 bp were collected using Sanger
sequencing.

To explore the application of MEGAN to such data, we downgzhthe first10, 000
reads fromhtt ps://research. venterinstitute.org/sargasso/ and ran
BlastX to compare the data against the NCBI-NR databasey Ol (13) of the reads
had no hits. A MEGAN analysis of the data using a bit scoresthoéd of 100 and dis-
carding all isolated assignments, assigned approximaély(8,977) to taxa, a majority
of which (6811) were assigned to bacteria. The results are summarizedyurd=6. In-
terestingly, this analysis of a small portion of the Sargas=a dataset is compatible with
the analysis reported by Venteral.!3, (althoughFirmicutesare missing, probably due to
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the small size of the sub-sample), and also confirms findingisgarts of the data set is
contaminated wittshewanellandBurkholderig.
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Figure 6. MEGAN analysis of0, 000 reads of Sargasso sea data.

3. Analysisusing MEGAN

At startup, MEGAN loads the complete NCBI taxonomy, curkgrdontaining over
280, 000 taxa, which can then be interactively explored, using austed tree-navigation
features. However, the main application of MEGAN is to pssceesults files generated by
a comparison of sequencing reads with a database of andisdgeences. The program
parse files generated by BlastX, BlastN or BlastZ, and sdesesults as a series of read-
taxon matches in a program-specific format. (Additionakpes may be added to process
the results generated by other sequence comparison méthods

The program assigns reads to taxa using the LCA-assignrigaritbm (described in
detail below) and then displays the induced taxonomy. Nau#se taxonomy can be col-
lapsed or expanded to produce summaries at different lef#ie taxonomy. Additionally,
the program provides a Find tool to search for specific taxhaaninspector tool to view
individual Blast matches (see Figure 7).

The approach uses a number of thresholds. Firshjrascorethreshold defines the
minimum bit score that must be attained by a Blast alignmetitat a read is considered
to matcha given taxort. Second, thenin-supporthreshold specifies how many reads must
be assigned to a specific taxon, or any taxon below it in thertamy, so that the taxon is
identified as present.

The result of the LCA-assignment algorithm is presenteth¢ouser as the partial tax-
onomyT that is induced by the set of taxa that have been identifiezl Kgure 2). The
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Figure 7. (a) MEGAN provides a Find tool to search for speddia of interest. (b) The result of a search is
highlighted in a detailed summary of the analysis. (c) MEGprvides an Inspector tool to view the individual
sequence comparisons upon which the assignment of a partiead to a particular taxon is based.

program allows the user to explore the results both at a leigdl,|land also a very detailed
level, by providing methods for collapsing and expandirféedent parts ofl’. Each node

in T represents a taxanand can be queried to determine which reads have been adsigne
directly tot, and how many have been assigned to taxa beldvdditionally, the program
allows the user to view the Blast alignments upon which aifpexssignments is based
(see Figure 7(3)).

4. Assignment of readsto taxa

MEGAN currently uses a simple combinatorial algorithm, edhiwe call “LCA-
assignment”, in association with a number of differentshi@ds, to assign each read to a
taxon at some level of the NCBI taxonomy.

The LCA-assignmenalgorithm operates as follows. Consider a reaand assume
that the Blast computation has established matches to segsieepresenting a set of taxa
t(r) = {t1,ta,...,tx}. We assign the read to thelowest common ancestor (LCA]J
t(r) in the NCBI taxonomy. For example,if matche<Campylobacter lariHelicobacter
hepaticusandWolinella thenr is assigned to the taxddampylobacteraledf r does not
match any sequence in the given reference database, ttiat(ig, = (), thenr is assigned
to the special taxono hits If » cannot be assigned to a taxon for other reasons, e.g. the
read only matches sequences for which the taxon is unknbeny tis assigned to another
special taxorNot assigned

In this way, each read in the dataset is assigned to one or more NCBI taxa, or to one
of either special taxa. If the Blast matches computed favolve only one or a few closely
related species, thenwill be assigned to a taxon near the tips of the taxonomy.nfthe
other handy matches a wider range of taxa, thewill be assigned to a higher-level taxon.
The read may even be assigned to the root of the taxonomy gehjuence is completely
unspecific.

To implement the LCA-assignment algorithm, we assign arginddressu(t) to each
everyt in such away that if taxon is an ancestor of taxof) then the address(s) is a
prefix of the address(t). Using this scheme, we can easily determine the lowest cammo
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ancestor of a set of taxa{ty,...,t,} by determining the longest common prefix of the
corresponding set of addresdegt1), . .., a(ty)}, in O(n x log K) steps, wherd( is the
maximum depth of the taxonomy.

4.1. Under- and over prediction

We say that a read gives rise to ander prediction if it is assigned to a taxon that lies
above the true taxon in the taxonomy. Under prediction happéren a read comes from
a gene that is widely conserved. We say that a read givesaiadalse prediction if it
is assigned to a taxon that is not the true taxon, nor one ahitestors in the taxonomy.
W say that a false prediction is awver prediction if it is caused by the fact that the true
sequence is not represented in the employed databases.

For example, all reads analyzed in Figure 5(a)-(b) come tirmgenome oBdellovib-
rio bacteriovorus HD100However, there is a substantial amount of under predidtath
in (a) and (b), in particular of the taxdBacterig and a number of cases of over predic-
tion in (b), ranging fromAnaeromyxobacter dehalogenaasd Gammaproteobacterito
Leptospira interrogans

As a simple combinatorial method, the LCA-assignment atlgor is susceptible to
both types of errors. We hope to develop a more sophistiegptbach that will not only
take the presence or absence of matches into account, bwtilllmake use of the quality
of the matches and the levels of similarly that are typicabigen genes in given clades of
sequences.

5. Summary

A metagenomics project aims at understanding the taxoradroantent of an ensemble
of organisms. The approach described in this paper is to erpgescing techniques to
produce DNA reads, to perform similarity searches in databaf known sequences and
then to analyze and explore the resulting comparison daig esftware such as MEGAN.

MEGAN is based on a robust algorithm for assigning readsxa &nd is designed as
an easy-to-use exploration tool that quickly produces sarien of the data at different
taxonomical levels. It offers tools to search for specificatéan the data and to inspect
the evidence supporting the presence of any given taxors Sdftware provides a solid
starting point for producing a first analysis of a metagermoaiaset.

References

1. S.F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. hian. Basic local alignment search
tool. Journal of Molecular Biology215:403—-410, 1990.

2. D.A. Benson, |. Karsch-Mizrachi, D.J. Lipman, J. Ostelid D.L. Wheeler. Genbanklucleic
Acids Res1(33 (Database issue)):D34-38, 2005.

3. E.F. DelLong. Microbial community genomics in the oceldat Rev Microbiol. 3(6):459—-69,
2005.

4. S. J. Hallam, N. Putnam, C.M. Preston, J.C. Detter, anddihBar. Reverse methanogenesis:
Testing the hypothesis with environmental genom8msence305:1457-62, 2004.



October 5, 2006 9:26 Proceedings Trim Size: 9.75in x 6.5in bcap8a

10

o

10.

11.

12.

13.

J. Handelsman. Metagenomics: Application of genomiestultured microorganismlicro-
biology and Molecular Biology Reviews8(4):669-685, 2004.

M. Margulies anckt al. Genome sequencing in microfabricated high-density pieoteactors.
Nature 437(7057):376—380, 2005.

D. Meldrum. Automation for genomics, part two: Sequesgeticroarrays, and future trends.
Genome Research0(9):1288-1303, 2000.

. H. N. Poinar, C. Schwarz, Ji Qi, B. Shapiro, R. D. E. MacRH&eBuigues, A. Tikhonov,

L. P. Tomsho D.H. Huson, A. Auch, M. Rampp, W. Miller, and SSchuster. Metagenomics to
Paleogenomics: Large-Scale Sequencing of Mammoth DBtfence331:392-394, 2006.

S. Schwartz, W.J. Kent, A. Smit, Z. Zhang, R. Baertsch, RH@rdison, D. Haussler, and
W. Miller. Human-mouse alignments with BLAST&enome Res13:103 — 107, 2003.

H.L. Steele and W.R. Streit. Metagenomics: Advancescaiogy and biotechnology\cEMS
Microbiology Letters247(2):105-111, 2005.

S. G. Tringe, C. von Mering, A. Kobayashi, A. A. Salamov,Ghen, H. W. Chang, M. Podar,
J. M. Short, E. J. Mathur, J. C. Detter, P. Bork, P. Hugenhaltrd E. M. Rubin. Comparative
metagenomics of microbial communiti€cience 308:554-557, 2005.

G. W. Tyson, J. Chapman, P. Hugenholtz, E. E. Allen, R.amR P. M. Richardson, V. V.
Solovyey, E. M. Rubin, D. S. Rokhsar, and J. F. Banfield. Comityistructure and metabolism
through reconstruction of microbial genomes from the emvinent.Nature 428:37-43, 2004.
J. C. Venter, K. Remington, J. F. Heidelberg, A. L. Hatped. Rusch, J. A. Eisen, D. Wu,
I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, AKRap, M. W. Lomas, K. Nealson,
O. White, J. Peterson, J. Hoffman, R. Parsons, H. Badesehil C. Pfannkoch, Y. Rogers,
and H. O. Smithl. Environmental genome shotgun sequenditigecsargasso se&cience
304(5667):66—74, 2004.



