
Preimage Analysis of the Maelstrom-0 Hash
Function

Riham AlTawy and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Québec, Canada

Abstract. Maelstrom-0 is the second member of a family of AES-based
hash functions whose designs are pioneered by Paulo Baretto and Vin-
cent Rijmen. According to its designers, the function is designed to be
an evolutionary lightweight alternative to the ISO standard Whirlpool.
In this paper, we study the preimage resistance of the Maelstrom-0 hash
function using its proposed 3CM chaining construction. More precisely,
we apply a meet-in-the-middle preimage attack on the compression func-
tion and combine it with a guess and determine approach which allows
us to obtain a 6-round pseudo preimage for a given compression function
output with time complexity of 2496 and memory complexity of 2112.
Then, we propose a four stage attack in which we adopt another meet-
in-the-middle attack and a 2-block multicollision approach to defeat the
two additional checksum chains and turn the pseudo preimage attack on
the compression function into a preimage attack on the hash function.
Using our approach, preimages of the 6-round reduced Maelstrom-0 hash
function are generated with time complexity of 2505 and memory com-
plexity of 2112.
Keywords: Cryptanalysis, Hash functions, Meet in the middle, Preim-
age attack, Maelstrom-0, 3CM.

1 Introduction

The attacks of Wang et al. [28, 27] which broke a large cluster of widely used hash
functions have proven to be most effective against Add-Rotate-Xor (ARX) based
hash functions. The success of such attacks on ARX constructions is attributed to
the possibility of finding differential trails that propagate for a significant number
of rounds with acceptable probabilities. Moreover, considerable improvement in
the attack complexity can be achieved using message modification techniques
[28] which take advantage of the independence of consecutive message words
which may span over a relatively large number of rounds. On the other hand,
the Advanced Encryption Standard (AES) wide trail strategy [7] continues to
show solid resistance to standard differential attacks. This fact has made AES-
based hash functions a favorable direction when considering new designs. Indeed,
at the same time when most of the standardized ARX-based hash functions were
failing to resist the techniques introduced by Wang et al., the already existing
ISO standard Whirlpool [23] was not affected by these attacks. This conceptual

shift in hash function designs was clearly evident among the SHA-3 competition
proposals [22] (e.g., the SHA-3 finalists Grøstl [12] and JH [29], and LANE [16]).
Additionally, Whirlwind [6] and Streebog [20], the new Russian hash standard
which is officially known as GOST R 34.11-2012, are also among the recently
proposed AES-based hash functions.

Maelstrom-0 is an AES-based hash function that adopts a modified chaining
scheme called 3CM [8]. The function is proposed by Filho, Barreto, and Rijmen
as an evolutionary lighter alternative to its predecessor Whirlpool. Maelstrom-0
is considered the second member of a family of hash functions which is preceded
by Whirlpool and followed by Whirlwind. The design of Maelstrom-0 is heavily
inspired by Whirlpool but adopts a simpler key schedule and takes into account
the recent development in hash function cryptanalysis. Particularly, the designers
consider those attacks where the cryptanalytic techniques which are applicable
on the compression function can be easily mapped to the hash function due to
the simplicity of the Merkle-Damg̊ard construction used by Whirlpool. In addi-
tion to adopting a simpler key schedule which makes Maelstrom-0 more robust
and significantly faster than Whirlpool, the designers employ the Davis-Mayer
compression mode which is the only mode among the twelve secure constructions
that naturally allows the compression function to accept a message block size
different from the chaining value size, thus allowing faster hashing rate [8]. Also,
all the remaining eleven constructions XOR the message and the chaining value
block, thus forcing either truncation or padding to cope with the different sizes,
and it is unclear to what extent truncation or padding might adversely affect
the security analysis.

The most important feature in the design of Maelstrom-0 is the proposal of
a new chaining construction called 3CM which is based on the 3C/3C+ family
[13]. This construction computes two checksums from the generated intermedi-
ate chaining values, concatenates them, and as a finalization step processes the
result as a message block in the last compression function call. This finaliza-
tion step aims to thwart some generic attacks on the MD construction used in
Whirlpool such as long second preimage and herding attacks, and also inhibits
length extension attacks. According to the designers of Maelstrom-0, the pro-
posed finalization step mitigates the applicability of extending attacks on the
compression function to the hash function. Unfortunately, this is not the case in
our attack where we employ a 4-stage approach that uses a modified technique
which defeats the 3CM chaining construction [9–11] and combines it with an-
other meet-in-the-middle (MitM) attack to extend a pseudo preimage attack on
the compression function to a preimage attack on the hash function.

Literature related to the cryptanalysis of Maelstrom-0 include the analysis
of the collision resistance of its compression function by Kölbl and Mendel [18]
where the weak properties of the key schedule were used to produce semi free-
start collision for the 6 and 7 round reduced compression function and semi
free-start near collision for the 8 and 10-rounds compression function. Finally,
Mendel et al. used the rebound attack to show how employing a message block

whose size is double that of the chaining state is used to present a free start
collisison on the 8.5 reduced round compression function [21].

In this work, we investigate the security of Maelstrom-0 and its compression
function, assessing their resistance to the MitM preimage attacks. Employing
the partial matching and initial structure concepts [24], we present a pseudo
preimage attack on the 6-round reduced compression function. In the presented
attack, we employ a guess and determine approach [26] to guess parts of the
state. This approach helps in maintaining partial state knowledge for an extra
round when all state knowledge is lost due to the wide trail effect. The proposed
6-round execution separation maximizes the overall probability of the attack by
balancing the chosen number of starting values and the guess size. Finally, we
propose a four stage approach which combines a 2-block multicollision attack [9,
10] with a second MitM attack to bypass the effect of the 3CM checksum used
in the finalization step. Our approach is successfully used to generate preimages
of the 6-round reduced Maelstrom-0 hash function using the presented pseudo
preimage attack on the last compression function. Up to our knowledge, our
analysis is the first to consider the hash function and not only the compression
function of Maelstrom-0.

The rest of the paper is organized as follows. In the next section, a brief overview
of the related work regarding MitM preimage attacks and the used approaches
is provided. The description of the Maelstrom-0 hash function along with the
notation used throughout the paper are given in Section 3. Afterwards, in Sec-
tions 4, we provide detailed description of the pseudo preimage attack on the
compression function. In Section 5, we show how preimages of the hash function
are generated using our four stage approach and the attack presented in Section
4. Finally, the paper is concluded in Section 6.

2 Related Work

A pseudo preimage attack on a given a compression function CF that processes
a chaining value h and a message block m is defined as follows: Given x, one
must find h and m such that CF (h,m) = x. The ability to generate a pseudo
preimage for the compression function has always been regarded as a certifica-
tional weakness as its local effect on the overall hash function is not important .
However, as we are going to show in Section 5, when a pseudo preimage attack
on the compression function is combined with other attacks, it can be used to
build a preimage for the whole hash function.

The MitM preimage attack was first proposed by Aoki and Sasaki [5]. The
main concept of the proposed MitM attacks is to separate the attacked rounds at
a starting point into two independent executions that proceed in opposite direc-
tions (forward and backward chunks). The two executions must remain indepen-
dent until the point where matching takes place. To maintain the independence
constraint, each execution must depend on a different set of inputs, e.g., if only

the forward chunk is influenced by a change in a given input, then this input is
known as a forward neutral input. Consequently, all of its possible values can
be used to produce different outputs of the forward execution at the matching
point. Accordingly, all neutral inputs for each execution direction attribute to
the number of independent starting values for each execution. Hence, the output
of the forward and the backward executions can be independently calculated
and stored at the matching point. Similar to all MitM attacks, the matching
point is where the outputs of the two separated chunks meet to find a solution,
from both the forward and backward directions, that satisfies both executions.
While for block ciphers, having a matching point is achieved by employing both
the encryption and decryption oracles, for hash function, this is accomplished by
adopting the cut and splice technique [5] which utilizes the employed mode of
operation. In other words, given the compression function output, this technique
chains the input and output states through the feedforward as we can consider
the first and last states as consecutive rounds. Subsequently, the overall attacked
rounds behave in a cyclic manner and one can find a common matching point
between the forward and backward executions and consequently can also select
any starting point.

Ever since their inception, significant improvements on MitM preimage at-
tacks have been proposed. Such improvements include the initial structure ap-
proach [25, 24] which allows the starting point to span over few successive trans-
formations where bytes in the states are allowed to belong to both the forward
and backward chunks. Additionally, the partial matching technique [5] enables
only parts of the state to be matched at the matching point which extends the
matching point further by not restricting full state knowledge at the matching
point. Once a partial match is found, the starting values of both executions are
selected and used to evaluate the remaining undetermined parts of the state
at the matching point to check for a full state match. Figure 1 illustrates the
MitM preimage attack approaches for a compression function operating in the
Davis-Mayer mode. The red and blue arrows denote the forward and backward
executions on the message state, respectively. S0 is the first state initialized by
h and Si is the last attacked state.

Fig. 1. MitM preimage attack techniques used on a Davis-Mayer compression function.

The MitM preimage attack was applied on MD4 [5, 14], MD5 [5], HAS-160
[15], and all functions of the SHA family [4, 3, 14]. The attack exploits the weak
key schedules of ARX-based functions where some of the expanded message
blocks are used independently in each round. Thus, one can determine which
message blocks affect each execution for the MitM attack. Afterwards, the MitM
preimage attack was adapted on the AES block cipher in hashing modes [24].
The attack was then applied to Whirlpool and a 5-round pseudo preimage attack
on the compression function was used for a second preimage attack on the whole
hash function in the same work. In the sequel, Wu et al. [30] improved the time
complexity of the 5-round attack on the Whirlpool compression function. More-
over, they applied the MitM pseudo preimage attack on Grøstl and adapted the
attack to produce pseudo preimages of the reduced hash function. Afterwards,
a pseudo preimage attack on the 6-round Whirlpool compression function and a
memoryless preimage attack on the reduced hash function were proposed in [26].
Finally, AlTawy and Youssef employed MitM pseudo preimages of the compres-
sion function of Streebog to generate preimages of the reduced hash function [1],
the complexity of their attack was later improved in [19]. They also presented a
second preimage analysis of Whirlwind [2].

3 Specifications of Maelstrom-0

Maelstrom-0 is an AES-based iterative hash function designed by Filho, Barreto
and Rijmen [8]. Its compression function processes 1024-bit message blocks and
a 512-bit chaining value. As depicted in Figure 2, the message M is padded by 1
followed by zeros to make the length of the last block 768. Then the remaining
265 bits are used for the binary representation of the message length |M |. Hence
the padded message has the form M = m1||m2|| · · · ||mk, where the last 256-bits
of mk denote |M |. The compression function is iterated in the 3CM chaining

Fig. 2. The Maelstrom-0 hash function.

mode which is based on 3C/3C+ family [13]. Given that hi denotes the internal
state value after processing the message block mi, i.e., hi = f(mi, hi−1) with
h0 = IV , this chaining mode generalizes the Merkle-Damg̊ard construction by
maintaining three chains hi, si, ti instead of only hi. The extra two chains are

transformed into an additional message blockmk+1 = sk||tk. The second chain si
is a simple XOR accumulation of all intermediate compression function outputs,
recursively defined as s0 = 0, si = hi ⊕ si−1. The third chain is recursively
defined as t0 = IV , ti = hi⊕ ζ(ti−1) where an LFSR is employed by ζ to update
ti−1 by left shifting it by one byte followed by a one byte XOR. More precisely,
we compute the hash value hi in the following way:

h0 = IV,

hi = f(hi−1,mi), for i = 1, 2, ..., k,

H(M) = f(hk, sk||tk).

The compression function, f , employs a block cipher, E and uses the Davis-
Mayer mode of operation. The internal cipher is based on the one used in
Whirlpool where it only differs in the key schedule. The round function which
operates on 8 × 8 byte state is initially loaded with the input chaining value.
As depicted in Figure 3, the state is updated through 10 rounds and one key
addition at the beginning. One round of the state update function consists of
the application of the following four transformations:

– The nonlinear layer γ: A transformation that consists of parallel application
of a nonlinear Sbox on each byte using an 8-bit Sbox. The used Sbox is the
same as the one used in Whirlpool.

– The cyclical permutation π: This layer cyclically shifts each column of its ar-
gument independently, so that column j is shifted downwards by j positions,
j = 0, 1, · · · , 7.

– The linear diffusion layer θ: A MixRow operation where each row is multi-
plied by an 8× 8 MDS matrix over F28 . The values of the matrix are chosen
such that the branch number of MixRow is 9. Therefore the total number of
active bytes at both the input and output is at least 9.

– The key addition σ: A linear transformation where the state is XORed with
a round key state.

Fig. 3. The Maelstrom-0 compression function.

The key schedule takes as input the 1024-bit message block and generates the
512-bit round keys, K0,K1, · · · ,K10. Since the key scheduling process is not
relevant to our attack, we do not give a detailed description of the round key
generation function. For more details on the specification of Maelstrom-0, the
reader is referred to [8].

Notation: LetX be (8×8) byte state denoting the internal state of the function.
The following notation is used in our attacks:

– Xi: The message state at the beginning of round i.
– XU

i : The message state after the U transformation at round i, where U ∈
{γ, π, θ, σ}.

– Xi[r, c]: A byte at row r and column c of state Xi.
– Xi[row r]: Eight bytes located at row r of state Xi.
– Xi[col c]: Eight bytes located at column c of state Xi.

4 Pseudo Preimage Attack on the 6-Round Reduced
Compression Function

In our analysis of the compression function, we are forced to adopt a pseudo
preimage attack because the compression function operates in Davis-Mayer mode.
Consequently, using the cut and splice technique causes updates in the first state
which is initialized by the chaining value. In our attack, we start by dividing the
two execution chunks around the initial structure. More precisely, we separate
the six attacked rounds into a 3-round forward chunk and a 2-round backward
chunk around the starting round represented by the initial structure. The pro-
posed chunk separation is shown in Figure 4. The number of the forward and
backward starting values in the initial structure amounts for the complexity of
the attack. Accordingly, one must try to balance the number starting values for
each chunk and the number of known bytes at the matching point at the end of
each chunk. The total number of starting values in both directions should pro-
duce candidate pairs at the matching point to satisfy the matching probability.

To better explain the idea, we start by demonstrating how the initial struc-
ture is constructed. The main objective of the MitM attack separation is to
maximize the number of known bytes at the start of each execution chunk. This
can be achieved by selecting several bytes as neutral so that the number of cor-
responding output bytes of the θ and θ−1 transformations at the start of both
chunks that are constant or relatively constant is maximized. A relatively con-
stant byte is a byte whose value depends on the value of the neutral bytes in one
execution direction but remains constant from the opposite execution perspec-
tive. As depicted in Figure 5, we want to have six constants in the lowermost
row in state a, then we need to evaluate the possible values of the corresponding
red row in state b such that the values of the selected six constants in state a
hold. The values of the lowermost red row in state b are the possible forward

Fig. 4. Chunk separation for a 6-round MitM pseudo preimage attack the compression
function.

starting values. For the lowermost row in state b, we randomly choose the six
constant bytes in a[row 7] and then evaluate the values of red bytes in b[row 7]
so that after applying θ−1 on b[row 7], the chosen values of the six constants
hold. Since we require six constant bytes in the lowermost row in state a, we
need to maintain six variable bytes in b[row 7] in order to solve a system of six
equations when the other two bytes are fixed. Accordingly, for the last row in
state b, we can randomly choose any two red bytes and compute the remaining
six so that the output of θ−1 maintains the previously chosen six constant bytes
at state a. To this end, the number of forward starting values is 216. Similarly,
we choose 40 constant bytes in state d and for each row in state c we randomly
choose two blue bytes and compute the other five such that after the θ transfor-
mation we get the predetermined five constants at each row in d. However, the
value of the five shaded red bytes in each row of state d depends also on the one
red byte in the rows of state c. We call these bytes relative constants because

their final values cannot be determined until the forward execution starts and
these values are different for each forward execution iteration. Specifically, their
final values are the predetermined constants acting as offsets which are XORed
with the corresponding red bytes multiplied by the MDS matrix coefficients. In
the sequel, we have two free bytes for each row in c which means 2128 backward
starting values.

Fig. 5. Initial structure used in the attack on the 6-round compression function.

Following Figure 4, due to the wide trail strategy where one unknown byte
results in a full unknown state after two rounds, we lose all state knowledge after
applying θ on Xπ

4 . To maintain partial state knowledge in the forward direction
and reach the matching point at Xπ

5 , we adopt a guess and determine approach
[26], by which, we can probabilistically guess the undetermined bytes in some
rows of the state at round 4 before the linear transformation. Thus, we maintain
knowledge of some state rows after the linear transformation θ which are used
for matching. One have to carefully choose the number of guessed bytes and
both starting values in the initial structure to result in an acceptable number
of correctly guessed matching pairs. Accordingly, we guess the twelve unknown
yellow bytes in stateXπ

4 . As a result, we can reach stateXπ
5 with four determined

bytes in each row where matching takes place.

As depicted in Figure 4, the forward chunk begins at Xθ
2 and ends at Xπ

5

which is the input state to the matching point. The backward chunk starts
at Xπ

1 and ends after the feedforward at Xθ
5 which is the output state of the

matching point. The red bytes denote the bytes which are affected by the forward
execution only and thus can be independently calculated without the knowledge
of the blue bytes. White words in the forward chunk are the ones whose values
depend on the blue bytes of the backward chunk. Accordingly, their values are
undetermined. Same rationale applies to the blue bytes of backward execution.
Grey bytes are constants which can be either the compression function output
or the chosen constants in the initial structure.

At the matching point, we partially match the available row bytes from the
forward execution at Xπ

5 with the corresponding row bytes from the backward
execution at Xθ

5 through the linear θ transformation. In each row, we have four

and six bytes from the forward and backward executions, respectively. Since the
linear mapping is performed on bytes, we compose four byte linear equations in
two unknown bytes. Then we evaluate the values of the two unknown bytes from
two out of the four equations and substitute their values in the remaining two
equations. With probability 2−16 the two remaining byte equations are satisfied.
Hence, the matching probability for one state row is 2−16. Thus, the partial
matching probability for the whole state is 28×−16=−128.

For our attack, the chosen number for the forward and backward starting
values, and the guessed values are 216, 2128, and 296, respectively. Setting these
parameters fixes the number of matching values to 2128. The chosen parameters
maximize the attack probability as we aim to increase the number of starting
forward values and keep the number of backward and matching values as close
as possible and larger than the number of guessed values. In what follows, we
give a description of the attack procedure and complexity based on the above
chosen parameters:

1. Randomly choose the constants in Xπ
1 and Xθ

2 and the input message block
value.

2. For each forward starting value fwi and guessed value gi in the 216 forward
starting values and the 296 guessed values, compute the forward matching
value fmi at X

π
5 and store (fwi, gi, fmi) in a lookup table T .

3. For each backward starting value bwj in the 2128 backward starting values,
we compute the backward matching value bmj at Xθ

5 and check if there
exists an fmi = bmj in T . If found, then a partial match exists and the full
match should be checked. If a full match exists, then we output the chaining
value hi−1 and the message mi, else go to step 1.

The complexity of the attack is evaluated as follows: after step 2, we have
216+96 = 2112 forward matching values which need 2112 memory for the look up
table. At the end of step 3, we have 2128 backward matching values. Accordingly,
we get 2112+128 = 2240 partial matching candidate pairs. Since the probability
of a partial match is 2−128 and the probability of a correct guess is 2−96, we
expect 2240−128−96 = 216 correctly guessed partially matching pairs. To check
for a full match, we want the partially matching starting values to result in the
correct values for the 48 unknown bytes in both Xπ

5 and Xθ
5 that make the

blue and red words hold. The probability that the latter condition is satisfied is
248×−8 = 2−384. Consequently, the expected number of fully matching pairs is
2−368 and hence we need to repeat the attack 2368 times to get a full match. The
time complexity for one repetition is 2112 for the forward computation, 2128 for
the backward computation, and 216 to check that partially matching pairs fully
match. The overall time complexity of the attack is 2368(2112+2128+216) ≈ 2496

and the memory complexity is 2112.

5 Preimage of the Maelstrom-0 hash function

In this section, we propose a 4-stage approach by which we utilize the previously
presented pseudo preimage attack on the Maelstrom compression function to

produce a preimage for the whole hash function. The designers of Maelstrom-
0 proposed the 3CM chaining scheme that computes two additional checksum
chains specifically to inhibit the ability of extending attacks on the compression
function to the hash function. The two additional checksums are computed from
a combination of the XOR of the intermediate chaining values, then the two
results are concatenated and processed as the input message block of the last
compression function call in the hash function. At first instance, this construction
seems to limit the scope of our attack to the compression function. Nevertheless,
employing the 4-stage approach, a preimage of the hash function can be found
when we consider a large set of messages that produce different combinations of
intermediate chaining values and thus different checksums and combine it with
a set of pseudo preimage attacks on the last compression function call. Hence,
another MitM attack can be performed on both sets to find a message that
correspond to the retrieved checksums. As depicted in Figure 6, the attack is
divided into four stages:

Fig. 6. A 4-stage preimage attack on the Maelstrom-0 hash function.

1. Given the hash function output H(M), we produce 2p pseudo preimages
for the last compression function call. The output of this step is 2p pairs of
the last chaining value and the two checksums (h2049, s2049, t2049). We store
these results in a table T .

2. In this stage, we construct a set of 21024 of 2-block messages such that all
of them collide at h2048. This structure is called a 2-block multicollision of
length 1024 [10, 17]. More precisely, an n-block multicollisison of length t
is a set of 2t messages where each message consists of exactly n × t blocks
and every consecutive n application of the compression function results in
the same chaining value. Consequently, we have 2t different possibilities for
the intermediate chaining values and all the 2t n-block messages lead to the
same hn×t value. Constructing a 2t n-block mulitcollision using exhaustive
collision search requires a time complexity of t(2(n−1)+2b/2), where b is the
chaining state size, and a memory complexity of t(2·n) message to store t two
messages of n-block each. In our case, we build 21024 2-block multicollision
where each 2-block collision gives us two choices for the checksum of two
consecutive chaining values. In other words, in the first 2-block collision,

we either choose (h1, h2) or (h
∗
1, h2) and thus two choices for the checksum

chains. To this end, we have 21024 different 2-block massages stored in 1024 ·
2 · 2 = 212 memory and hence 21024 candidate chaining checksums.

3. At this stage, we try to connect the resulting chaining value, h2048, from
stage 2 to one of 2p chaining values, h2049, stored in T which was created
in stage 1, using the freedom of choosing m2049. Specifically, we randomly
choose 512 bit ofm∗

2049, then properly pad it and append the message length,
and using h2048 generated by the multicollison, we compute h∗

2049 and check
if it exists in T . As T contains 2p entries, it is expected to find a match after
2512−p evaluations of the following compression function call:

h∗
2049 = f(h2048,m

∗
2049).

Once a matching h∗
2049 value is found in T , the corresponding checksums

s∗2049, t
∗
2049 are retrieved. Hence the desired checksums at the output of the

multicollision, s2048 and t2048 are equal to s
∗
2049⊕h∗

2049 and ζ−1(t∗2049⊕h∗
2049),

respectively.

4. At the last stage of the attack, we try to find a message M out of the
21024 2-block messages generated in stage 2 that results in checksums equal
to the ones retrieved in stage 3. For this, we form a system of 1024 equa-
tions in 1024 unknowns to select one combination from the 21024 different
combinations of possible chaining checksums which make the retrieved two
checksums hold. Note that, the algorithm proposed in [9] which employs
2512 2-block multicollision and treats the two checksums independently by
solving two independent systems of 512 equations cannot work on 3CM, as
the two checksums are dependent on each other. This algorithm only works
on the 3C chaining construction [10, 11] because it utilizes only one check-
sum. Accordingly, in our solution, we adopt 1024 2-block messages to find
a common solution for the two checksums simultaneously, hence, having the
required freedom to satisfy two bit constraints for each bit position in the
two checksums. The time complexity of this stage is about 10243 = 230.

The time complexity of the attack is evaluated as follows: we need 2p× (com-
plexity of pseudo preimage attack) in stage 1, 1024 × 2256 + 2048 ≈ 2266 to
build the 2-block multicollision at stage 2, 2512−p evaluations of one compres-
sion function call at stage 3, and finally 230 for stage 4. The memory complexity
for the four stages is as follows: 2p 3-states to store the pseudo preimages in
stage 1 and 2112 for the pseudo preimage attack, and 212 for the multicollision
in stage 2. Since the time complexity is highly influenced by p, so we have cho-
sen p = 8 to maximize the attack probability. Accordingly, preimages for the
6-round Maelstrom-0 hash function can be produced with a time complexity
of 28+496 + 2266 + 2512−8 + 230 ≈ 2505. The memory complexity of attack is
dominated by the memory requirements of the pseudo preimage attack on the
compression function which is given by 2112.

6 Conclusion

In this paper, we have investigated Maelstrom-0 and its compression function
with respect to MitM preimage attacks. We have shown that with a carefully bal-
anced chunk separation and the use of a guess and determine approach, pseudo
preimages for the 6-round reduced compression function are generated with time
complexity of 2496 and memory complexity of 2112. Moreover, we have analyzed
the employed 3CM chaining scheme which is designed specifically to inhibit
the ability of extending attacks on the compression function to the hash func-
tion, and proposed a 4-stage approach to bypass its effect and turn the pseudo
preimage attack on the compression function to a preimage attack on the hash
function. Accordingly, 6-round hash function preimages are generated with time
complexity of 2505 and a memory complexity of 2112. It should be noted that, if
one considers removing the linear transformation from the last round similar to
AES, the attack could be extended to cover seven rounds.

7 Acknowledgment

The authors would like to thank the anonymous reviewers for their valuable
comments and suggestions that helped improve the quality of the paper. This
work is supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

References

1. AlTawy, R., and Youssef, A. M. Preimage attacks on reduced-round Stribog.
In AFRICACRYPT (2014), D. Pointcheval and D. Vergnaud, Eds., vol. 8469 of
Lecture Notes in Computer Science, Springer, pp. 109–125.

2. AlTawy, R., and Youssef, A. M. Second preimage analysis of Whirlwind. In
Insrypt (2014), D. Lin, M. Yung, and J. Zhou, Eds., vol. 8957 of Lecture Notes in
Computer Science, Springer, pp. 311–328.

3. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., and Wang, L. Preimages for
step-reduced SHA-2. In ASIACRYPT (2009), M. Matsui, Ed., vol. 5912 of Lecture
Notes in Computer Science, Springer, pp. 578–597.

4. Aoki, K., and Sasaki, Y. Meet-in-the-middle preimage attacks against reduced
SHA-0 and SHA-1. In CRYPTO (2009), S. Halevi, Ed., vol. 5677 of Lecture Notes
in Computer Science, Springer, pp. 70–89.

5. Aoki, K., and Sasaki, Y. Preimage attacks on one-block MD4, 63-step MD5 and
more. In SAC (2009), R. M. Avanzi, L. Keliher, and F. Sica, Eds., vol. 5381 of
Lecture Notes in Computer Science, Springer, pp. 103–119.

6. Barreto, P., Nikov, V., Nikova, S., Rijmen, V., and Tischhauser, E. Whirl-
wind: a new cryptographic hash function. Designs, Codes and Cryptography 56,
2-3 (2010), 141–162.

7. Daemen, J., and Rijmen, V. The Design of Rijndael: AES- The Advanced En-
cryption Standard. Springer, 2002.

8. Filho, D., Barreto, P., and Rijmen, V. The Maelstrom-0 hash function. In
VI Brazilian Symposium on Information and Computer Systems Security (2006).

9. Gauravaram, P., and Kelsey, J. Cryptanalysis of a class of crypto-
graphic hash functions. Cryptology ePrint Archive, Report 2007/277, 2007.
http://eprint.iacr.org/.

10. Gauravaram, P., and Kelsey, J. Linear-XOR and additive checksums dont pro-
tect Damg̊ard-Merkle hashes from generic attacks. In CT-RSA (2008), T. Malkin,
Ed., vol. 4964 of Lecture Notes in Computer Science, Springer, pp. 36–51.

11. Gauravaram, P., Kelsey, J., Knudsen, L. R., and Thomsen, S. On hash
functions using checksums. International Journal of Information Security 9, 2
(2010), 137–151.

12. Gauravaram, P., Knudsen, L. R., Matusiewicz, K., Mendel, F., Rech-
berger, C., Schläffer, M., and Thomsen, S. S. Grøstl a SHA-3 candidate.
NIST submission (2008).

13. Gauravaram, P., Millan, W., Dawson, E., and Viswanathan, K. Construct-
ing secure hash functions by enhancing Merkle-Damg̊ard construction. In ACISP
(2006), L. Batten and R. Safavi-Naini, Eds., vol. 4058 of Lecture Notes in Computer
Science, Springer, pp. 407–420.

14. Guo, J., Ling, S., Rechberger, C., and Wang, H. Advanced meet-in-the-
middle preimage attacks: First results on full Tiger, and improved results on MD4
and SHA-2. In ASIACRYPT (2010), M. Abe, Ed., vol. 6477 of Lecture Notes in
Computer Science, Springer, pp. 56–75.

15. Hong, D., Koo, B., and Sasaki, Y. Improved preimage attack for 68-step HAS-
160. In ICISC (2009), D. Lee and S. Hong, Eds., vol. 5984 of Lecture Notes in
Computer Science, Springer, pp. 332–348.

16. Indesteege, S. The Lane hash function. Submission to NIST (2008). Avalabile
at: http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf.

17. Joux, A. Multicollisions in iterated hash functions. application to cascaded con-
structions. In CRYPTO (2004), M. Franklin, Ed., vol. 3152 of Lecture Notes in
Computer Science, Springer, pp. 306–316.

18. Kölbl, S., and Mendel, F. Practical attacks on the Maelstrom-0 compression
function. In ACNS (2011), J. Lopez and G. Tsudik, Eds., vol. 6715 of Lecture
Notes in Computer Science, Springer, pp. 449–461.

19. Ma, B., Li, B., Hao, R., and Li, X. Improved cryptanalysis on reduced-round
GOST and Whirlpool hash function. In ACNS (2014), I. Boureanu, P. Owesarski,
and S. Vaudenay, Eds., vol. 8479 of Lecture Notes in Computer Science, Springer,
pp. 289–307.

20. Matyukhin, D., Rudskoy, V., and Shishkin, V. A perspective hashing algo-
rithm. In RusCrypto (2010). (In Russian).

21. Mendel, F., Rechberger, C., Schlffer, M., and Thomsen, S. S. The re-
bound attack: Cryptanalysis of reduced Whirlpool and Grøstl. In FSE (2009),
O. Dunkelman, Ed., vol. 5665 of Lecture Notes in Computer Science, Springer,
pp. 260–276.

22. NIST. Announcing request for candidate algorithm nomina-
tions for a new cryptographic hash algorithm (SHA-3) family. In
Federal Register (November 2007), vol. 72(212). Available at:
http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf.

23. Rijmen, V., and Barreto, P. S. L. M. The Whirlpool hashing function. NISSIE
submission (2000).

24. Sasaki, Y. Meet-in-the-middle preimage attacks on AES hashing modes and an
application to Whirlpool. In FSE (2011), A. Joux, Ed., vol. 6733 of Lecture Notes
in Computer Science, Springer, pp. 378–396.

25. Sasaki, Y., and Aoki, K. Finding preimages in full MD5 faster than exhaustive
search. In EUROCRYPT (2009), A. Joux, Ed., vol. 5479 of Lecture Notes in
Computer Science, Springer, pp. 134–152.

26. Sasaki, Y., Wang, L., Wu, S., and Wu, W. Investigating fundamental se-
curity requirements on Whirlpool: Improved preimage and collision attacks. In
ASIACRYPT (2012), X. Wang and K. Sako, Eds., vol. 7658 of Lecture Notes in
Computer Science, Springer, pp. 562–579.

27. Wang, X., Yin, Y. L., and Yu, H. Finding collisions in the full SHA-1. In
CRYPTO (2005), V. Shoup, Ed., vol. 3621 of Lecture Notes in Computer Science,
Springer, pp. 17–36.

28. Wang, X., and Yu, H. How to break MD5 and other hash functions. In EURO-
CRYPT (2005), R. Cramer, Ed., vol. 3494 of Lecture Notes in Computer Science,
Springer, pp. 19–35.

29. Wu, H. The hash function JH, 2011. Avalabile
at:http://www3.ntu.edu.sg/home/wuhj/research/jh/jh-round3.pdf.

30. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., and Zou, J. (Pseudo) preimage
attack on round-reduced Grøstl hash function and others. In FSE (2012), A. Can-
teaut, Ed., vol. 7549 of Lecture Notes in Computer Science, Springer, pp. 127–145.

