

UDDI Spec TC

UDDI Version 2.03 Data Structure Reference

UDDI Committee Specification, 19 July 2002
Document identifier:

DataStructure_v2

Location:
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm

Latest version:
http://uddi.org/pubs/DataStructure_v2.htm

Editors:
Claus von Riegen, SAP

Contributors:
Tom Bellwood, IBM
David Ehnebuske, IBM
Yin Leng Husband, HP
Alan Karp, HP
Keisuke Kibakura, Fujitsu
Jeff Lancelle, Verisign
Sam Lee, Oracle
Sean MacRoibeaird, Sun
Barbara McKee, IBM
Tammy Nordan, HP
Dan Rogers, Microsoft
Christine Tomlinson, Sun
Cafer Tosun, SAP

Acknowledgements:
The UDDI Spec TC recognizes the contributions of other participants from the UDDI.org Working
Group:

Andy Harris, i2 Technologies
Denise Ho, Ariba
UDDI Business Registry Operators Council

Abstract:
The UDDI Version 2.0 API Specification defines approximately 40 SOAP messages that are used
to perform inquiry and publishing functions against any UDDI compliant service registry. This
document outlines the details of each of the XML structures associated with these messages.

Status:
This specification has attained the status of OASIS Standard.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 2 OF 37

Committee members should send comments on this Committee Specification to the uddi-
spec@lists.oasis-open.org list. Others should subscribe to and send comments to the uddi-spec-
comment@lists.oasis-open.org list. To subscribe, send an email message to uddi-spec-comment-
request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For information on whether any intellectual property claims have been disclosed that may be
essential to implementing this Committee Specification, and any offers of licensing terms, please
refer to the Intellectual Property Rights section of the UDDI Spec TC web page (http://www.oasis-
open.org/committees/uddi-spec/).

Copyrights
Copyright © 2001-2002 by Accenture, Ariba, Inc., Commerce One, Inc., Fujitsu Limited, Hewlett-
Packard Company, i2 Technologies, Inc., Intel Corporation, International Business Machines
Corporation, Microsoft Corporation, Oracle Corporation, SAP AG, Sun Microsystems, Inc., and
VeriSign, Inc. All Rights Reserved.

Copyright © OASIS Open 2002-2003. All Rights Reserved.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 3 OF 37

Contents
1 Terminology ..5

2 Introduction ...5

2.1 Service Discovery ..5

2.1.1 Five data types ...5

3 Overall Design Principles...6

3.1 Unique identifiers ...6

3.2 Containment ..7

4 Data Structure Notation ...7

5 The businessEntity structure..8

5.1 Structure specification..8

5.2 Substructure breakdown ..8

5.2.1 discoveryURLs ...9

5.2.2 name ..10

5.2.3 contacts..10

5.2.4 businessServices..10

5.2.5 identifierBag ...10

5.2.6 categoryBag ...10

6 The businessService structure...10

6.1 Structure Specification ...10

6.2 Substructure Breakdown..10

6.2.1 bindingTemplates ...10

7 The bindingTemplate structure ..10

7.1 Structure specification..10

7.2 Substructure breakdown ..10

7.2.1 accessPoint ..10

7.2.2 hostingRedirector..10

7.2.3 tModelInstanceDetails...10

8 The tModel structure..10

8.1 Two main uses ..10

8.1.1 Defining the technical fingerprint ...10

8.1.2 Defining an abstract namespace reference ...10

8.2 Structure specification..10

8.3 Substructure breakdown ..10

9 The publisherAssertion structure ...10

9.1 Structure Specification ...10

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 4 OF 37

9.2 Substructure Breakdown..10

Appendix A: Using Identifiers ...10

A.1 The identifier dilemma..10

A.2 Identifier characteristics ...10

A.2.1 Using identifiers ..10

A.2.2 Structure Specification ..10

Appendix B: Using categorization...10

B.1 Structure Specification ...10

Appendix C: Response message reference...10

C.1 assertionStatusReport..10

C.1.1 Sample ...10

C.2 authToken ...10

C.2.1 Sample ...10

C.3 bindingDetail..10

C.3.1 Sample ...10

C.4 businessDetail ...10

C.4.1 Sample ...10

C.5 businessDetailExt ..10

C.5.1 Sample ...10

C.6 businessList...10

C.6.1 Sample ...10

C.7 publisherAssertions..10

C.7.1 Sample ...10

C.8 registeredInfo...10

C.8.1 Sample ...10

C.9 relatedBusinessesList ..10

C.9.1 Sample ...10

C.10 serviceDetail...10

C.10.1 Sample..10

C.11 serviceList ..10

C.11.1 Sample..10

C.12 tModelDetail ...10

C.12.1 Sample..10

C.13 tModelList...10

C.13.1 Sample..10

Appendix D: Data Field Lengths...10

Appendix E: Structured Address Example..10

Appendix F: Notices...10

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 5 OF 37

1 Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in RFC 2119.

2 Introduction
The programmatic interface provided for interacting with systems that follow the Universal Description
Discovery & Integration (UDDI) specifications make use of Extensible Markup Language (XML) and a
related technology called Simple Object Access Protocol (SOAP), which is a specification for using XML
in simple message based exchanges.

The UDDI Version 2.0 API Specification defines approximately 40 SOAP messages that are used to
perform inquiry and publishing functions against any UDDI compliant service registry. This document
outlines the details of each of the XML structures associated with these messages.

2.1 Service Discovery

The purpose of UDDI compliant registries is to provide a service discovery platform on the World Wide
Web. Service discovery is related to being able to advertise and locate information about different
technical interfaces exposed by different parties. Services are interesting when you can discover them,
determine their purpose, and then have software that is equipped for using a particular type of Web
service complete a connection and derive benefit from a service.

A UDDI compliant registry provides an information framework for describing services exposed by any
entity or business. In order to promote cross platform service description that is suitable to a “black-box1”
Web environment, this description is rendered in cross-platform XML.

2.1.1 Five data types

The information that makes up a registration consists of five data structure types. This division by
information type provides simple partitions to assist in the rapid location and understanding of the different
information that makes up a registration.

The five core types are shown in figure 1.

These five types make up the complete amount of information provided within the UDDI service
description framework. Each of these XML structures contains a number of data fields2 that serve either a
business or technical descriptive purpose. Explaining each of these structures and the meaning and
placement of each field is the primary purpose of this document.

These structures are defined in the UDDI Version 2.0 API schema. The schema defines approximately 25
requests and 15 responses, each of which contain these structures, references to these structures, or

1 The term “black box” in this context implies that the descriptive information found in a UDDI compliant registry is provided in a
neutral format that allows any kind of service, without regard to a given services platform requirements or technology requirements.
UDDI provides a framework for describing any kind of service, and allows storage of as much detail about a service and its
implementation as desired.

2 In XML vernacular, fields are called either elements or attributes.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 6 OF 37

summary versions of these structures. In this document we first explain the core structures, and then

provide descriptions of the individual structures used for the request/response XML SOAP interface.

Figure 1

3 Overall Design Principles
Each of the five structure types is used to express specific types of data, arranged in the relationship
shown in Figure 1. A particular instance of an individual fact or set of related facts is expressed using
XML according to the definition of these core types. For instance, two separate businesses may publish
information about the Web services they offer, whether these services are entry points for interfacing with
accounting systems, or even services that allow customers to query the status of a factory order. Each
business, and the corresponding service descriptions (both logical and technical descriptions) all exist as
separate instances of data within a UDDI registry.

3.1 Unique identifiers

The individual facts about a business, its services, technical information, or even information about
specifications for services are kept separate, and are accessed individually by way of unique identifiers,
or keys. A UDDI registry assigns these unique identifiers when information is first saved, and these
identifiers can be used later as keys to access the specific data instances on demand.

Each unique identifier generated by a UDDI registry takes the form of a Universally Unique ID3 (UUID).
Technically, a UUID is a hexadecimal string that has been generated according to a very exacting
algorithm that is sufficiently precise as to prevent any two UUIDs from ever being generated in duplicate4.

3 The terms “Universally Unique Identifier” (UUID) and “Globally Unique Identifier” (GUID) are used synonymously in technical
documentation. In the remainder of this document, the term UUID is used.

4 The UUID structure and generation algorithm is described in the ISO/IEC 11578:1996 standard (see www.iso.ch).

publisherAssertion: Information
about a relationship between two
parties, asserted by one of both

tModel: Descriptions of specifications
for services or taxonomies. Basis for
technical fingerprints

bindingTemplate data contains
references to tModels. These tModels
designate the interface specifications
for a service

bindingTemplate: Technical
information about a service entry point
and construction specs

businessService: Descriptive
information about a particular service

businessEntity: Information about
the party who publishes information
about a family of services

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 7 OF 37

3.2 Containment

The individual instance data managed by a UDDI registry are sensitive to the parent/child relationships
found in the XML schema. This same containment relationship is seen in figure 1 for the core structures.
The businessEntity structure contains one or more unique businessService structures. Similarly,
individual businessService structures contain specific instances of bindingTemplate data, which in turn
contains information that includes pointers to specific instances of tModel structures.

It is important to note that no single instance of a core structure type is ever “contained” by more than one
parent structure. This means that only one specific businessEntity structure (identified by its unique key
value) will ever contain or be used to express information about a specific instance of a businessService
structure (also identified by its own unique key value).

References, on the other hand, operate differently. We can see an example of this in figure 1 where the
bindingTemplate structures contain references to unique instances of tModel structures. References can
be repeated within any number of the core typed data instances such that many references to a single
unique instance are allowed.

Determining what is a reference to an instance of a core data type and what is a key for a core data type
within a specific instance is straightforward. There are five core data types, and instances of each of
these types are identified by unique keys. The businessKey found within the businessEntity structure is a
key, and not a reference. Similarly, the serviceKey and bindingKey values found respectively within the
businessService and bindingTemplate structures are keys. The same holds true for the tModelKey value
found within the tModel structure. The publisherAssertion’s key is logically the concatenation of all of its
elements.

References on the other hand, occur in several places, especially for tModels. When tModels are
referenced, as seen within a bindingTemplate structure, these occur within a list structure designed for
the purpose of holding references to tModels. This list, not being one of the five core data types, is not
keyed as an individual instance. Rather, its own identity is derived from the parent structure that contains
it – and it cannot be separated. Thus any key values directly contained in structures that are not
themselves one of the five core structure types are references. Examples include tModelKey values found
in lists within bindingTemplate and categorization and identification schemes – in which context the
tModel represents a uniquely identifiable namespace reference and qualifier.

4 Data Structure Notation
Data structures are described by substructure breakdowns in tables of the following form.

Field Name Description Data Type Length

Optional fields
are written in
normal font

Required fields
are written in
bold font

Description of the field’s
meaning and whether it’s

• An attribute or an
element

• Repeatable or not

Possible Data
Types include

• structure

• string

• UUID

If the field’s data type is
string, the field’s length is
given here in Unicode
characters

Most of the data structures are also given in their XML Schema representation. Please use the UDDI XML
Schema as the definitive technical reference, if needed.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 8 OF 37

5 The businessEntity structure
The businessEntity structure represents all known information about a business or entity that publishes
descriptive information about the entity as well as the services that it offers. From an XML standpoint, the
businessEntity is the top-level data structure that accommodates holding descriptive information about a
business or entity. Service descriptions and technical information are expressed within a businessEntity
by a containment relationship.

5.1 Structure specification
<element name="businessEntity" type="uddi:businessEntity" />
<complexType name="businessEntity">
 <sequence>
 <element ref="uddi:discoveryURLs" minOccurs="0" />
 <element ref="uddi:name" maxOccurs="unbounded" />
 <element ref="uddi:description" minOccurs="0" maxOccurs="unbounded" />
 <element ref="uddi:contacts" minOccurs="0" />
 <element ref="uddi:businessServices" minOccurs="0" />
 <element ref="uddi:identifierBag" minOccurs="0" />
 <element ref="uddi:categoryBag" minOccurs="0" />
 </sequence>
 <attribute name="businessKey" type="uddi:businessKey" use="required" />
 <attribute name="operator" type="string" use="optional" />
 <attribute name="authorizedName" type="string" use="optional" />
</complexType>

5.2 Substructure breakdown

Field Name Description Data
Type

Length

businessKey Attribute. This is the unique identifier for a given
instance of a businessEntity structure.

UUID 41

authorizedName Attribute. This is the recorded name of the individual
that published the businessEntity data. This data is
generated by the controlling operator and should not be
supplied within save_business operations.

string 255

operator Attribute. This is the certified name of the UDDI registry
site operator that manages the master copy of the
businessEntity data. The controlling operator records
this data at the time data is saved. This data is
generated and should not be supplied within
save_business operations.

string 255

discoveryURLs Optional element. This is a list of Uniform Resource
Locators (URL) that point to alternate, file based service
discovery mechanisms. Each recorded businessEntity
structure is automatically assigned a URL that returns
the individual businessEntity structure. URL search is
provided via find_business call.

structure

name Required repeating element. These are the human
readable names recorded for the businessEntity,
adorned with a unique xml:lang value to signify the
language that they are expressed in. Name search is
provided via find_business call. Names may not be

string 255

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 9 OF 37

blank.

description Optional repeating element. One or more short business
descriptions. One description is allowed per national
language code supplied.

string 255

contacts Optional element. This is an optional list of contact
information.

structure

businessServices Optional element. This is a list of one or more logical
business service descriptions.

structure

identifierBag Optional element. This is an optional list of name-value
pairs that can be used to record identifiers for a
businessEntity. These can be used during search via
find_business.

structure

categoryBag Optional element. This is an optional list of name-value
pairs that are used to tag a businessEntity with specific
taxonomy information (e.g. industry, product or
geographic codes). These can be used during search
via find_business.

structure

5.2.1 discoveryURLs

The discoveryURLs structure is used to hold pointers to URL addressable discovery documents. The
expected retrieval mechanism for URLs referenced in the data within this structure is HTTP-GET. The
expected return document is not defined. Rather, a framework for establishing convention is provided,
and two such conventions are defined within UDDI behaviors. It is hoped that other conventions come
about and use this structure to accommodate alternate means of discovery.5

Field Name Description Data Type Length

discoveryURL Attribute qualified repeating element holding strings that
represent web addressable (via HTTP-GET) discovery
documents.

string
w/attributes

255

5.2.1.1 discoveryURL

Each individual discovery URL consists of an attribute whose value designates the URL use type
convention, and a string, found within the body of the element. Each time a businessEntity structure is
saved via a call to save_business, the UDDI Operator Site will generate one URL. The generated URL
will point to an instance of either a businessEntity or businessEntityExt structure, and the useType
attribute of the discoveryURL will be set to either "businessEntity" or "businessEntityExt" according to the
data type found while processing the save_business message. The discoveryURLs collection will be
augmented so that it includes this generated URL. This URL can then be used to retrieve a specific
instance of a businessEntity, since the XML returned will be formatted as a normal businessDetail
message.

5 An example of an alternate form of service discovery is seen in the ECO Framework as defined by the commerce.net initiative. A
convention to provide pointers to ECO discovery entry points could take advantage of the structures provided in discoveryURLs by
adopting the useType value “ECO”.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 10 OF 37

Field Name Description Data
Type

Length

useType Required attribute that designates the name of the
convention that the referenced document follows. Two
reserved convention values are “businessEntity” and
“businessEntityExt”. URLs qualified with these values
should point to XML documents of the same type as the
useType value.

string 255

Example: An example of the generated data for a given businessEntity might look similar to the
following:

<di scover yURLs>
<di scover yURL useType=” busi nessEnt i t y” >
ht t p: / / www. someOper at or ?busi nessKey=BE3D2F08- CEB3- 11D3- 849F- 0050DA1803C0
</ di scover yURL>
<di scover yURLs>

5.2.2 name

A businessEntity MAY contain more than one name. Multiple names are useful, for example, in order to
specify both the legal name and a known abbreviation of a businessEntity, or in order to support
romanization.

When a name is expressed in a specific language (such as the language into which a name has been
romanized), it SHOULD carry the xml:lang attribute to signify this. When a name does not have an
associated language (such as a neologism not associated with a particular language), the xml:lang
attribute SHOULD be omitted.

As is defined in the XML specification, an occurrence of the xml:lang attribute indicates that the content to
which it applies (namely the element on which it is found and to all its children, unless subsequently
overridden) is to be interpreted as being in a certain natural language. Legal values for such attributes are
specified in the IETF standard RFC 1766 and its successors (including, as of the time of the present
writing, RFC 3066). As is indicated therein, language values begin with a primary language tag, and are
optionally followed by a series of hyphen-delimited sub-tags for country or dialect identification; the tags
are not case-sensitive. Examples include: "EN-us", "FR-ca".

The same mechanism applies to the name element within the businessService structure.

5.2.3 contacts

The contacts structure provides a way for information to be registered with a businessEntity record so that
someone that finds the information can make human contact for any purpose. Since the information held
within the UDDI Operator Sites is freely available, some care should be taken when considering the
amount of contact information to register. Electronic mail addresses in particular may be the greatest
concern if you are sensitive to receiving unsolicited mail.

The contacts structure itself is a simple collection of contact structures. You’ll find that there are many
collections in the UDDI Version 2.0 API schema. Like the discoveryURLs structure – which is a container
for one or more discoveryURL structures, the contacts structure is a simple container where one or more
contact structures reside.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 11 OF 37

5.2.3.1 contact

The contact structure lets you record contact information for a person. This information can consist of one
or more optional elements, along with a person’s name. Contact information exists by containment
relationship alone, and no mechanisms for tracking individual contact instances is provided by UDDI
specifications.

For transliteration purposes (e.g. romanization) the suggested approach is to file multiple contacts.

Field Name Description Data Type Length

useType Optional attribute that is used to describe the type of
contact in freeform text. Suggested examples include
“technical questions”, “technical contact”, “establish
account”, “sales contact”, etc.

string 255

description Optional element. Zero or more language-qualified6
descriptions of the reason the contact should be used.

string 255

personName Required element. Contacts should list the name of the
person or name of the job role that will be available
behind the contact. Examples of roles include
“administrator” or “webmaster”.

string 255

phone Optional repeating element. Used to hold telephone
numbers for the contact. This element can be adorned
with an optional useType attribute for descriptive
purposes.

string
w/attributes

50

email Optional repeating element. Used to hold email
addresses for the contact. This element can be adorned
with an optional useType attribute for descriptive
purposes.

string
w/attributes

255

address Optional repeating element. This structure represents
the printable lines suitable for addressing an envelope.

structure

5.2.3.2 address

The address structure is a simple list of addressLine elements within the address container. Each
addressLine element is a simple string. UDDI compliant registries are responsible for preserving the order
of any addressLine data provided. Address structures also have three optional attributes. The useType
describes the address’ type in freeform text. The sortCode values are not significant within a UDDI
registry, but may be used by user interfaces that present contact information in some ordered fashion
using the values provided in the sortCode attribute. The tModelKey is a tModel reference that specifies
that keyName keyValue pairs given by subsequent addressLine elements, if addressLine elements are
present at all, are to be interpreted by the address structure associated with the tModel that is referenced.
For a description of how to use tModels in order to give the simple addressLine list structure and
meaning, see Appendix E: Structured Address Example.

6 All fields named description behave the same way and are subject to the same language identifier rules as described in the XML
usage appendix found in the UDDI programmers API specification. Embedded HTML is prohibited in description fields.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 12 OF 37

Field Name Description Data Type Length

useType Optional attribute that is used to describe the type of
address in freeform text. Suggested examples include
“headquarters”, “sales office”, “billing department”, etc.

string 255

sortCode Optional attribute that can be used to drive the behavior
of external display mechanisms that sort addresses.
The suggested values for sortCode include numeric
ordering values (e.g. 1, 2, 3), alphabetic character
ordering values (e.g. a, b, c) or the first n positions of
relevant data within the address.

string 10

tModelKey Optional attribute. This is the unique key reference that
implies that the keyName keyValue pairs given by
subsequent addressLine elements are to be interpreted
by the taxonomy associated with the tModel that is
referenced.

string 255

417

addressLine Optional repeating element containing the actual
address in freeform text. If the address element
contains a tModelKey, these addressLine elements are
to be adorned each with an optional keyName keyValue
attribute pair. Together with the tModelKey, keyName
and keyValue qualify the addressLine in order to
describe its meaning.

string
w/attributes

80

5.2.3.3 addressLine

AddressLine elements contain string data with a line length limit of 80 character positions. Each
addressLine element can be adorned with two optional descriptive attributes, keyName and keyValue.
Both attributes must be present in each address line if a tModelKey is assigned to the address structure.
By doing this, the otherwise arbitrary use of address lines becomes structured. Together with the address’
tModelKey, the keyName and keyValue qualify the addressLine according to the address structure
specified in the overview document of the referenced tModel. See Appendix E for an example how
structured addresses can be represented. When no tModelKey is provided for the address structure, the
keyName and keyValue attributes can be used without restrictions, for example, to provide descriptive
information for each addressLine by using the keyName attribute. Since both the keyName and the
keyValue attributes are optional, address line order is significant and will always be returned by the UDDI
compliant registry in the order originally provided during a call to save_business.

5.2.4 businessServices

The businessServices structure provides a way for describing information about families of services. This
simple collection accessor contains zero or more businessService structures and has no other associated
structures.

5.2.5 identifierBag

The identifierBag element allows businessEntity or tModel structures to include information about
common forms of identification such as D-U-N-S

�

 numbers, tax identifiers, etc. This data can be used to
signify the identity of the businessEntity, or can be used to signify the identity of the publishing party.
Including data of this sort is optional, but when used greatly enhances the search behaviors exposed via

7 The data type for tModelKey allows for using URN values in a later revision. In the current release, the key is a generated UUID.
Design work around managing duplicate urn claims will allow user supplied URN keys on tModels in the future.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 13 OF 37

the find_xx messages defined in the UDDI Version 2.0 API Specification. For a full description of the
structures involved in establishing an identity, see Appendix A: Using Identifiers.

5.2.6 categoryBag

The categoryBag element allows businessEntity, businessService and tModel structures to be
categorized according to any of several available taxonomy based classification schemes. Operator Sites
automatically provide validated categorization support for three taxonomies that cover industry codes (via
NAICS), product and service classifications (via UNSPC) and geography (via ISO 3166). Including data of
this sort is optional, but when used greatly enhances the search behaviors exposed by the find_xx
messages defined in the UDDI Version 2.0 API Specification. For a full description of structures involved
in establishing categorization information, see Appendix B: Using categorization.

6 The businessService structure
The businessService structures each represent a logical service classification. The name of the element
includes the term “business” in an attempt to describe the purpose of this level in the service description
hierarchy. Each businessService structure is the logical child of a single businessEntity structure. The
identity of the containing (parent) businessEntity is determined by examining the embedded businessKey
value. If no businessKey value is present, the businessKey must be obtainable by searching for a
businessKey value in any parent structure containing the businessService. Each businessService
element contains descriptive information in business terms outlining the type of technical services found
within each businessService element.

In some cases, businesses would like to share or reuse services, e.g. when a large enterprise publishes
separate businessEntity structures. This can be established by using the businessService structure as a
projection to an already published businessService.

Any businessService projected in this way is not managed as a part of the referencing businessEntity, but
centrally as a part of the referenced businessEntity. This means that changes of the businessService by
the referenced businessEntity are automatically valid for the service projections done by referencing
businessEntity structures.

In order to specify both referenced and referencing businessEntity structures correctly, service projections
can only be published by a save_business message with the referencing businessKey present in the
businessEntity structure and both the referenced businessKey and the referenced businessService
present in the businessService structure.

6.1 Structure Specification
<element name="businessService" type="uddi:businessService" />
<complexType name="businessService">
 <sequence>
 <element ref="uddi:name" minOccurs="0" maxOccurs="unbounded" />
 <element ref="uddi:description" minOccurs="0" maxOccurs="unbounded" />
 <element ref="uddi:bindingTemplates" minOccurs="0" />
 <element ref="uddi:categoryBag" minOccurs="0" />
 </sequence>
 <attribute name="serviceKey" type="uddi:serviceKey" use="required" />
 <attribute name="businessKey" type="uddi:businessKey" use="optional" />
</complexType>

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 14 OF 37

6.2 Substructure Breakdown

Field Name Description Data
Type

Length

businessKey This attribute is optional when the businessService data
is contained within a fully expressed parent that already
contains a businessKey value.

If the businessService data is rendered into XML and
has no containing parent that has within its data a
businessKey, the value of the businessKey that is the
parent of the businessService is required to be provided.
This behavior supports the ability to browse through the
parent-child relationships given any of the core elements
as a starting point. The businessKey may differ from the
publishing businessEntity’s businessKey to allow service
projections.

UUID 41

serviceKey This is the unique key for a given businessService.
When saving a new businessService structure, pass an
empty serviceKey value. This signifies that a UUID
value is to be generated. To update an existing
businessService structure, pass the UUID value that
corresponds to the existing service. If this data is
received via an inquiry operation, the serviceKey values
may not be blank.

When saving a new or updated service projection, pass
the serviceKey of the referenced businessService
structure.

UUID 41

name Optional repeating element. These are the human
readable names recorded for the businessService,
adorned with a unique xml:lang value to signify the
language that they are expressed in. Name search is
provided via find_service call. Names may not be blank.

When saving a new or updated service projection, pass
the exact name of the referenced businessService,
here.

string 255

description Optional element. Zero or more language-qualified text
descriptions of the logical service family.

string 255

bindingTemplates This structure holds the technical service description
information related to a given business service family.

structure

categoryBag Optional element. This is an optional list of name-value
pairs that are used to tag a businessService with
specific taxonomy information (e.g. industry, product or
geographic codes). These can be used during search
via find_service. See categoryBag under businessEntity
for a full description.

structure

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 15 OF 37

6.2.1 bindingTemplates

The bindingTemplates structure is a container for zero or more bindingTemplate structures. This simple
collection accessor has no other associated structure.

7 The bindingTemplate structure
Technical descriptions of Web services are accommodated via individual contained instances of
bindingTemplate structures. These structures provide support for determining a technical entry point or
optionally support remotely hosted services, as well as a lightweight facility for describing unique technical
characteristics of a given implementation. Support for technology and application specific parameters and
settings files are also supported.

Since UDDI’s main purpose is to enable description and discovery of Web Service information, it is the
bindingTemplate that provides the most interesting technical data.

Each bindingTemplate structure has a single logical businessService parent, which in turn has a single
logical businessEntity parent.

7.1 Structure specification
<element name="bindingTemplate" type="uddi:bindingTemplate" />
<complexType name="bindingTemplate">
 <sequence>
 <element ref="uddi:description" minOccurs="0" maxOccurs="unbounded" />
 <choice>
 <element ref="uddi:accessPoint" />
 <element ref="uddi:hostingRedirector" />
 </choice>
 <element ref="uddi:tModelInstanceDetails" />
 </sequence>
 <attribute name="serviceKey" type="uddi:serviceKey" use="optional" />
 <attribute name="bindingKey" type="uddi:bindingKey" use="required" />
</complexType>

7.2 Substructure breakdown

Field Name Description Data Type Length

bindingKey This is the unique key for a given bindingTemplate.
When saving a new bindingTemplate structure, pass
an empty bindingKey value. This signifies that a UUID
value is to be generated. To update an existing
bindingTemplate structure, pass the UUID value that
corresponds to the existing bindingTemplate instance.
If this data is received via an inquiry operation, the
bindingKey values may not be blank.

UUID 41

serviceKey This attribute is optional when the bindingTemplate
data is contained within a fully expressed parent that
already contains a serviceKey value. If the
bindingTemplate data is rendered into XML and has
no containing parent that has within its data a
serviceKey, the value of the serviceKey that is the
ultimate containing parent of the bindingTemplate is
required to be provided. This behavior supports the
ability to browse through the parent-child relationships
given any of the core elements as a starting point.

UUID 41

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 16 OF 37

Field Name Description Data Type Length

description Optional repeating element. Zero or more language-
qualified text descriptions of the technical service entry
point.

string 255

accessPoint Required attribute qualified element8. This element is a
text field that is used to convey the entry point address
suitable for calling a particular Web service. This may
be a URL, an electronic mail address, or even a
telephone number. No assumptions about the type of
data in this field can be made without first
understanding the technical requirements associated
with the Web service9.

string
w/attributes

255

hostingRedirector Required element if accessPoint not provided. This
element is adorned with a bindingKey attribute, giving
the redirected reference to a different
bindingTemplate. If you query a bindingTemplate and
find a hostingRedirector value, you should retrieve that
bindingTemplate and use it in place of the one
containing the hostingRedirector data.

empty
w/attributes

tModelInstanceDetails This structure is a list of zero or more
tModelInstanceInfo elements. This data, taken in total,
should form a distinct fingerprint that can be used to
identify compatible services.

structure

7.2.1 accessPoint

The accessPoint element is an attribute-qualified pointer to a service entry point. The notion of service at
the metadata level seen here is fairly abstract and many types of entry points are accommodated.

A single attribute is provided (named URLType). The purpose of the URLType attribute is to facilitate
searching for entry points associated with a particular type of entry point. An example might be a
purchase order service that provides three entry points, one for HTTP, one for SMTP, and one for FAX
ordering. In this example, we’d find a businessService element that contains three bindingTemplate
entries, each with identical data with the exception of the accessPoint value and URLType value.

The valid values for URLType are:

• mailto: designates that the accessPoint string is formatted as an electronic mail address
reference, for example, mailto:purch@fabrikam.com.

• http: designates that the accessPoint string is formatted as an HTTP compatible Uniform
Resource Locator (URL), for example, http://www.fabrikam.com/purchasing.

• https: designates that the accessPoint string is formatted as a secure HTTP compatible URL, for
example https://www.fabrikam.com/purchasing.

• ftp: designates that the accessPoint string is formatted as a FTP directory address, for example
ftp://ftp.fabrikam.com/public.

8 One of accessPoint or hostingRedirector is required.

9 The content of the structure named tModelInstanceDetails that is found within a bindingTemplate structure serves as a technical
fingerprint. This fingerprint is a series of references to uniquely keyed specifications and/or concepts. To build a new service that is
compatible with a tModel, the specifications must be understood. To register a service compatible with a specification, reference a
tModelKey within the tModelInstanceDetails data for a bindingTemplate instance.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 17 OF 37

• fax: designates that the accessPoint string is formatted as a telephone number that will connect
to a facsimile machine, for example 1 425 555 5555.

• phone: designates that the accessPoint string is formatted as a telephone number that will
connect to human or suitable voice or tone response based system, for example 1 425 555 5555.

• other: designates that the accessPoint string is formatted as some other address format. When
this value is used, one or more of the tModel signatures found in the tModelInstanceInfo
collection must imply that a particular format or transport type is required.

7.2.2 hostingRedirector

The hostingRedirector element is used to designate that a bindingTemplate entry is a pointer to a different
bindingTemplate entry. The value in providing this facility is seen when a business or entity wants to
expose a service description (e.g. advertise that they have a service available that suits a specific
purpose) that is actually a service that is described in a separate bindingTemplate record. This might
occur when a service is remotely hosted (hence the name of this element), or when many service
descriptions could benefit from a single service description.

The hostingRedirector element has a single attribute and no element content. The attribute is a
bindingKey value that is suitable within the same UDDI registry instance for querying and obtaining the
bindingDetail data that is to be used.

More on the hostingRedirector can be found in the appendices for the UDDI Version 2.0 API
Specification.

7.2.3 tModelInstanceDetails

This structure is a simple accessor container for one or more tModelInstanceInfo structures. When taken
as a group, the data that is presented in a tModelInstanceDetails structure forms a technically descriptive
fingerprint by virtue of the unordered list of tModelKey references contained within this structure. What
this means in English is that when someone registers a bindingTemplate (within a businessEntity
structure), it will contain one or more references to specific and identifiable specifications that are implied
by the tModelKey values provided with the registration. During an inquiry for a service, an interested party
could use this information to look for a specific bindingTemplate that contains a specific tModel reference,
or even a set of tModel references. By registering a specific fingerprint in this manner, a software
developer can readily signify that they are compatible with the specifications implied in the tModelKey
elements exposed in this manner.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 18 OF 37

7.2.3.1 tModelInstanceInfo

A tModelInstanceInfo structure represents the bindingTemplate instance specific details for a single
tModel by reference.

Field Name Description Data
Type

Length

tModelKey Required Attribute. This is the unique key reference that
implies that the service being described has
implementation details that are specified by the
specifications associated with the tModel that is
referenced

string 255

description Optional repeating element. This is one or more
language qualified text descriptions that designate what
role a tModel reference plays in the overall service
description.

string 255

instanceDetails Optional element. This element can be used when
tModel reference specific settings or other descriptive
information are required to either describe a tModel
specific component of a service description or support
services that require additional technical data support
(e.g. via settings or other handshake operations)

structure

7.2.3.2 instanceDetails

This structure holds service instance specific information that is required to either understand the service
implementation details relative to a specific tModelKey reference, or to provide further parameter and
settings support. If present, this element should not be empty. Because no single contained element is
required in the schema description, this rule is called out here for clarity.

Field Name Description Data
Type

Length

description Optional repeating element. This language-qualified text
element is intended for holding a description of the
purpose and/or use of the particular instanceDetails
entry.

string 255

overviewDoc Optional element. Used to house references to remote
descriptive information or instructions related to proper
use of a bindingTemplate technical sub-element.

structure

instanceParms Optional element. Used to contain settings parameters
or a URL reference to a file that contains settings or
parameters required to use a specific facet of a
bindingTemplate description. If used to house a URL
pointer to a file, the suggested format is URL that is
suitable for retrieving the settings or parameters via
HTTP-GET.

string 255

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 19 OF 37

7.2.3.3 overviewDoc

This optional structure is provided as a placeholder for metadata that describes overview information
about a particular tModel use within a bindingTemplate.

Field Name Description Data
Type

Length

description Optional repeating element. This language-qualified
string is intended to hold a short descriptive overview of
how a particular tModel is to be used.

string 255

overviewURL Optional element. This string data element is to be used
to hold a URL reference to a long form of an overview
document that covers the way a particular tModel
specific reference is used as a component of an overall
web service description. The suggested format is a URL
that is suitable for retrieving an HTML based description
via a web browser or HTTP-GET operation.

string 255

8 The tModel structure
Being able to describe a Web service and then make the description meaningful enough to be useful
during searches is an important UDDI goal. Another goal is to provide a facility to make these descriptions
useful enough to learn about how to interact with a service that you don’t know much about. In order to do
this, there needs to be a way to mark a description with information that designates how it behaves, what
conventions it follows, or what specifications or standards the service is compliant with. Providing the
ability to describe compliance with a specification, concept, or even a shared design is one of the roles
that the tModel structure fills.

The tModel structure takes the form of keyed metadata (data about data). In a general sense, the
purpose of a tModel within the UDDI registry is to provide a reference system based on abstraction. Thus,
the kind of data that a tModel represents is pretty nebulous. In other words, a tModel registration can
define just about anything, but in the current revision, two conventions have been applied for using
tModels: as sources for determining compatibility and as keyed namespace references.

The information that makes up a tModel is quite simple. There’s a key, a name, an optional description,
and then a URL that points somewhere – presumably somewhere where the curious can go to find out
more about the actual concept represented by the metadata in the tModel itself.

8.1 Two main uses

There are two places within a businessEntity registration that you’ll find references to tModels. In this
regard, tModels are special. Whereas the other data within the businessEntity (e.g. businessService and
bindingTemplate data) exists uniquely with one uniquely keyed instance as a member of one unique
parent businessEntity, tModels are used as references. This means that you’ll find references to specific
tModel instances in many businessEntity structures.

8.1.1 Defining the technical fingerprint

The primary role that a tModel plays is to represent a technical specification. An example might be a
specification that outlines wire protocols, interchange formats and interchange sequencing rules.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 20 OF 37

Examples can be seen in the RosettaNet Partner Interface Processes 10 specification, the Open
Applications Group Integration Specification11 and various Electronic Document Interchange (EDI) efforts.

Software that communicates with other software across some communication medium invariably adheres
to some pre-agreed specifications. In situations where this is true, the designers of the specifications can
establish a unique technical identity within a UDDI registry by registering information about the
specification in a tModel.

Once registered in this way, other parties can express the availability of Web services that are compliant
with a specification by simply including a reference to the tModel identifier (called a tModelKey) in their
technical service descriptions bindingTemplate data.

This approach facilitates searching for registered Web services that are compatible with a particular
specification. Once you know the proper tModelKey value, you can find out whether a particular business
or entity has registered a Web service that references that tModel key. In this way, the tModelKey
becomes a technical fingerprint that is unique to a given specification.

8.1.2 Defining an abstract namespace reference

The other place where tModel references are used is within the identifierBag, categoryBag, address and
publisherAssertion structures that are used to define organizational identity and various classifications.
Used in this context, the tModel reference represents a relationship between the keyed name-value pairs
to the super-name, or namespace within which the name-value pairs are meaningful.

An example of this can be seen in the way a business or entity can express the fact that their US tax code
identifier (which they are sure they are known by to their partners and customers) is a particular value. To
do this, let’s assume that we find a tModel that is named “US Tax Codes”, with a description “United
States business tax code numbers as defined by the United States Internal Revenue Service”. In this
regard, the tModel still represents a specific concept – but instead of being a technical specification, it
represents a unique area within which tax code ID’s have a particular meaning.

Once this meaning is established, a business can use the tModelKey for the tax code tModel as a unique
reference that qualifies the remainder of the data that makes up an entry in the identifierBag data.

To get things started, the UDDI Operator Sites have registered a number of useful tModels, including
NAICS (an industry code taxonomy), UNSPC (a product and service category code taxonomy), and ISO
3166 (a geographical region code taxonomy).

8.2 Structure specification
<element name="tModel" type="uddi:tModel" />
<complexType name="tModel">
 <sequence>
 <element ref="uddi:name" />
 <element ref="uddi:description" minOccurs="0" maxOccurs="unbounded" />
 <element ref="uddi:overviewDoc" minOccurs="0" />
 <element ref="uddi:identifierBag" minOccurs="0" />
 <element ref="uddi:categoryBag" minOccurs="0" />
 </sequence>
 <attribute name="tModelKey" type="uddi:tModelKey" use="required" />
 <attribute name="operator" type="string" use="optional" />
 <attribute name="authorizedName" type="string" use="optional" />
</complexType>

10 See www.rosettanet.org

11 See www.openapplications.org

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 21 OF 37

8.3 Substructure breakdown

Field Name Description Data
Type

Length

tModelKey Required Attribute. This is the unique key for a given
tModel structure. When saving a new tModel structure,
pass an empty tModelKey value. This signifies that a
UUID value is to be generated. To update an existing
tModel structure, pass the tModelKey value that
corresponds to an existing tModel instance.

string 255

authorizedName Attribute. This is the recorded name of the individual
that published the tModel data. This data is calculated
by the controlling operator and should not be supplied
within save_tModel operations.

string 255

operator Attribute. This is the certified name of the UDDI registry
site operator that manages the master copy of the
tModel data. The controlling operator records this data
at the time data is saved. This data is calculated and
should not be supplied within save_tModel operations.

string 255

name Required element. This is the name recorded for the
tModel. Name search is provided via find_tModel call.
Names may not be blank, and should be meaningful to
someone who looks at the tModel. The name should be
formatted as a URI and, as a consequence, the
xml:lang attribute of the name element should not be
used.

string 255

description Optional repeating element. One or more short
language-qualified descriptions. One description is
allowed per national language code supplied.

string 255

overviewDoc Optional element. Used to house references to remote
descriptive information or instructions related to the
tModel. See the substructure breakdown for
overviewDoc in section The bindingTemplate structure.

structure

identifierBag Optional element. This is an optional list of name-value
pairs that can be used to record identification numbers
for a tModel. These can be used during search via
find_tModel. See the full description of this element in
the businessEntity section of this document and in
Appendix A: Using Identifiers.

structure

categoryBag Optional element. This is an optional list of name-value
pairs that are used to tag a tModel with specific
taxonomy information (e.g. industry, product or
geographic codes). These can be used during search
via find_tModel. See the full description of this element
in the businessEntity section of this document and in
Appendix B: Using categorization

structure

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 22 OF 37

9 The publisherAssertion structure
Many businesses, like large enterprises or marketplaces, are not effectively represented by a single
businessEntity, since their description and discovery are likely to be diverse. As a consequence, several
businessEntity structures can be published, representing individual subsidiaries of a large enterprise or
individual participants of a marketplace. Nevertheless, they still represent a more or less coupled
community and would like to make some of their relationships visible in their UDDI registrations.
Therefore, two related businesses use the xx_publisherAssertion messages, publishing assertions of
business relationships.

In order to eliminate the possibility that one publisher claims a relationship between both businesses that
is in fact not reciprocally recognized, both publishers have to agree that the relationship is valid by
publishing their own publisherAssertion. Therefore, both publishers have to publish exactly the same
information. When this happens, the relationship becomes visible. More detailed information is given in
the appendices for the UDDI Version 2.0 API Specification.

In the case that a publisher is responsible for both businesses, the relationship automatically becomes
visible after publishing just one of both assertions that make up the relationship.

The publisherAssertion structure consists of the three elements fromKey (the first businessKey), toKey
(the second businessKey) and keyedReference. The keyedReference designates the asserted
relationship type in terms of a keyName keyValue pair within a tModel, uniquely referenced by a
tModelKey. All three parts of the keyedReference – the tModelKey, the keyName, and the keyValue – are
mandatory in this context. Empty (zero length) keyName and keyValue elements are permitted.

9.1 Structure Specification
<element name="publisherAssertion" type="uddi:publisherAssertion" />
<complexType name="publisherAssertion">
 <sequence>
 <element ref="uddi:fromKey" />
 <element ref="uddi:toKey" />
 <element ref="uddi:keyedReference" />
 </sequence>
</complexType>

9.2 Substructure Breakdown

Field Name Description Data Type Length

fromKey Required element. This is the unique key reference to
the first businessEntity the assertion is made for.

UUID 41

toKey Required element. This is the unique key reference to
the second businessEntity the assertion is made for.

UUID 41

keyedReference Required element. This designates the relationship
type the assertion is made for, represented by the
included tModelKey and described by the included
keyName keyValue pair.

empty
w/attributes

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 23 OF 37

 Appendix A: Using Identifiers

A.1 The identifier dilemma

One of the design goals associated with the UDDI registration data is the ability to mark information with
identifiers. The purpose of identifiers in the UDDI registration data is to allow others to find the published
information using more formal identifiers such as D-U-N-S

�

 numbers12, Global Location Numbers
(GLN)13, tax identifiers, or any other kind of organizational identifiers, regardless of whether these are
private or shared.

When you look at an identifier, such as a D-U-N-S
�

 number, it is not always immediately apparent what
the identifier represents. For instance, consider the following identifier:

123-45-6789

Standing alone, we could try and guess what this combination of digits and formatting characters implies.
However, if we knew that this was a United States Social Security number, we would then have a better
context and understand that this string, while still not clear, at least identifies one or more persons,
perhaps even a living one. Expressed as a name / value pair, the identifier might then look like the
following:

United States Social Security Number, 123-45-6789

Even with this new information, a search mechanism based on loosely qualified pairs (name of identifier
type, identifier value), two different parties might spell or format either part of the information differently,
and with the end result being a diminished value for searching.

The goal, of course, is to define a simple mechanism that disambiguates the conceptual meanings behind
identifiers and exposes them in ways that are reliable and predictable enough to use, and yet are simple
enough structurally to be easy to understand and extend.

A.2 Identifier characteristics

When we look at various types of simple identifiers, some common desirable characteristics become
evident. In general terms, a system of identifiers that are used to facilitate searching need to be:

• Resolvable: Identifiers can be used in a way that allows the meaning of the identifier to be
determined. For instance, a popular business identifier mechanism is provided by Dun &
Bradstreet in the form of D-U-N-S

�

 numbers. When you know an organization’s D-U-N-S
�

number, you can use this to reliably distinguish one organization from another.

• Distinguishable: Identifiers can be used in a way that you can tell what kind of identifier is being
used, or you can specify what kind of identifier you are using to search for something. This means
you can tell that two identifiers are the same kind of identifier or are different types (e.g. two D-U-
N-S

�

 numbers, versus a tax identifier or an organizational membership number.)

• Extensible: The way that searchable identifiers are defined should be easy to extend so that
anyone can register another type of identifier without having to create costly or difficult
infrastructure. The search mechanisms that use identifiers should be able to accommodate
newly registered types without any changes to software, and anyone should be able to start using
the new types immediately.

 With this in mind, let’s look at the way that identifiers are used in the UDDI data structures.

12 D-U-N-S

� Numbers are provided by Dun & Bradstreet. See http://www.dnb.com.

13 The Global Location Number system is defined in the EAN UCC system (http://www.ean-int.org/locations.html).

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 24 OF 37

A.2.1 Using identifiers

Instead of defining a simple property where you could attach a keyword or a simple identifier field, UDDI
defines the notion of annotating or attaching identifiers to data. Two of the core data types specified by
UDDI provide a structure to support attaching identifiers to data. These are the businessEntity and the
tModel structures. By providing a placeholder for attaching identifiers to these two root data types, any
number of identifiers can be used for a variety of purposes.

Figure 2

In figure 2 we see that businessEntity and tModel structures both have a placeholder element named
identifierBag14. This structure is a general-purpose placeholder for any number of distinct identifiers. In
this example, we see five types of identifiers in use in a way that accommodates the kinds of searching
that might be required to locate businesses or tModels.

For instance, it is likely that someone who wants to find the types of technical Web services that are
exposed by a given business would search by a business identifier. Used in this way, identifiers can
represent business identifier types. In the example shown in figure 2, we see that the individual who
registered the businessEntity data specified a D-U-N-S

�

 number, a Global Location Number, and a US
Tax Code identifier15.

On the other hand, since a tModel is a fairly abstract concept, I might care more that a tModel represents
an identifier, and that it was registered by a particular businessEntity. In the example in figure 2, we have
shown some more abstract identifier types and can tell that the tModel that describes the way that
Fabrikam’s purchasing Web service has been marked with information that identifies the data as being
related to the businessEntity record with the theoretical businessKey value E45. A second identifier marks
the tModel as a specification.

Two identifier types have been identified and made a core part of the UDDI Operator registries, so far.
These are the Dun & Bradstreet D-U-N-S

�

 numbers and the Thomas Register supplier IDs16.

Identifier Name tModel name

D-U-N-S dnb-com:D-U-N-S

Thomas Register thomasregister-
com:supplierID

14 The term “bag” is from the object design naming convention that places collections of like things within an outer container. From
outside, it behaves like a bag – that is has a collection of things in it. To see what’s in it, you have to look inside.

15 In the diagram, the actual name/value properties were abbreviated for the sake of simplicity.

16 See http://www.thomasregister.com.

businessEntity: Fabrikam Inc.
businessKey: E45

identifierBag

tModel: HomeGrown Purchase Order
URL: http://fabrikam.com/spec.htm

identifierBag

D-U-N-S
�

GLN

US Tax Code

IsSpecification

businessKey E45

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 25 OF 37

A.2.2 Structure Specification

<element name="identifierBag" type="uddi:identifierBag" />
<complexType name="identifierBag">
 <sequence>
 <element ref="uddi:keyedReference" maxOccurs="unbounded" />
 </sequence>
</complexType>

From this structure definition we see that an identifier bag is an element that holds zero or more instances
of something called a keyedReference. When we look at that structure, we see:

<element name="keyedReference" type="uddi:keyedReference" />
<complexType name="keyedReference">
 <attribute name="tModelKey" type="uddi:tModelKey" use="optional" />
 <attribute name="keyName" type="string" use="optional" />
 <attribute name="keyValue" type="string" use="required" />
</complexType>

Upon examining this, we see a general-purpose structure for a name-value pair, with one curious
additional reference to a tModel structure. It is this extra attribute that makes the identifier scheme
extensible by allowing tModels to be used as conceptual namespace qualifiers.

Understanding this, it then should be easy to see how the example in figure 2 functions. Assuming that
the identifiers were fully defined, the five types shown would each reference one of five different tModels.
Using the information we’ve learned already from the discussion of the tModel structure in this document
and related texts, we should then be able to see how the tModel structure is useful as a general purpose
concept registry with specific UDDI emphasis on the concepts of software specifications, identification
schemes, and as we see in The publisherAssertion structure and the next appendix, as a way to define a
general taxonomy namespace key.

The net result is that you can register a tModel to represent an idea, and then use a reference to that
tModel as part of a general discovery mechanism that allows unknown facts to be discovered and
explained.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 26 OF 37

 Appendix B: Using categorization

Categorization and the ability to voluntarily assign category information to data in the UDDI distributed
registry was a key design goal. Without categorization and the ability to specify that information be
tangentially related to some well-known industry, product or geographic categorization code set, locating
data within the UDDI registry would prove to be too difficult.

At the same time, it is impractical to assume that the UDDI registry will be useful for general-purpose
business search. With a projected near-term population of several hundred thousand to million distinct
entities, it is unlikely that searching for businesses that satisfy a particular set of criteria will yield a
manageably sized result set. For example, suppose we searched for all businesses that have classified
themselves with a particular industry code – retail. Even if we searched within this specific industry
classification, the breadth of the category makes it likely that we’ll find tens of thousands of companies
that are retailers or in some way think of themselves as belonging to a retail category.

Secondary considerations include the accuracy with which categories are applied and the exact value
match nature of the UDDI categorization facility. When you register a specific category along with your
UDDI registration data, only people searching for that exact category will find your results. For example, in
the case where one business marks itself as “retail – pet-food”, and another simply uses “retail”, the
specialization and generalization across categories of any particular categorization scheme or taxonomy
is not known to the UDDI search facility.

More intelligent search facilities are required that have some a priori knowledge of the meanings of
specific categories and that provide the ability to cross-reference across related categories. Such is the
role of more traditional search engines. The design of UDDI allows simplified forms of searching and
allows the parties that publish data about themselves, and their advertised Web services to voluntarily
provide categorization data that can be used by richer search facilities that will be created above the
UDDI technical layer.

Figure 3

In figure 3 we see the tiered search concept illustrated. The role of search portals and marketplaces will
support the business level search facilities for such activities as finding partners with products in a certain
price range or availability, or finding high quality partners with good reputations. The data in UDDI is not
sufficient to accommodate this because of the cross category issues associated with high volumes and
voluntary classification.

Advanced Discovery via Portals & Marketplaces

UDDI Registries & Protocol

Marketplace

Search Portal

Marketplace

Marketplace

Search Portal Business
Users Technical

Users

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 27 OF 37

B.1 Structure Specification

<element name="categoryBag" type="uddi:categoryBag" />
<complexType name="categoryBag">
 <sequence>
 <element ref="uddi:keyedReference" maxOccurs="unbounded" />
 </sequence>
</complexType>

From this structure definition we see that categoryBag is an element that holds zero or more instances of
keyedReference elements. This was described in the section on identifiers (Appendix A: Using Identifiers)
and the basic structure is used in the same way.

Three categorization taxonomies have been identified and made a core part of the UDDI Operator
registries, so far. These are the North American Industry Classification System (NAICS)17, Universal
Standard Products and Services Classification (UNSPSC)18, and ISO 316619, the international standard
for geographical regions, including codes for countries and first-level administrative subdivisions of
countries. A fourth category is also defined – named “Other Taxonomy” – for general-purpose keyword
type classification20.

The tModel names for these taxonomies are

Taxonomy Name tModel name

NAICS ntis-gov:naics:1997

UNSPSC 3.1 unspsc-org:unspsc:3-1 (deprecated)

UNSPSC unspsc-org:unspsc

ISO 3166 uddi-org:iso-ch:3166:1999

Other Taxonomy uddi-org:general_keywords

17 See http://www.census.gov/epcd/www/naics.html.

18 See http://www.unspsc.org.

19 See http://www.din.de/gremien/nas/nabd/iso3166ma.

20 Operator Sites are allowed to promote invalid category entries, or entries that are otherwise rejected by the category classification
services, to this miscellaneous taxonomy.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 28 OF 37

 Appendix C: Response message reference

All of the messages defined in the UDDI Version 2.0 API Specification return response messages upon
successful completion. These structures are defined here for reference purposes. All of the structures
shown will appear within SOAP 1.1 compliant envelope structures according to the specifications
described in the appendices for the UDDI Version 2.0 API Specification. Only the SOAP <body> element
contents are shown in the examples in this section.

C.1 assertionStatusReport

This message returns zero or more assertionStatusItem structures in response to a
get_assertionStatusReport inquiry message.

C.1.1 Sample

<asser t i onSt at usRepor t gener i c=” 2. 0” oper at or =” uddi.someoperator” xml ns=” ur n: uddi -
or g: api _v2” >
 <asser t i onSt at usI t em compl et i onSt at us=” st at us: t oKey_i ncompl et e” >
 <f r omKey>F5E65…</ f r omKey>
 <t oKey>A237B…</ t oKey>
 <keyedRef er ence t Model Key=“ uui d: F5E65…” keyName=” Subsi di ar y” keyVal ue=” 1”
 </ keyedRef er ence>
 <keysOwned>
 <f r omKey>F5E65</ f r omKey>
 </ keysOwned>
 </ asser t i onSt at usI t em>
 [<asser t i onSt at usI t em/ >…]
</ asser t i onSt at usRepor t >

This message reports all complete and incomplete assertions and serves an administrative use including
the determination if there are any outstanding, incomplete assertions about relationships involving
businesses the publisher account is associated with.

Since the publisher who was authenticated by the get_assertionStatusReport message can manage
several businesses, the assertionStatusReport message shows the assertions made for all businesses
managed by the publisher.

While the elements fromKey, toKey and keyedReference together identify the assertion whose status is
being reported on, the keysOwned element designates those businessKeys the publisher manages.

An assertion is complete only if the completionStatus attribute says so, that is, having a value
“status:complete”. If completionStatus has a value “status:toKey_incomplete” or
“status:fromKey_incomplete”, the party who controls the businessEntity referenced by the toKey or the
fromKey has not made a matching assertion, yet. In the example we can see that the party who controls
the businessEntity with the businessKey A237B… has not made a matching assertion to the one found in
the assertionStatusItem, made by the party who controls the businessEntity with the businessKey
F5E65… .

C.2 authToken

This message returns the authentication information that should be used in subsequent calls to the
publishers API messages.

C.2.1 Sample

<aut hToken gener i c=“ 2. 0” oper at or =” uddi.someoperator” xml ns=” ur n: uddi - or g: api _v2” >
 <aut hI nf o>some opaque token value</ aut hI nf o>
</ aut hToken>

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 29 OF 37

The authToken message contains a single authInfo element that contains an access token that is to be
passed back in all Publisher’s API messages that change data. This message is always returned using
SSL encryption as a synchronous response to the get_authToken message.

C.3 bindingDetail

This message returns specific bindingTemplate information in response to a get_bindingDetail or
find_binding inquiry message.

C.3.1 Sample

<bindingDetail generic=“2.0” operator=”uddi.someoperator” truncated=”true”
 xmlns=”urn:uddi-org:api_v2”>
 <bindingTemplate bindingKey=”F5E65…” serviceKey=”E4D6…” >
 …
 </bindingTemplate>
 [<bindingTemplate/>…]
</bindingDetail>

In this message, one or more bindingTemplate structures are returned according to the data requested in
the request message. The serviceKey attributes are always returned when bindingTemplate data is
packaged in this way. The truncated flag shown in the example indicates that not all of the requested data
was returned due to an unspecified processing limit. Ordinarily, the truncated flag is not included unless
the result set has been truncated.

C.4 businessDetail

This message returns one or more complete businessEntity structures in response to a
get_businessDetail inquiry message.

C.4.1 Sample

<businessDetail generic=“2.0” operator=”uddi.sourceOperator” truncated=”true”
 xmlns=”urn:uddi-org:api_v2”>
 <businessEntity businessKey=”F5E65…” authorizedName=”J. Doe”
 operator=”uddi.publishingOperator” >
 …
 </businessEntity>
 [<businessEntity/>…]
</businessDetail>

In this message, we see that the businessEntity contains the proper output information (e.g.
authorizedName, and operator). The two operator attributes shown in the businessDetail element and the
businessEntity element reflect the distinguished name of the Operator Site providing the response
message and the distinguished name of the operator where the data is controlled, respectively.
Additionally, notice the name of the person who registered the data shown in the authorizedName
attribute.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 30 OF 37

C.5 businessDetailExt

This message returns one or more complete businessEntityExt structures in response to a
get_businessDetailExt inquiry message. This is the same data returned by the businessDetail messages,
but is provided for consistency with third party extensions to businessEntity information.

C.5.1 Sample

<businessDetailExt generic=“2.0” operator=”uddi.sourceOperator” truncated=”true”
 xmlns=”urn:uddi-org:api_v2”>
 <businessEntityExt>
 <businessEntity businessKey=”F5E65…” authorizedName=”J. Doe”
 operator=”uddi.publishingOperator” >
 …
 </businessEntity>
 <businessEntityExt>
 [<businessEntityExt/>…]
</businessDetail>

The message API design allows third party registries (e.g. non-operator sites) to implement the UDDI
Version 2.0 API Specifications while at the same time extending the details collected in a way that will not
break tools that are written to UDDI specifications. Operator Sites are required to support the Ext form of
the businessDetail message for compatibility with tools, but are not allowed to manage extended data.

C.6 businessList

This message returns zero or more businessInfo structures in response to a find_business inquiry
message. BusinessInfo structures are abbreviated versions of businessEntity data suitable for populating
lists of search results in anticipation of further “drill-down” detail inquiries.

C.6.1 Sample

<businessList generic=“2.0” operator=”uddi.sourceOperator” truncated=”true”
 xmlns=”urn:uddi-org:api_v2”>
 <businessInfos>
 <businessInfo businessKey=”F5E65…” >
 <name>My Company</name>
 <serviceInfos>
 <serviceInfo serviceKey=”3D45…”>
 <name>Purchase Orders</name>
 </serviceInfo>
 </serviceInfos>
 </businessInfo>
 [<businessInfo/>…]
 </businessInfos>
</businessList>

This message returns overview data in the form of zero or more businessInfo structures. Each
businessInfo structure contains company name and optional description data, along with a collection
element named serviceInfos that in turn can contain one or more serviceInfo structures21. Notice that the
businessKey attribute is not expressed in the serviceInfo structure due to the fact that this information is
available from the containing businessInfo structure.

Please note that since a serviceInfo structure can represent a projection to a deleted businessService, the
name element within the serviceInfo structure is optional (see section 4.4.13.3 of the V2 API Specification
on deleting projected services).

21 Refer to the UDDI XML schema for structure details.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 31 OF 37

C.7 publisherAssertions

This message returns zero or more publisherAssertion structures in response to a
set_publisherAssertions or a get_publisherAssertions publishing message.

C.7.1 Sample

<publisherAssertions generic=”2.0” operator=”uddi.someoperator” authorizedName=”J. Doe”
 xmlns=”urn:uddi-org:api_v2”>
 <publisherAssertion>
 <fromKey>F5E65…</fromKey>
 <toKey>A237B…</toKey>
 <keyedReference tModelKey=“uuid:34D5…” keyName=”Holding Company”
 keyValue=”parent-child”
 </keyedReference>
 </publisherAssertion>
 [<publisherAssertion/>…]
</publisherAssertions>

This message returns all assertions made by the publisher who was authenticated in the preceding
set_publisherAssertions or the get_publisherAssertions message.

C.8 registeredInfo

This message returns overview information that is suitable for identifying all businessEntity and tModel
data published by the requester. Provided as part of the Publisher’s API message set, this information is
only provided when requested via a get_registeredInfo message over an SSL connection.

C.8.1 Sample

<registeredInfo generic=“2.0” operator=”uddi.sourceOperator” [truncated=”false”]
 xmlns=”urn:uddi-org:api_v2”>
 <businessInfos>
 <businessInfo businessKey=”F5E65…” >
 <name>My Company</name>
 <serviceInfos>
 <serviceInfo serviceKey=”3D45…”>
 <name>Purchase Orders</name>
 </serviceInfo>
 </serviceInfos>
 </businessInfo>
 [<businessInfo/>…]
 <businessInfos>
 <tModelInfos>
 <tModelInfo tModelKey=“uuid:34D5…”>
 <name>Proprietary XML purchase order</name>
 </tModelInfo>
 [<tModelInfo/>…]
 </tModelInfos>
</registeredInfo>

This message contains overview data about business and tModel information published by a given
publisher. This information is sufficient for driving tools that display lists of registered information and then
provide drill-down features. This is the recommended structure for use after a network problem results in
an unknown status of saved information.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 32 OF 37

C.9 relatedBusinessesList

This message returns zero or more relatedBusinessInfo structures in response to a
find_relatedBusinesses inquiry message.

C.9.1 Sample

<r el at edBusi nessesLi st gener i c=” 2. 0” oper at or =” uddi.someoperator” [t r uncat ed=” f al se”]
 xml ns=” ur n: uddi - or g: api _v2” >
 <busi nessKey>F5E65…</ busi nessKey>
 <r el at edBusi nessI nf os>
 <r el at edBusi nessI nf o>
 <busi nessKey>A237B…</ busi nessKey>
 <name>Mat t ’ s Gar age</ name>
 <descr i pt i on>Car ser v i ces i n …</ descr i pt i on>
 <shar edRel at i onshi ps di r ect i on=” t oKey” >
 <keyedRef er ence t Model Key=“ uui d: 807A2…”
 keyName=” Subsi di ar y”
 keyVal ue=” par ent - chi l d” >
 [<keyedRef er ence/ >…]
 </ shar edRel at i onshi ps>
 </ r el at edBusi nessI nf o>
 [<r el at edBusi nessI nf o/ >…]
 </ r el at edBusi nessI nf os>

</ r el at edBusi nessesLi st >

For the businessEntity specified in the find_relatedBusinesses, this structure reports complete business
relationships with other businessEntity registrations. Business relationships are complete between two
businessEntity registrations when the publishers controlling each of the businessEntity structures involved
in the relationship set assertions affirming that relationship.

Each relatedBusinessInfo structure contains information about a businessEntity that relates to the
specified businessEntity by at least one relationship. This information about the related businessEntity
comprises its businessKey, name and optional description data, along with a collection element named
sharedRelationships that in turn can contain zero or more keyedReference elements. These
keyedReference elements, together with the businessKey elements for specified and the related
businessEntity represent the complete relationships, that is, matching publisher assertions made by the
publishers for each businessEntity. Since the related businessEntity can occupy either side of a
relationship, the sharedRelationships element is adorned with a direction attribute. In the example above,
Matt’s Garage is the toKey, that is, the child of the parent-child relationship to the business with the key
“F5E65…”.

C.10 serviceDetail

This message returns one or more complete businessService structures in response to a
get_serviceDetail inquiry message.

C.10.1 Sample

<ser v i ceDet ai l gener i c=“ 2. 0” oper at or =” uddi.sourceOperator” [t r uncat ed=” f al se”]
 xml ns=” ur n: uddi - or g: api _v2” >
 <busi nessSer v i ce busi nessKey=” F5E65…” ser v i ceKey=” 3D21…” >
 …
 </ busi nessSer v i ce>
 [<busi nessSer v i ce/ >…]
</ ser v i ceDet ai l >

One can use serviceDetail messages to get complete descriptive and technical details about registered
services by providing one or more serviceKey values in the get_serviceDetail message. Notice that the
businessKey value is expressed in this message because the container does not provide a link to the
parent businessEntity structure.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 33 OF 37

C.11 serviceList

This message returns zero or more serviceInfo structures in response to a find_service inquiry message.

C.11.1 Sample

<serviceList generic=“2.0” operator=”uddi.sourceOperator” [truncated=”false”]
 xmlns=”urn:uddi-org:api_v2”>
 <serviceInfos>
 <serviceInfo serviceKey=”3D45…” businessKey=”2E4C…”>
 <name>Purchase Orders</name>
 </serviceInfo>
 </serviceInfos>
</serviceList>

ServiceInfo structures are abbreviated versions of businessService data, suitable for populating a list of
services associated with a business and that match a pattern as specified in the inputs to the find_service
message. Notice that the businessKey attribute is expressed in the serviceInfo elements found in this
message. This is because this information is not available from a containing element.

Since a serviceInfo structure can represent a projection to a deleted businessService, the name element
within the serviceInfo structure is optional (see section 4.4.13.3 of the V2 API Specification on deleting
projected services).

C.12 tModelDetail

This message returns one or more complete tModel structures in response to a get_tModelDetail inquiry
message.

C.12.1 Sample

<tModelDetail generic=“2.0” operator=”uddi.sourceOperator” [truncated=”false”]
 xmlns=”urn:uddi-org:api_v2”>
 <tModel tModelKey=“uuid:F5E65…” authorizedName=”J. Doe”
operator=”uddi.publishingOperator” >
 …
 </tModel>
 [<tModel/>…]
</tModelDetail>

Because tModel structures are top-level data (that is, stand alone with no parent containers) the
authorizedName value is expressed. This is the name of the person whose account was used to register
the data. The two operator attributes each express the distinguished name of the Operator Site that is
providing the data and the operator where the data is managed.

C.13 tModelList

This message returns zero or more tModelInfo structures in response to a find_tModel inquiry message.

C.13.1 Sample

<tModelList generic=“2.0” operator=”uddi.sourceOperator” [truncated=”false”
 xmlns=”urn:uddi-org:api_v2”>
 <tModelInfos>
 <tModelInfo tModelKey=“uuid:34D5…”>
 <name>Proprietary XML purchase order</name>
 </tModelInfo>
 [<tModelInfo/>…]
 </tModelInfos>
</tModelList>

The tModelInfo structures are abbreviated versions of tModel data, suitable for finding candidate tModels,
populating lists of results and then providing drill-down features that rely on the get_xxDetail messages.

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 34 OF 37

 Appendix D: Data Field Lengths

The following table summarizes all known stored element and attribute names based on the names of the
fields defined in the XML schema. These are the storage length limits for information that is saved in the
UDDI registry, given in Unicode characters. The Operator Sites will truncate data that exceeds these
lengths. Fields that are generated by the Operator site (ignored on input) are not listed. Keys are listed
even though they are generated. Since keys are referenced by other structures, they are shown here.

Field Name Length
accessPoint 255
addressLine 80
authInfo 4096
authorizedName 255
bindingKey 41
businessKey 41
description 255
discoveryURL 255
email 255
fromKey 41
hostingRedirector 41
instanceParms 255
keyName 255
keyType 16
keyValue 255
name 255
overviewURL 255
personName 255
phone 50
serviceKey 41
sortCode 10
tModelKey 255
toKey 41
uploadRegister 255
URLType 16
useType 255

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 35 OF 37

 Appendix E: Structured Address Example

The address structure, contained in the businessEntity structure, contains a simple list of addressLine
elements. While this is useful for publishing addresses in a UDDI registry or simply printing them on
paper, the address’ structure and meaning remains hidden for a given businessEntity. For this reason,
address structures can be adorned virtually with keyedReference elements. In fact a tModelKey attribute
can be provided for an address structure and keyName keyValue attribute pairs can be provided for each
addressLine element. This example is provided to demonstrate how the application of tModelKey,
keyName and keyValue attributes to address structures can be used to give structure and meaning to a
given address.

Let us assume that a community of several country-specific postal agencies, called “IBCPA”, not existing
in reality, agreed on a core set of address components for exchanging data electronically. This set
currently comprises the components Street, Street number, Postal code, City, District, Region and
Country.

In order to make these address components available for their use in UDDI address structures, IBCPA
assigns a unique value (10, 20, ..., 70) to each address component and publishes a tModel with a
save_tModel message call that contains a tModel structure in the following form.

<tModel>
 <name>IBCPA.org:address:1.0</name>
 <description xml:lang=”en”>Codes for Address Components defined by the International
 Board of Postal Agencies</description>
 <overviewDoc>http://www.ibcpa.org/address/codes.html</overviewDoc>
 …
</tModel>

IBCPA gets back the tModelKey A548…. As a result, the IBCPA set of address components can now be
used by every publisher to structure their addresses in businessEntity structures. The following example
shows an address structure using the IBCPA tModel in a save_business message call.

<address useType=”Sales office” tModelKey=“uuid:A548…”>
 <addressLine keyName=”Street” keyValue=”10”>Alexanderplatz</addressLine>
 <addressLine keyName=”Street number” keyValue=”20”>12</addressLine>
 …
 <addressLine keyName=”Country” keyValue=”70”>Deutschland</addressLine>
</address>

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 36 OF 37

 Appendix F: Notices

Copyright © 2001-2002 by Accenture, Ariba, Inc., Commerce One, Inc., Fujitsu Limited, Hewlett-Packard
Company, i2 Technologies, Inc., Intel Corporation, International Business Machines Corporation,
Microsoft Corporation, Oracle Corporation, SAP AG, Sun Microsystems, Inc., and VeriSign, Inc. All
Rights Reserved.

These UDDI Specifications (the "Documents") are provided by the companies named above ("Licensors")
under the following license. By using and/or copying this Document, or the Document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to copy, prepare derivative works based on, and distribute the contents of this Document, or
the Document from which this statement is linked, and derivative works thereof, in any medium for any
purpose and without fee or royalty under copyrights is hereby granted, provided that you include the
following on ALL copies of the document, or portions thereof, that you use:

1. A link to the original document posted on uddi.org.

2. An attribution statement : "Copyright © 2000 - 2002 by Accenture, Ariba, Inc., Commerce
One, Inc. Fujitsu Limited, Hewlett-Packard Company, i2 Technologies, Inc., Intel
Corporation, International Business Machines Corporation, Microsoft Corporation, Oracle
Corporation, SAP AG, Sun Microsystems, Inc., and VeriSign, Inc. All Rights Reserved."

If the Licensors own any patents or patent applications that may be required for implementing and using
the specifications contained in the Document in products that comply with the specifications, upon written
request, a non-exclusive license under such patents shall be granted on reasonable and non-
discriminatory terms.

EXCEPT TO THE EXTENT PROHIBITED BY LOCAL LAW, THIS DOCUMENT (OR THE DOCUMENT
TO WHICH THIS STATEMENT IS LINKED) IS PROVIDED "AS IS," AND LICENSORS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY
OF THE INFORMATIONAL CONTENT, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF
THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF
SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY OR (WITH THE EXCEPTION OF THE
RELEVANT PATENT LICENSE RIGHTS ACTUALLY GRANTED UNDER THE PRIOR PARAGRAPH)
LICENSOR PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. Some jurisdictions do not
allow exclusions of implied warranties or conditions, so the above exclusion may not apply to you to the
extent prohibited by local laws. You may have other rights that vary from country to country, state to state,
or province to province.

EXCEPT TO THE EXTENT PROHIBITED BY LOCAL LAW, LICENSORS WILL NOT BE LIABLE FOR
ANY DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL DAMAGES, OR OTHER DAMAGES
(INCLUDING LOST PROFIT, LOST DATA, OR DOWNTIME COSTS), ARISING OUT OF ANY USE,
INABILITY TO USE, OR THE RESULTS OF USE OF THE DOCUMENT OR THE PERFORMANCE OR
IMPLEMENTATION OF THE CONTENTS THEREOF, WHETHER BASED IN WARRANTY, CONTRACT,
TORT, OR OTHER LEGAL THEORY, AND WHETHER OR NOT ANY LICENSOR WAS ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. Some jurisdictions do not allow the exclusion or limitation of
liability for incidental or consequential damages, so the above limitation may not apply to you to the extent
prohibited by local laws.

Copyright © OASIS Open 2002-2003. All Rights Reserved.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it represent
that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to

UDDI V2.03 DATA STRUCTURE SPECIFICATION UDDI SPEC TC COMMITTEE SPECIFICATION

DATASTRUCTURE_V2 PAGE 37 OF 37

rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made
available for publication and any assurances of licenses to be made available, or the result of an attempt
made to obtain a general license or permission for the use of such proprietary rights by implementors or
users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to implement this
specification. Please address the information to the OASIS Executive Director.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself
may not be modified in any way, such as by removing the copyright notice or references to OASIS, except
as needed for the purpose of developing OASIS specifications, in which case the procedures for
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

