

TREC-10 Experiments at CAS-ICT: Filtering, Web and QA

Bin Wang, Hongbo Xu, Zhifeng Yang, Yue Liu, Xueqi Cheng, Dongbo Bu, Shuo Bai
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

{wangbin,hbxu,zfyang,yliu,cxq,bdb,bai}@ict.ac.cn
http://www.ict.ac.cn/

Abstract

CAS-ICT took part in the TREC conference for the first time this year. We have
participated in three tracks of TREC-10. For adaptive filtering track, we paid more
attention to feature selection and profile adaptation. For web track, we tried to integrate
different ranking methods to improve system performance. For QA track, we focused on
question type identification, named entity tagging and answer matching. This paper
describes our methods in detail.
Keywords: TREC-10, Filtering, Web track, QA

1. Introduction

CAS-ICT took part in the TREC conference for the first time this year. Among the total six
tracks of TREC-10, we choose three of them: Filtering, Web and QA.

For filtering track, we undertook the adaptive filtering subtask. Our model is still based on
vector representation and computation. A topic-term relevance function is defined to guide feature
selection. For profile adaptation, we use a Rocchio-like algorithm. Four runs have been submitted
for evaluation: three of them are optimized for T10U measure, another one for T10F measure. We
use very simple optimization methods in our experiments and we do not use any other resource
except the new Reuters Corpus.

For web track, we undertook the ad-hoc subtask. Our system is based on a general-purpose
search engine developed by us alone. We try to improve system performance by integrating
different ranking methods. Query expansion technology is used to modify the initial query. The
PageRank algorithm is investigated in our experiments. Four runs have been submitted and two of
them use hyperlink information.

For QA track, we undertook the main subtask. We first use SMART search engine to retrieve
a set of documents from the TREC data sets. At the same time, a question analyzer is used to
analyze the given 500 questions of TREC-10 and generates the question types and keyword lists.
Then we use GATE to analyze the top 50 retrieved documents and extract the named entities from
them. Finally, an answer extractor extracts the relevant answers from the named entities. Three QA
runs have been submitted for evaluation.

2. Filtering

In the filtering task, we undertook the adaptive filtering subtask, which we think, is more
interesting and realistic than the other two subtasks.
2.1 Problem Description

This year the filtering task has 84 topics, which are exactly the categories in Reuters Corpus.

The total documents for this task (new Reuters Corpus) are divided into two parts: 23,307
documents for training (training set) and the remaining about 783,484 documents for testing
(testing set). All the documents are Reuters everyday news, dating from August 1996 to August
1997. Two measures are given for adaptive filtering: T10U and T10F, the former is a linear utility
measure and the latter is a kind of F-measure. In the adaptive task, only two positive samples in
training set are given for each topic, the goal is to retrieve relevant documents one by one from the
coming testing documents stream and get maximum T10U or T10F value at the same time.
2.2 System Description

Our adaptive filtering system consists of two components: the initializing component and the
adaptation component. The former is used to get the initial data through training and the latter is to
adapt these data when retrieving testing documents.
2.3 Training

In training procedure, we first process the training set for basic term statistics, this includes
term tokenization, stemming and frequency counting. Then we can select terms from the positive
and some pseudo-negative samples. After topic processing, we can get the initial profile vector by
summing up the topic and feature vectors with different weight. Finally, we can compute the
similarity between the initial profile vector and the positive documents to set the initial threshold.
2.3.1 Training set processing

In this step, all the training documents are processed. First we tokenize each document into
single words, then eliminate the stop words and some other words with low frequency in the
training set, and then we stem each word using the Porter Stemmer(http://www.cs.jhu.edu
/~weiss/). Finally, we count each word’s frequency(TF) within each document and the word’s
document frequency(DF) across the training set. When processing the training texts, we only use
the <title> and <text> fields. Thus each document can be represented with its term frequency
vector. Meanwhile, we can get the IDF statistics of the training documents. Since we can’t use the
IDF statistics of testing set, we use in the following steps the IDF statistics of the training
document in term weighting. Ideally, we can update the IDF statistics when retrieving documents
from the testing documents stream. But [16] has indicated that doing so does not seem to improve
the overall filtering performance. So we use the same IDF statistics of the training documents all
over our experiments.
2.3.2 Topic set processing

This year, each topic consists of three short parts: the <num> field, the <Reuters-code> field
and the <title> filed. The <title> field includes only one or two words. We can’t get more
information from such kind of topics than from the topics of TREC-8 or TREC-9, which are
described with more words. Of the three parts, we regard the <title> field as the most important.
Though the <Reuters-code> fields may provide some information about relationships between
different topics, we do not use them at all. Processing the topics is very simple, we only extract
and stem the <title> field words to construct the vector for each topic.
2.3.3 Term selection

To reduce the computation complexity, we apply a method for feature selection. Here the
features are all terms, each term is a word.

For each topic, we have two positive samples. So for all 84 topics, we have 168 positive
samples. Thus, of the 168 samples, each topic has two positive samples, and we can suppose the
other 166 samples are negative to the topic. Because one document may be relevant to more topics,

our supposition is not very correct. But we try it for lack of information.
We define a word-topic correlation function as:

))|(
)|(log(),(

ji

ji
ji TwP

TwPTwCor ¬= (2.1)

Where P(wi|Tj) means the probability that word wi exists in the relevant documents of topic Tj.

On the contrary,)|(ji TwP ¬ means the probability that word wj exists in non-relevant

documents of topic Tj. For each topic, we compute the Cor value of each word in the positive two
samples and choose the words with high Cor values as the features. Here we use maximum
likelihood estimation. We compute the frequency that a word exists in the two positive documents
as the estimation of P(wi|Tj), and the frequency that a word exists in the other “negative”

documents as the estimation of)|(ji TwP ¬ . If the estimation of)|(ji TwP ¬ is equal to zero,

we give the Cor a big value.
After getting the feature words for each topic, we combine them to construct one feature

space; the topic vector and the feature vector must be mapped into this space.
2.3.4 Profile initialization

For each topic, the profile vector(denoted as P
v

) is the weighted sum of the topic
vector(denoted as T

v
) and the feature vector(denoted as F

v
), which is the sum of the two

positive documents vectors. The formula is:

TFP
vvv

** βα += (2.2)

In our experiments, we set α=1,β=2 to give prominence to the topic words. So far, each
component of the vectors is represented with TF values. Then we change it by multiplying with its
IDF coefficient.
2.3.5 Similarity computation

To compute the similarity between a topic profile(iP
v

) and a document(jD
v

), we use the

vector cosine similarity formula:

||||
),cos(),(

ji

ji
jiji

DP
DPDPDPsim vv

vv
vvvv

×
== •

 (2.3)

Each component of the vectors is represented with TFIDF value. Here we use

)1log(*
i

i
DF
NTF + formula. We also try other formulae in our experiment, but the results are

almost the same.
2.3.6 Initial threshold setting

We do not have good idea to set the initial threshold. According to our understanding, we
believe we can’t use the training documents to train the initial threshold because they are prepared
for batch filtering task, not for adaptive task, we cannot use the relevance information of the other
documents in training set except the two positive ones. Thus we have to use a very simple method,
for each topic, we choose a small fixed value as the initial threshold which is smaller than the
similarity between the initial profile vector and the two positive samples.

2.4 Adaptation
For each topic, after initializing the profile and the threshold, we can scan documents one by

one from the testing set. If the similarity between the profile and the document is higher than the
threshold, the document is retrieved and meanwhile the system can tell you the document is really
relevant or not. With this information, some kind of adaptation may need to take to improve
system performance. The adaptation may include threshold updating or profile updating.
2.4.1 Threshold adaptation

In TREC-10, two measures are defined to measure the performance of an adaptive filtering
system. One is T10U, which is a linear utility; another is T10F, which is a kind of F-value. The
goal of the adaptive filtering system is to get maximum T10U or T10F.

For T10U, we have two goals: one is to avoid negative T10U as far as we can, another is to
improve the precision while the recall can’t be greatly reduced. We only apply method for the
former goal in our experiments.

For T10F, we also have two goals: one is to avoid retrieving zero documents, another is also
to improve the precision while the recall can’t be greatly reduced. We only apply method for the
former goal, too.
2.4.2 Profile adaptation

After retrieving more and more relevant or non-relevant documents, we can get more useful
information and understand the user’s interest better. Thus we can adapt each profile vector, which
represents each user’s interest. Our profile adaptation includes positive adaptation and negative
adaptation. For positive adaptation, we add the document vector of the positive documents to the
old profile vector. For negative adaptation, we subtract the document vector of the negative
documents from the old profile vector. When retrieving the n+1 th document Dn+1, we can adapt
the nth profile to the n+1 th profile according the following formula:





−
+

=
+

++
+

otherwise *
relevant is if *

 1

1 1
1

nn

nnn
n

DP
DDP

P vv

vv
v

β
α

 (2.4)

Thus after retrieving n+1 documents, all the retrieving relevant documents make the positive
set denoted as {D+}, the other documents set is {D-}. Then the new profile vector become

φ

βα

=∩=∪

−+=

+
+

+

∈∈
+ ∑∑

−+

}{}{},,...,,{}{}{ here

**

_
121

_

}{}{
01

DDDDDDD

DDPP

n

DD
j

DD
in

ii

vvvv

 (2.5)

Formula (2.5) is some kind of the Rocchio[19] algorithm except one point: we do not compute
the centroid vector of the positive set or negative set and regard it as one vector. In other words,
we pay more attention to the retrieving documents than the initial profile vector. Furthermore, we
investigate the values of α and β. We found without negative feedback, the result is worse. In our
experiments, we set α=1, β=1.1 or 1.3.

2.5 Evaluation Results and Analysis

We have submitted four adaptive filtering runs: one for T10F optimization, three for T10U
optimization. Because we do not use complex optimization method, the results of the 4 runs are
similar to each other. The evaluation results are shown in Table 2.1.

Table 2.1 shows that in each run, the results of about 2/3 of all topics are better than the

medians, and most of the remaining results are worse. Unfortunately, about 1/3 of the worse
results are worst results and most of the worst results are zero. Thus the overall performance of
our runs is not high.

T10SU vs. median(topic nums) T10F vs. median(topic nums)

Run ID MeanT10SU
>(Best) = <(Worst/Zero)

MeanT10F
>(Best) = <(Worst/Zero)

ICTAdaFT10Ua 0.204 55(8) 1 28(11/11) 0.368 59(3) 2 23(8/7)

ICTAdaFT10Ub 0.205 51(0) 3 30(12/12) 0.366 55(0) 4 25(7/6)

ICTAdaFT10Uc 0.207 52(3) 2 30(11/11) 0.354 51(1) 4 29(12/9)

ICTAdaFT10Fa 0.206 55(4) 1 28(14/14) 0.387 62(1) 1 21(6/5)

Table 2.1 ICT adaptive filtering runs in TREC-10

We focused on the worst zero results and the best results. We found, on one hand, most of the
zero results belong to “small” topics, which have small amount of relevant documents in the
whole testing set and we called them “hard” topics. On the other hand, most of the best results
belong to “big” topics. That is to say, our method is somehow fitful for “big” topics but not very
fitful for “small” topics. This may result from two reasons: First, our feature selection method
cannot find the best features of these “hard” topics from only two positive samples. Second, our
optimization method is too simple to satisfy different cases.

In the future work, we will pay more attention to three aspects. For feature selection, we will
try more effective methods. For optimization, we will try more complex methods. For profile
adaptation, we may add feature reselection module.

3. Web Track
3.1 System Description

This year, the goal of the main web track is to retrieve the most relevant documents for each
topic in the topic set (501~550) from the WT10G collection. Our system is based on a
general-purpose search engine which we have been developing and improving since 1998. The
system consists of four basic components: indexer, query generator, search agent, and search
server. The indexer scans all documents of the WT10G and generates full text indexes and term
statistics. The query generator analyzes the TREC topics and generates real queries. The search
agent submits real queries to search server and shows the return results in visible format. The
search server receives queries, searches documents and returns results to the search agent

3.2 Searching Process
3.2.1 Query construction

Query generator reads TREC topics, extracts valuable terms and submits them to the search
system. Therefore, the initial query for each topic is a set of some useful terms of the topic.

At this stage all stop words are removed. In addition to the basic stop words, we have also
removed some other stop words that carry little information in the topics, such as find. While
processing each topic, we only use the <title> field.
3.2.2 Initial retrieval

For each initial query, the search system retrieves some documents and ranks them using
formula (3.1)[7]. Some top ranked documents are returned as the initial search results.

∑∑

∑

+∗+

+∗+
= ∩∈

)1(log)log1(

)1log()log1(

22
,

,

,

t
dt

dqt t
dt

dq

f
Nf

f
Nf

S (3.1)

Where Sq,d is the similarity of document d and query q, ft is the number of documents in
which term t occurs in WT10G, ft,d is the frequency term t occurs in document d (within-document
frequency), and N is the total number of documents in WT10G.
3.2.3 Query expansion

After first retrieval we can get many ranked documents. Then we can regard some top ranked
documents as relevant. All the terms in these documents are weighted according to formula
(3.2)[1][8].

)
5.0

5.0log
6

log
6

6

5.0
5.0log

5
)'

4log(
5

5(**

+−
+

+
−

−+
−

+−
+

+
+

−
+

−+
==

sS
s

Sk
S

nN
n

Sk

k

rR
r

Rk
R

nN
n

nN
Nk

Rk

k
rtWrTSV

 (3.2)

Where TSV means Term Selection Value that is used to rank terms. N is the number of
documents in WT10G, n is the number of documents in which term t occurs, R is the number of
relevant documents, r is the number of relevant documents which contain term t, S is the number
of non-relevant documents in WT10G, s is the number of non-relevant documents which contain
term t in WT10G. k4

’ ,k5, k6 are parameters.
Some top terms with their TSVs are selected for the new query vector construction.

3.2.4 Second retrieval
In this stage, the new query is submitted to the search system and new results are retrieved

which are ranked by formula (3.3).

∑
∈ +

+

++−

+
=

qt tq

tq

td
d

d

tdtd
tdq fk

fk

f
Lavr

Lbbk

bfk
ww

,3

,3

,1

,,1
,

*)1(
*

]
_

)1[(

**)1(
 (3.3)

Where Ld is the length of document d, avr_Ld is the average document length, bd,t is
within-document importance of term t in document d, which includes multiple factors such as the
frequency t occurs in document title, bolded text, and hyperlink text. k1,k2, k3 are parameters.

3.3 Applying Link Analysis Technology in Web track
 We also investigate link analysis technology that is used to rank web pages using link
information. In our experiments, we mainly use an improved PageRank algorithm.
3.3.1 Basic PageRank algorithm
 Brin & Page[5] suggested a link based search model called PageRank that first evaluated the
importance of each web page based on its citation pattern. The PageRank algorithm re-ranks the
retrieved pages of a traditional search scheme according to their PageRank values.
 In this approach, a web page will have a higher score if more web pages link to it and this
value will increase if those web pages’ scores increase. The PageRank value of a given web page t,
denoted as Pr(t),can be iteratively computed according to formula (3.4)[5].

∑
=

+−=
m

i i

i

tc
tddt

1)(
)Pr(*)1()Pr((3.4)

Where t1, t2, …, tm are the web pages which link to page t, d is a parameter (set to 0.85 as
suggested by [5]) and c(ti) is the number of outgoing links for page ti.. For simplification, all the
pages which link to page t are called the pre-set of t, denoted as pre-set(t),and all the pages which
page t links to are called the post-set of t, denoted as post-set(t).
3.3.2 Implementation of the PageRank algorithm
 From formula (3.4) we can see that computing PageRank is very simple in itself. But because
the numbers of web pages is usually very large (in WT10G the number is 1,692,097) and the
number of hyperlinks is even larger, the iteration process may be time-consuming. In order to
solve this problem, we do some useful pretreatment.

First, we try to get rid of all the noisy hyperlinks that have little information before iteration.
Meanwhile, we mark the web pages that have empty pre-set and do not participate in the iteration.

Second, we pretreat the post-sets of all the web pages. From formula (3.4) we can see that, for
web page t and one page in its pre-set, tj, if c(tj) is sufficiently large, the value of Pr(tj)/ c(tj) will be
very small, intuitively speaking, that means the influence of webpage tj to webpage t is very small
in the web graph. Thus for web pages like tj, we don’t let them only simply take part in the
iteration. A threshold is set in advance, if one page’s post-set has bigger size than the threshold, we
assign a fixed value as the PageRank for this page. In this way we can greatly reduce the iteration
cycle in our experiments.
3.3.3 Convergence properties

According to the probabilistic meanings of formula (3.4), after each time of iteration, the sum
of all pages’ PageRank should be equal to 1 after standardization. To avoid that the PageRank
values are too small and incomparable, we introduce a new standardization method.
 In addition, we use formula (3.5) to determine whether we should stop or not after the i+1 th
iteration.

δ<−−− ++))Pr()(Pr())Pr()(Pr()1()()1()(ii

t

ii

t
ttMinttMax (3.5)

In order to determine whether the iteration should be stopped or not, we consider not only the
decreasing tendency of all the web pages, but also the low changeability between iterations. In our
experiments, after 25 times’ iteration we get a relatively steady convergence results.
3.3.4 Integrating ranking methods

We integrate the above ranking methods into formula (3.6) to get the integrated rank of one
page:

d

dc
dcdldcd

PR
kPR

WWWWW *log max
+=+= (3.6)

Where Wd is the final weight of a page (document), Wdc is the content-based document
weight computed by formula (3.3), Wdl is the link-based document weight. PRd is the PageRank
value of document d computed by formula (3.4), PRmax is the maximum PageRank value among
all the documents, k is a constant greater than 1.

3.4 Evaluation Results
We have submitted four runs to NIST. The results are listed in Table 3.1.

Technology(Run id)
Average Precision

(non-interpolated) over all
relevant docs

P@20 docs R-Precision

Baseline(ICTWeb10n) 0.0860 0.1450 0.1244
Query Expansion(ICTWeb10f) 0.0464 0.0620 0.0657
Link Analysis(ICTWeb10nl) 0.0860 0.1410 0.1147

Query Expansion &Link
Analysis(ICTWeb10nfl)

0.0464 0.0620 0.0657

Table 3.1 Web track results

Table 3.1 shows that our query expansion method leads to performance degradation. The
reason may be that we first use such a complex query expansion method in our system and some
of the parameters need to be revised in future tests.

From the above table, we have also found that the results integrated with link analysis have
little difference with the benchmark. We believe the reason is not algorithm itself but the small
size of the web pages set. In our experiments, we use WT10G which is a close set that doesn’t link
to outside, thus many informative hyperlink are not included. If the experimental data size is large
enough, the results should be very good. The PageRank method offers an approach that evaluates
the web pages objectively.

Our future work includes three aspects: First, we will try different probabilistic retrieval
models; second, we will try alternative feedback methods; third, we will try new connectivity
computation methods.

4. Questing Answering track
4.1 System Description

Our TREC-10 question answering system consists of four basic components: IR search
engine, question analyzer, named entity tagger and answer extractor. Figure 4.1 illustrates the
whole architecture.

Figure 4.1: Architecture of the ICT TREC-10 QA System

We first use an IR search engine to retrieve a set of documents from the TREC data sets. At

the same time, a question analyzer analyzes the given 500 questions of TREC-10 and generates

the question type and keyword-list for each question. Then we use a named entity tagger to
analyze the top 50 documents retrieved by the search engine and extract the named entities from
them. Finally, an answer extractor determines the relevant answers from the named entities using
the question type and keyword-list.

4.2 SMART Search Engine

As we know, SMART(ftp://ftp.cs.cornell.edu/pub/smart) is an implementation of the
vector-space model of information retrieval proposed by Salton dating back in the 60's. The
primary purpose of SMART is to provide a framework in which one conducts information
retrieval research. It is (as we heard) distributed for research purpose only. Since TREC-QA
allows us to use search engine freely, we choose SMART as our IR search engine because it is
easy to use. To meet the need of our QA system, we add some new components into SMART. We
also use the feedback function of SMART to generate a set of retrieved documents, based on
which we make a run ICTQA10c. But this run becomes the worst of all our three runs, which
proves we failed in applying the feedback. This indicates that we need to do further research on
feedback, such as using the LCA (Local Context Analysis) feedback technique[14].

4.3 Question Analyzer

Main answer and question types what we can extract are listed in table 4.1.
Answer type Question type Example
PERSON Who/Whom/What-person/Which-person Mr. Mulroney
LOCATION Where/What-location/Which-location Orange County
ORGANIZATION What-org/Which-org/Who Penn Central Corp.
MONEY How much $28.5 million
PERCENT How much/What percentage 4%
DATE When/What date Aug. 6, 1945
NUMBER How many Five
DURATION How long 20 years
DISTANCE How long/how far/How tall 10 miles
AREA How large/How big 100 square kms
MEASUREMENT How heavy/How fast 4 tons
CURRENCY What currency Dollar
NATIONALITY What nation/What language Icelandic

REASON Why/How -
NAME What/Which is,are NP small brain defect typical

victims
No Answer All NIL

Table 4.1 Answer and question types

We determine the question type based on two rule sets. First rule set is keyword-based, which
consists of some patterns as follows:

Who : PERSON
Where : LOCATION

What day : DATE
How many : NUMBER

Such patterns determine the question type only according to the interrogative of the question.
This kind of rules can be applied to the PERSON, LOCATION, DATE, NUMBER types and so on.
The second rule set is template-based. Some examples of this kind of rules are as follows:

What do,does,did @2 cost? : MONEY
What person @3? : PERSON
Which person @3? : PERSON
What is,was @1’s birthday? : DATE
What is,are,was,were @1's employer? : ORGANIZATION

Such rules are useful to determine those questions led by “What”, whose question types are
hard to determine only by keyword-based rules.

4.4 Named Entity Tagger

We use GATE(http://gate.ac.uk) as our Named Entity tagger. GATE is developed by
Sheffield NLP group. It can extract the named entities of PERSON, LOCATION, MONEY,
PERCENT, DATE, ORGANIZATION and so on. But it has some obvious shortcomings, for
example, it can’t extract the pure NUMBER and most MEASUREMENT entities. Furthermore,
many entities are incorrectly identified in GATE. Therefore, we revise the basic GATE system.
First, we add several new components to identify the NUMBER and MEASUREMENT entities.
Second, we modify GATE to improve the tagging correctness, mainly for the MONEY and
PERCENT entities. As to some abstract question types, such as REASON(why),
MEANING(what), METHOD(how) and so on, we apply some rules based on certain features to
tag a snippet from the candidate passage as the candidate answer.

Before identifying the named entities, we need to construct candidate passages using the top
50 documents retrieved by SMART search engine. The algorithm[10][11][15] is as follows:

Step 1:Parse the sentences of the documents.
Step 2:Retrieve the sentences that contain keywords in the question.
Step 3:Construct a candidate passage every two sentences. If one sentence is long enough, it

becomes a candidate passage itself.
Step 4:Assign each candidate passage a initial score equal to the score ranked by SMART

search engine, i.e. score(P)=IR(D), D is the document where the candidate passage P lies.
Step 5:Add the idf value of all matched keywords contained by a candidate passage to its

score.
Step 6:Calculate the number of matched keywords(count_m) in each candidate passage P.

Add 0 to score(P) if the number of matched keywords is less than the threshold. Otherwise, add
count_m to score(P). The threshold is defined as follows:

threshold=count_q if count_q<4;
threshold=count_q/2.0+1.0 if 4<=count_q<=8;
threshold=count_q/3.0+2.0 if count_q>8;
here count_q is the number of keywords in the question.

Step 7:Calculate the size of matching window, then add 40*count_m/size(matching_window)
to score(P). The size of matching window is defined as the number of keywords in the candidate
passage between the first matched keyword and the last one.

Step 8:Re-rank the candidate passages by their final scores and output the top 10 or 20
passages to the Named Entity tagger.

4.5 Answer Extractor

The answer extractor compares the question type with each named entity in candidate
passages. If a candidate passage contains a named entity matching the question type, we add 100
to the score of the passage. When there is more than one matched named entity, we only count
once.

After the process above, we re-rank the candidate passages according to the named entity and
question types, then output the top 5 named entities as the final answers. If the question type is
unknown, we intercept a snippet with the largest density of keywords in the candidate passage to
answer the question.

4.6 Results and Analysis

There are three subtasks in TREC-10 QA: main, list and context. We only participate in the
main task and submit three runs in the 50-byte category. ICTQA10a uses the top 20 candidate
passages for each question. Both ICTQA10b and ICTQA10c use only top 10 candidate passages
for each question, the difference is that ICTQA10c uses the feedback of SMART in the IR phase.
The evaluation results are presented in table 4.2 and 4.3. Table 4.2 shows the results in strict
evaluation while table 4.3 does in lenient evaluation. (MRR means “Mean Reciprocal Rank”.)

ICTQA10b is better than ICTQA10a, which shows that more candidate passages can’t
guarantee to generate better results.

Task Run Correct #

(strict)
Correct

% (strict)
MRR(strict) Correct # of

final answer
Correct % of
final answer

main ICTQA10a 63 12.8% 0.090 26 8%

main ICTQA10b 67 13.6% 0.100 34 10%

main ICTQA10c 56 11.4% 0.077 20 6%

Table 4.2 Strict performance in TREC-10

Task Run Correct #
 (lenient)

Correct %
(lenient)

MRR(lenient) Correct # of
final answer

Correct % of
final answer

main ICTQA10a 74 15.0% 0.102 26 8%

main ICTQA10b 76 15.4% 0.109 34 10%

main ICTQA10c 66 13.4% 0.089 20 6%

Table 4.3 Lenient performance in TREC-10

Table 4.4 shows some statistical results by question types. Our system is pleasant for the
NATIONALITY, DURATION, CURRENCY, LOCATION and No Answer question types, but
disappointing on the DATE, PERSON, MONEY and REASON question types, though these
question types are easy to determine. The main reason is that some bugs exist in our ranking
strategy when there are too many candidate named entities matching these question types. We try
to find more detailed ranking strategies to solve this problem in the future work. We also try to

introduce some syntactic and semantic parsing technology to solve other problems, especially the
NAME(What is NP?) question type, which we badly handle in TREC-10.

Question type # of question Correct # Correct % MRR

PERSON 53 5 9.43% 0.04
LOCATION 29 10 34.48% 0.24
MONEY 2 0 0 0
PERCENT 5 1 20% 0.20
DATE 33 6 18.18% 0.16
NUMBER 13 3 23.1% 0.13
DURATION 4 3 75% 0.75
MEASUREMENT 30 7 23.33% 0.217
CURRENCY 5 2 40% 0.40
NATIONALITY 2 2 100% 0.625
REASON 4 0 0 0
NAME 130 18 13.85% 0.08
No Answer 49 15 30.61% 0.306

Table 4.4 Lenient performance for each question type

5. Conclusion

This year we participate in the TREC conference for the first time, the main goal is to
understand the process and the ideas of the TREC conference. We spend much more time on this
goal than we do in system construction. We think we have achieved this goal though our results
are not so satisfactory.

Before attending TREC-10, we have had some experiences in Chinese information
processing. After attending TREC-10, we have got some experiences in English information
processing and we will try to apply these useful experiences in our future work.

Acknowledgements
 This research is supported by the national 973 fundamental research program under contact
of G1998030413. We give our thanks to all the people who have contributed to this research and
development, in particular Yanbo Han, Li Guo, Qun Liu, Hai Zhuge, Zhihua Yu and Lei Cheng.

References
[1] Ogawa, Y., Mano, H., Narita, M., Honma, S. Structuring and Expanding Queries in the
Probabilistic Model. In The Ninth Text REtrieval Conference (TREC 9),2000.
[2] O. Yasushi, M. Hiroko, N. Masumi, H. Sakiko. Structuring and expanding queries in the
probabilistic model. In The Eighth Text REtrieval Conference (TREC 8),1999.
[3] S.E. Robertson, S. Walker. Okapi/Keenbow at TREC-8. In The Eighth Text REtrieval
Conference (TREC 8),1999.
[4] S.Brin and L.Page. The anatomy of a large scale hypertextual web search engine. In The 7th
WWW Conference,1998.
[5] Lawrence Page,Sergey Brin,Rajeev Motwani,Terry Windograd. The Pagerank citation ranking:

Bring order to the web. Stanford Digital Libraries working paper, 1997-0072.
[6] J.Kleinberg. Authoritative sources in a hyperlinked environment. Proc 9th ACM-SIAM
SODA,1998.
[7] Ian H. Witten, Alistair Moffat, Timothy C. Bell. Managing gigabytes: Compressing and
indexing documents and images, 2nd ed, 1994.
[8] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gatford. OKAPI at
TREC-3, In The Third Text REtrieval Conference (TREC 3),1994.
[9] Ellen M. Voorhees, Dawn M. Tice, The TREC-8 Question Answering Track Evaluation, In The
Eighth Text REtrieval Conference (TREC 8),1999.
[10] Amit Singhal, Steven Abney, Michiel Bacchiani, Michael Collins, David Hindle and
Fernando Pereira, AT&T at TREC-8, In The Eighth Text REtrieval Conference (TREC 8),1999.
[11] Toru Takaki, NTT DATA: Overview of system approach at TREC-8 ad-hoc and question
answering, In The Eighth Text REtrieval Conference (TREC 8),1999.
[12] Rohini Srihari and Wei Li, Information Extraction Supported Question Answering, In The
Eighth Text REtrieval Conference (TREC 8),1999.
[13] John Prager, Dragomir Radev, Eric Brown, Anni Coden and Valerie Samn, The Use of
Predictive Annotation for Question Answering in TREC-8, In The Eighth Text REtrieval
Conference (TREC 8),1999.
[14] Jinxi Xu and W. Bruce Croft, Query Expansion Using Local and Global Document Analysis,
In The Eighth Text REtrieval Conference (TREC 8),1999.
[15] Xiaoyan Li and W. Bruce Croft, Evaluating Question-Answering Techniques in Chinese,
Computer Science Department University of Massachusetts, Amherst, MA , 2001.
[16] Chengxiang Zhai, Peter Jansen, Norbert Roma, Emilia Stoica, David A. Evans, Optimization
in CLARIT TREC-8 Adaptive Filtering, In The Eighth Text REtrieval Conference (TREC 8),1999.
[17] Lide Wu, Xuanjing Huang,Yikun Guo, Bingwei Liu, Yuejie Zhang, FDU at TREC-9: CLIR,
QA and Filtering Tasks. In The Ninth Text REtrieval Conference (TREC 9),2000.
[18] Stephen Robertson, David A. Hull, The TREC-9 Filtering Track Final Report. In The Ninth
Text REtrieval Conference (TREC 9),2000.
[19] Rocchio, J. J. Relevance Feedback in Information Retrieval. In The SMART Retrieval system,
Prentice-Hall, Englewood NJ. 1971, 232-241.

