
SMS of Death: from analyzing to attacking mobile phones on a large scale

Collin Mulliner, Nico Golde and Jean-Pierre Seifert

Security in Telecommunications

Technische Universität Berlin and Deutsche Telekom Laboratories

{collin,nico,jpseifert}@sec.t-labs.tu-berlin.de

Abstract

Mobile communication is an essential part of our

daily lives. Therefore, it needs to be secure and reliable.

In this paper, we study the security of feature phones,

the most common type of mobile phone in the world.

We built a framework to analyze the security of SMS

clients of feature phones. The framework is based on

a small GSM base station, which is readily available

on the market. Through our analysis we discovered

vulnerabilities in the feature phone platforms of all

major manufacturers. Using these vulnerabilities we

designed attacks against end-users as well as mobile

operators. The threat is serious since the attacks can

be used to prohibit communication on a large scale

and can be carried out from anywhere in the world.

Through further analysis we determined that such

attacks are amplified by certain configurations of the

mobile network. We conclude our research by providing

a set of countermeasures.

1 Introduction

In recent years a lot of effort has been put into analyz-

ing and attacking smartphones [18, 20, 24, 21, 22, 23,

46, 45], neglecting the so-called feature phones. Feature

phones, mobile phones that have advanced capabilities

besides voice calling and text messaging, but are not con-

sidered smartphones, make up the largest percentage of

mobile devices currently deployed on mobile networks

around the world. In comparison, smartphones only ac-

count for about 16% of all mobile phones [43]. The lack

of security research into the far more popular feature

phones is explained by the fact that smartphones share

much commonality with desktop computers, and, there-

fore are easier to analyze. Researches are able to use the

same or similar tools that they are already familiar with

on desktop computers. Feature phones on the other hand

are highly embedded systems that are closed to develop-

ers. This results in billions (there are about 4.6 billion

mobile phone subscribers [43, 16]) of potentially vulner-

able mobile devices out in the field, just waiting to be

taken advantage of by a knowledgeable attacker.

In this paper, we investigate the security of feature

phones and the possibility for large scale attacks based on

discovered vulnerabilities in these devices. We present a

novel approach to the vulnerability analysis of feature

phones, more specifically for their SMS client imple-

mentations. SMS is interesting because it is the feature

that exists on every mobile phone. Furthermore, security

issues related to SMS messaging can be exploited from

almost anywhere in the world, and, thus present the ideal

attack vector against such devices. To the best of our

knowledge, no attempt has been made before to analyze

or test feature phones for security vulnerabilities.

Analyzing feature phones is difficult for several rea-

sons. First of all, feature phones are completely closed

devices that do not allow for development of native appli-

cations and do not provide debugging tools. Moreover,

analyzing the part of the phone that interacts with the

mobile phone network is hard since the mobile phone

network between us and the target device is essentially

a black box. As a consequence, analysis becomes time

consuming, unreliable, and costly.

We address these problems by building our own GSM

network using equipment that can be bought on the mar-

ket. We use this network not only for sending SMS mes-

sages to the phones we analyze, but also as an advanced

monitoring system. The monitoring system replaces our

need for debuggers and other tools that are normally re-

quired for thorough vulnerability analysis, but do not ex-

ist for feature phones.

Vulnerability analysis was conducted using fuzzing.

We chose fuzzing as the testing technique because we

did not have access to source code and reverse engineer-

ing a large number of devices is not feasible. Addition-

ally, fuzzing proved to be very efficient since this allowed

us to analyze a large amount of mobile handsets with the

same set of tests.

So far, we have found numerous vulnerabilities in fea-

ture phones sold by the six market leading mobile phone

manufacturers. The vulnerabilities are security critical

as they can remotely crash and reboot the entire target

phone. In the process the mobile phone is disconnected

from the mobile network, interrupting any active calls

and data connections. Such bugs and attacks have ex-

isted before on the Internet, known as Ping-of-Death [6].

We believe this represents a serious threat to mobile tele-

phony world wide.

To complete our research we further analyzed the

effect of such attacks on the mobile phone core network.

This resulted in two interesting findings. First, the

mobile phone network can be abused to amplify our

Denial-of-Service attacks. Second, by attacking mobile

phones one can attack the mobile phone network itself.

The main contributions of this paper are:

• Vulnerability Analysis Framework for Feature

Phones: We introduce a novel method to conduct

vulnerability analysis of feature phones that is based

on a small GSM base transceiver station. We solve

the major issue of such analysis: the monitoring

for crashes and other unexpected behavior. We

present multiple solutions for monitoring such de-

vices while analyzing them. Our method further-

more shows that once a system, such as GSM, be-

comes partially open, the security of the entire sys-

tem, including the parts that are still closed, can be

analyzed and exploited.

• Bugs Present in Most Phones: We show that vul-

nerabilities exist in most mobile phones that are de-

ployed on mobile networks around the world today.

The bugs we discovered can be abused for carrying

out large scale Denial-of-Service attacks.

• Attack Impact: We show that a small number of

bugs in the most popular mobile phone brands is

enough to take down a significant number of mobile

phones around the world. We further show that bugs

present in mobile phones can possibly be used to

attack the mobile phone network infrastructure.

The rest of this paper is structured in the following

way. In Section 2 we discuss related work and show how

our research extends previous work in this area. In Sec-

tion 3 we explain how we selected our targets for analy-

sis and resulting attacks. In Section 4 we show in great

detail how to analyze feature phones for security vulner-

abilities. In Section 5 we layout methods to use the vul-

nerabilities discovered for large scale attacks on mobile

communication. In Section 6 we present methods for de-

tecting and preventing the attacks we designed. In Sec-

tion 7 we briefly conclude.

2 Related Work

Related work is separated into four parts. First, smart-

phone vulnerability analysis. Second, mobile and feature

phone bugs, which were all found purely by accident.

Third, studies on attacks against mobile phone networks.

Fourth, Denial-of-Service (DoS) attacks since we are go-

ing to present a large scale mobile phone DoS attack in

this paper.

The authors of [24] built a framework for security

analysis of Multimedia Messaging Service (MMS) im-

plementations on Windows Mobile based smartphones.

Similar research in [23] conducted vulnerability analy-

sis of Short Message Service (SMS) implementations of

smartphones. Both used traditional techniques such as

debuggers and analysis of crash dumps to catch excep-

tions generated during fuzzing.

Our work presented in this paper is different, as we do

not rely on debugging capabilities provided by the vari-

ous manufacturers, which mostly do not provide such ca-

pabilities at all. Instead we use a small GSM base station

to monitor and catch abnormal behavior of the phones

by monitoring and analyzing radio link activity. MMS-

based attacks that lead to battery exhaustion due to in-

creasing power consumption have been studied in [39].

They utilized the fact that MMS messages use more bat-

tery resources because of GPRS and increased CPU us-

age. However, we did not conduct this kind of analysis

since our focus was software bugs in SMS implementa-

tions.

Over the last few years a small number of bugs have

been discovered by individuals. Most of them have been

found by accident. To our knowledge no systematic test-

ing has been conducted. Some examples are: the Curse-

of-Silence [44] named bug for Symbian OS that prevents

a phone from further receiving any SMS after receiving

the curse SMS message. The WAP-Push vCard bug on

Sony Ericsson phones [33] that caused a target phone to

reboot. Some Nokia phones [34] contained a bug that

could be abused to remotely crash a phone by sending it

a specially crafted vCard via SMS. Some mobile phones

produced by Siemens contained a bug [17] that would

shutdown the phone when displaying an SMS message

that contained a special character. Bugs like these fuelled

our research effort since we believed that most phones

contain similar bugs. A large number of similar issues

in an exploit arsenal can likely be used to carry out at-

tacks against a bigger percentage of mobile phone users

around the world.

Enck et al. show in [47] that SMS messages sent over

2

the Internet can be used to carry out a Denial-of-Service

attack against mobile phone networks. The attack fo-

cused on blocking the mobile network’s control chan-

nels, therefore, no more calls could be initiated. Solu-

tions against this type of resource consumption attack

are investigated in [37]. However our attacks, described

in this paper, are not based on attacking the radio link

(the control channel) in any way. We attack the hand-

sets directly without targeting the control channel. A

study on the capabilities of mobile phone botnets [36]

shows that these could be used to carry out DoS attacks

against a mobile network. The attack works by over-

loading the Home Location Register (HLR) by trigger-

ing large amounts of state changes by zombie phones.

However, in this paper we show that one can achieve a

similar kind of DoS attack against an operators network

by disconnecting large amounts of mobile phones from

the network. The difference to the botnet approach is that

we do not need to have control over the zombie phones in

the first place. We can remotely force them to reboot and

disconnect and re-authenticate to the network and thus

cause a higher load on the network core infrastructure.

Denial-of-Service attacks such as the one presented in

this work have been studied in a wide area. Attacks rang-

ing from the Web to DNS [38]. More interesting in our

context are attacks that disable real-world systems and

processes such as emergency services [29] (although just

as a side effect) or even postal services [40].

Essentially the work presented in this paper is differ-

ent in many aspects. We focus on feature phones because

feature phones are muchmore popular than smartphones.

Therefore, attacks against feature phones have a larger

global impact. In this work we present a security testing

framework for analyzing SMS implementations of any

kind of mobile phone. We used this framework to ana-

lyze feature phones of the most popular manufacturers in

the world, as shown in Section 3. We also performed this

type of analysis because it has not been done in the past,

even though these devices are widely deployed.

3 Target Selection

To achieve maximum impact with an attack, it makes

sense to target the most popular devices. We deter-

mined that feature phones are the dominant type of mo-

bile phones. They account for 83% of the U.S. mobile

market [10], smartphones in comparison just make for

16% of all mobile phones world wide [43]. We acknowl-

edge that today smartphone sales are rising very fast, but

feature phones still dominate when it comes to deployed

devices in the field.

Most of the definitions of the term feature phone are

a bit fuzzy. A loose definition of the term is: every mo-

bile phone that is neither a dumb phone nor a smartphone

is considered a feature phone. Dumb phones are phones

with minimal functionality, often they only support voice

calls and sending SMS messages, just basic functional-

ity. Feature phones have less functionality than smart-

phones but still more than dumb phones. Feature phones

have proprietary operating systems (firmware) and have

additional features (thus the term feature) such as play-

ing music, surfing the web, and running simple applica-

tions (mostly J2ME [41]). Despite this lack of function-

ality (compared to smartphones) they are quite popular

because they are cheap and offer long battery life.

Technically interesting is the fact that feature phones

are based on a single processor that implements the base-

band, the applications, and user interface. Smartphones

usually have a dedicated processor for the baseband. The

consequence of this is that a simple bug on a feature

phone may bring down the complete system.

Mobile phones are produced by many different manu-

facturers that all have their own OS, therefore, targeting

a single one of themwill not result in global effect. Since

we can not simply target all mobile phone platforms we

have to select the few ones that have enoughmarket share

to be of global relevance.

To determine the major mobile phone manufacturers

we analyzed various market reports: World wide [42]

and European [31] market share. Market shares in the

United States [28] and in Germany [27]. In the Appendix

of this paper we include a table containing the raw num-

bers we gathered from the various market reports.

Through this analysis we got a clear picture about the

top manufacturers. These are Nokia, Samsung, LG,

Sony Ericsson, and Motorola. We further chose

to add Micromax [4] to the list of interesting mobile

phone manufacturers because we read [9] that they are

the third most popular brand of mobile phones in India.

4 Security Analysis of Feature Phones

Analyzing feature phones for security vulnerabilities is

hard for several reasons. There is no access to source

code of the OS and applications. There are no exist-

ing native-SDKs, therefore, there is no way to run native

code on the device and further no access to a debugger.

JTAG-based debugging is also no option since not all de-

vices have JTAG enabled. Furthermore, deeper knowl-

edge of the hardware and software is required in order to

use JTAG debugging in a meaningful way.

Because of these reasons we choose to conduct fuzz-

based testing. The testing is carried out on our own GSM

network. In order to monitor for misbehavior, crashes,

and to find the related bugs, we designed our own mon-

itoring system. Throughout this section we will first de-

scribe the setup of our GSM network. Followed by the

way we send SMS messages in this setup. Then we will

3

describe our novel monitoring setup. The final part of the

section will discuss test cases and the resulting bugs that

were discovered throughout this work.

4.1 Network Setup

Since we want to send large amounts of SMS messages

we decided to build our own GSM network rather than

sending SMS messages over a real network. On the one

hand this has the advantage of not costing any money

and on the other hand we do not risk to interfere with the

telecommunication networks. We want to avoid crash-

ing the operator’s network equipment by either content

or quantity of SMS messages. Having our own network

assures reproducible results because we have control of

the entire system and are able to quickly find parameters

that cause unexpected results. Analysis over a real oper-

ator network would only leave us with the possibility of

guessing in many cases. In addition, the delivery of SMS

messages is much faster on our small network compared

to a production setup of a mobile operator.

On the hardware side we decided to use an ip.access

nanoBTS [32], which is a small, fairly cheap (about 3500

Euro) GSM Base Transceiver Station (BTS) that pro-

vides an A-bis over IP interface. The A-bis interface

is used to communicate between the BTS and the Base

Station Controller (BSC). The BSC part of our setup is

driven by OpenBSC [30]. OpenBSC is a Free Software

implementation of the A-bis protocol that implements

a minimal version of the BSC, Mobile Switching Cen-

ter (MSC), Home Location Register (HLR), Authenti-

cation Center (AuC) and Short Message Service Center

(SMSC) components of a GSM network. Figure 1 shows

a picture of our setup.

Figure 1: Our setup: A laptop that runs OpenBSC and

the fuzzing tools, the nanoBTS, and some of the phones

we analyzed.

As GSM operates on a licensed frequency spectrum

we had to carry out our experiments in an Faraday cage.

Utilizing this setup we are able to send SMS mes-

sages to a mobile phone. OpenBSC allows us to either

send a text message from its telnet interface to a sub-

scriber of our choice or it processes an SMS message

that it received Over-the-Air in a store and forward fash-

ion. As we later see the existing interface is not feasible

for fuzzing since we need the ability to closely control all

parameters in the encoded SMS format as well as a way

to inject binary payloads.

Using a mobile phone to inject SMS messages into the

network is not an option as this would be very slow as we

show later. Instead we built a software framework based

on a modified version of OpenBSC that allows us to:

• Inject pre-encoded SMS into the phone network

• Extensive logging of fuzzing related feedback from

the phone

• Logging of non-feedback events, i.e. a crash result-

ing in losing connection to the network

• Automatic detection of SMS that caused a certain

event

• Process malformed SMS with OpenBSC

• Smart fuzzing of various SMS features

• Ability to fuzz multiple phones at once

• Sending SMS at higher rate than on a real network

The format of an SMS [15] differs depending

on whether the message is Mobile Originated

(MO) or Mobile Terminated (MT). This is

mapped to the two formats SMS SUBMIT (MO) and

SMS DELIVER (MT). In a typical GSM network, shown

in Figure 4, an SMS message that is sent from a mo-

bile device is transferred Over-the-Air to the BTS of an

operator in SMS SUBMIT format. Every BTS is han-

dled by a Base Station Controller (BSC) that is inter-

acting with a Mobile Switching Center (MSC), which

acts as the central entity handling traffic within the net-

work. The MSC relays the SMS message to the respon-

sible Short Message Service Center (SMSC), which is

usually a combination of software and hardware that for-

wards and relays messages to the destination phone or

other SMSCs (in case of inter-operator messages or an

operator with multiple SMSCs). In our setup OpenBSC

acts as BSC, MSC, and SMSC. During the final trans-

mission to the destination the SMS will get converted

to SMS DELIVER, this is taken care of by OpenBSC.

Both formats are similar and no field that is subject to

our fuzzing is lost. SMS SUBMIT only contains the

destination number and since SMS works in a store-and-

forward fashion, the destination address is replaced with

the sender number on the final transmission to the desti-

nation. SMS DELIVER does not include the destination

number but instead relies on an existing channel to the

4

phone (after the phone has been paged). For this rea-

son we utilize the SMS SUBMIT format when injecting

messages.

4.2 Sending SMS Messages

OpenBSC itself does not provide an interface to submit

pre-encoded SMS messages to the network, but only an

interface to submit text SMS messages that are then con-

verted into the corresponding encoding. We added a new

interface to OpenBSC that allows us to submit SMS mes-

sages directly in SMS SUBMIT format. These messages

are inserted into a database that is used by OpenBSC

as part of the SMSC functionality. In our version not

only the parsed SMS values are stored, but also the com-

plete encoded message for easy reproducibility. Modi-

fying the existing text message interface to be capable

of handling binary encoded SMS messages proved to be

infeasible. Messages submitted over this interface are

instantly transmitted to the subscriber if he is attached to

the network. This means opening a channel, initiating a

data connection, sending the message and tearing down

the connection. This works, but is very slow and takes

about seven seconds per message. This is also the reason

why we did not want to use a mobile phone to send our

fuzz-messages in the first place. Our method of inject-

ing messages is much faster. Prior to testing we use our

new interface to inject thousands of messages into the

SMSC database. Next, we send these messages. Ideally,

this only opens a channel once and sends all SMS mes-

sages (pending delivery) to the recipient and then closes

the connection. This greatly improves the speed at which

we can fuzz since the actual message transfer only takes

about one second.

In essence we removed the sending mobile phone and

replace it with a direct interface to the network. This way

it was not necessary to modify the target mobile phone in

any way.

4.3 Monitoring for Crashes

In fuzz-based testing, monitoring is one of the essential

parts. Without good monitoring one will not catch any

bugs.

OpenBSC itself already has an error handler that takes

care of errors reported from the phone, which we mod-

ified to fit our fuzzing case. The default error handler

does not differentiate between errors and is not taking the

cause of an error into account. It simply stops the SMS

sending process in case of an error. The only exception

is a Memory Exceeded error, which causes OpenBSC

to dispatch a signal handler to wait for an SMMA signal

(released short message memory) indicating that there is

enough space again.

The mobile phone as well as the MSC are usually di-

vided into separated layers for transferring and process-

ing a message. As shown in Figure 2 they consist of

a Short Message Transport Layer (SM-TL), Short Mes-

sage Relay Layer (SM-RL) and the Connection Sublayer

(CM-Sub). The SM-TL [13] receives and relays mes-

sages that it receives from the application layer in TPDU

form (Transport Protocol Data Unit). This is the original

encoding form that we describe later in this paper. The

message is passed to the SM-RL to transport the TPDU

to the mobile station. At this point the TPDU is encap-

sulated as an RPDU. As soon as a connection is estab-

lished between the mobile station and the network the

RPDU is transferred Over-the-Air encapsulated in a CP-

DATA unit that is part of Short Message Control Protocol

(SM-CP). Both sides communicate via their CM-Subs

with each other. The CM-Sub on the phone side will

unpack the CPDU and forward the encapsulated TPDU

to the Transport Layer using an RP-DATA unit. At this

point the mobile phone stack has already performed san-

ity checks on the content of the SMS and parsed it. The

resulting reply, passed to CM-Sub, will include an ac-

knowledgement of the SMS message and it will then be

passed to the higher layers. From there it will end up

in the user interface or an error message is encapsulated

and sent back to the network. For our monitoring we

need to log these replies carefully to observe the status

of the phone.

Figure 2: Mobile terminated SMS

From the wide variety of error messages a phone can

reply to a received SMS message (defined in [14]), we

observed during our fuzzing experiments that all of the

tested phones either reply with a Protocol Error

or Invalid Mandatory Information message

in the case of a malformed message. These two re-

sponses besides the memory error have been the only er-

rors that we observed in practice. We added code to flag

such an SMS message as invalid in the database and con-

tinue delivering the next SMS that has not been flagged

5

as invalid. OpenBSC would otherwise continue trying to

retransmit the malformed SMS message and thus block

further delivery for the specific recipient.

SMSmessages are usually sent over a SDCCH (Stand-

alone Dedicated Control Channel) or a SACCH (Slow

Associated Control Channel). The details of such a chan-

nel are not important for the scope of this paper. However

the use of such a logical channel is an important mea-

surement to detect mobile phone crashes. Such a channel

will be established between the BTS and the phone on the

start of an SMS delivery by paging the phone on a broad-

cast channel. As we explained earlier, we only open the

channel once and send a batch of messages using this

one channel. The channel related signaling between the

BSC and the BTS happens over the A-bis interface over

highly standardized protocols. We added modifications

to the A-bis Radio Signaling Link code of OpenBSC that

allows us to check if a channel tear down happens in a

usual error condition, log when this happens and which

phone was previously assigned to this channel.

So while we lack possibilities to conduct traditional

debugging methods on the device itself we can use the

open part - OpenBSC - to do some debugging on the

other end of the point-to-point connection.

The difference to traditional debugging techniques is

that we are mostly limited towards noticing an error con-

dition and monitoring the impact of such an error. We

are not able to peek at register values and other soft-

ware related details of the phone firmware. However,

it is enough to be able to reliably detect and reproduce

the error. Using this method it also possible to find code

execution flaws. However exploiting them and getting to

know the details about the specific behavior requires the

effort of reverse engineering the firmware for a specific

model. We try to avoid such a large scale test of phones

but these bugs are a good base for further investigations

such as reverse engineering of firmware.

In the next step we have written a script that parses the

log file, evaluates it and takes actions in order to deter-

mine which SMS message caused a problem.

When delivering an SMS message to a recipient phone

under the assumption that it is associated with the cell

in practice three things can happen. Either the message

is accepted and acknowledged, it is rejected with a rea-

son indicating the error, or an unexpected error occurs.

Such an unexpected error can be that the phone just dis-

connected because it crashed or due to other reasons the

received message is never acknowledged. In the latter

case, OpenBSC stores the SMS message in the database,

increases a delivery attempt counter and tries to retrans-

mit the SMS message when the phone associates with

the cell again. For our fuzzing results this means that

this method detects bugs in which the SMS message ei-

ther results in a phone crash after it accepted the message

or already during receiving it in which it will never be ac-

knowledged and OpenBSC continuously tries to deliver

the SMS message.

Detecting the SMS message that caused such an error

condition then is fairly simple. Our script checks the er-

ror condition and if it occurred because of the loss of a

channel it first looks up the database to find SMS mes-

sages that have a delivery count that is bigger or equal

to one and the message is not marked as sent (meaning

it was not acknowledged). In this case we can with a

high probability say that the found SMS message caused

the problem. If there is no message the script checks

which messages have been sent in a certain time inter-

val around the time of the log event. During our testing

we decided that a one minute time interval works well

enough to have a fairly small subset of candidate SMS

messages that could have caused a problem. Figure 3

shows the logical view of our monitoring setup.

OpenBSC

SMS Database Delivery Engine

Logging

nanoBTS

Target Phone

J2ME

 Echo

Server

Fuzzing Framework

 SMS

 Message

Generator

Monitor
log evaluation

m
ap

 S
M

S to
 e

rr
or

inject SMS

deliver

 feedback

Figure 3: Logical view of our setup.

4.4 Additional Monitoring Techniques

In addition to the aforementioned OpenBSC setup we

have developed more methods for monitoring for abnor-

mal behavior.

Bluetooth: Bluetooth can be used to check if a de-

vice crashes or hangs. Our monitor script connects to the

device using a Bluetooth virtual serial connection (RF-

COMM) by connecting to the RFCOMM channel for

the phone’s dial-up service. The script calls recv(2)

and blocks since the client normally is supposed to send

data to the phone. When the phone crashes or hangs, the

physical Bluetooth connection is interrupted and recv(2)

returns, thus signaling us that something went wrong.

J2ME: Almost every modern feature phone supports

J2ME [41] and this is providing us with the only way

to do measurements on the phone since they do not run

native applications. Applications running on the mobile

phone can register a handler in an SMS registry simi-

lar to binding an application to a TCP/UDP port. SMS

can make use of a User Data Header [13] (UDH) that

indicates that a certain SMS message is addressed to a

6

specific SMS-port. When the phone receives a message

this header field will be parsed and the message is for-

warded to the application registered for this port. Our

J2ME application that is installed to the fuzzed phone

registers to a specific port and receives SMS messages

on it. For each chunk of fuzzed SMS messages we in-

ject a valid message that is addressed to this port. The

application then replies with an SMS message back to

a special number that is not assigned to a phone. Fig-

ure 3 shows this as the J2ME echo server. The message

is just saved to the SMS database. This allows us to eas-

ily lookup the count of SMS messages for this special

number in the database and check if it increased or not.

If not, it is very likely that some odd behavior was trig-

gered. This kind of monitoring is useful to identify bugs

that block the phone from processing received messages

such as those described in [44].

4.5 SMS SUBMIT Encoding

The SMS SUBMIT format as defined in [13] consists of

a number of bit and byte fields, the destination address,

and the message payload. Below we briefly describe the

parts the are important for our analysis. We included a

diagram of the structure of an SMS SUBMIT message

in the Appendix.

TP-Protocol-Identifier (1 octet) describes the type of

messaging service being used. This references to a

higher layer protocol or telematic interworking being

used. While this is included in the specifications, we be-

lieve that these interworkings are mostly legacy support

and not in use these days. This makes it an interesting

target to study unusual behavior.

TP-Data-Coding-Scheme (1 octet) as described in [12]

indicates the message class and the alphabet that is used

to encode the TP-User-Data (the message payload). This

can be either the default 7 bit, 8 bit or 16 bit alphabet and

a reserved value.

The TP-User-Data field together with the TP-

Protocol-Identifier and the TP-Data-Coding-Scheme are

the main targets for fuzzing. The receiving phone parses

and displays the message based on this information.

However these fields are not enough to cover the com-

plete range of possible SMS features. If the TP-User-

Data-Header-Indicator bit (one of the earlier mentioned

bit fields) is set this indicates that TP-User-Data includes

a UDH.

The UDH is used to provide additional control infor-

mation like headers in IP packets. It can hold multiple so

called Information Elements [15] (IEI), for example el-

ements for port addressing, message concatenation, text

formatting and manymore. IEIs are represented in a sim-

ple type-length-value format. We included an example

UDH with multiple IEIs in the Appendix.

4.6 Fuzzing Test-cases

We have implemented a subset of the SMS specification

as a Python library to create SMS PDUs (Protocol Data

Unit) and used this to develop a variety of fuzzers. This

includes fuzzers for vCard, vCalendar, Extended Mes-

saging Service, multipart, SIM-Data-Download, WAP

push service indication, flash SMS, MMS indication,

UDH, simple text messages and various others fuzzing

only single fields that are part of a specific SMS feature.

Some of these features can also be combined. For exam-

ple most of the features can either consist of single SMS

message or be part of a multipart sequence by adding the

corresponding multipart UDH.

For the scope of this paper we focused on fuzzing mul-

tipart, MMS indication (WAP push), simple text, flash

SMS, and simple text messages with protocol ID/data

coding scheme combinations. These test cases cover a

wide variety of different SMS features.

Multipart: SMS originally was designed to send up

to 140 bytes of user data. Due to 7-bit encoding it is

possible to send up to 160 bytes. However various SMS

features rely on the possibility to send more data, e.g.

binary encoded data. Multipart SMS allow this by split-

ting payload across a number of SMS messages. This

is achieved by using a multipart UDH chunk (IEI: 0,

length: 3). This UDH chunk comprises three one byte

values. The first byte encodes a reference number that

should be random and the same in all message parts that

belong to the same multipart sequence. Based on this

value the phone is later able to reassemble the message.

The second byte indicates the number of parts in the se-

quence and the last byte specifies the current chunk ID.

By fuzzing these three values we were mainly looking for

abnormal behavior related to combinations of the current

chunk ID and the number of chunks in a sequence. For

example missing chunk and chunk IDs higher than the

number of total chunks.

MMS indication: When a subscriber receives

an MMS (Multimedia Messaging Service) message an

MMS notification indication message [48] is sent to him.

This MMS indication is in fact a binary encoded WAP-

push message sent via SMS. The notification contains

multiple variable length fields for subject, transaction ID

and sender name. There are no length fields for these

values. They are simple zero terminated hex strings. An

MMS indication message can also consist of multipart

sequences. Therefore, our fuzzing target were the vari-

able length field values included in the message seeking

for classic issues like buffer overflow vulnerabilities.

Simple text: Implementations of decoders for sim-

ple 7 bit encoded SMS often work with a GSM alpha-

bet represented for example with an array. The decoder

first needs to unpack the 7 bit encoded values and convert

7

them to bytes. After this step it can lookup the charac-

ter values in the GSM alphabet table. Our fuzzers mixed

valid 7 bit sequences with invalid encodings that would

result in no corresponding array index. This could trigger

all kinds of implementation bugs but most noteworthy

out of bounds access resulting in null pointer exceptions

and the like.

TP-Protocol-Identifier/TP-Data-Coding-Scheme:

The combination of both of these fields defines how

the message is displayed and treated on the phone.

Both of these fields are one byte values and also cover

several rather unpopular features and reserved values.

With fuzzing combinations of these values with random

lengths of user data payload we were aiming for odd

behavior and bugs in code paths that are seldom used by

normal SMS traffic.

Flash SMS: Flash messages are directly displayed on

the phone without any user interaction and the user can

optionally save the message to the phone memory. Our

observations made it clear that often the code that ren-

ders the flash SMS message on the display is not the

same as the one that displays a normal message from

the menu. Therefore, it can be prone to the same imple-

mentation flaws as simple text messages. Additionally,

flash SMS can consist of multipart chunks and there are

several combinations of TP-Protocol-Identifier and TP-

Data-Coding-Scheme that cause the phone to display the

SMS as flash message. Our flash SMS fuzzers aim to

cover a combination of all of the above possible imple-

mentation weaknesses.

4.7 Fuzzing Trial

After each fuzzing-test-run we evaluate the log gener-

ated by our monitoring script. All of the bugs described

later in this paper were triggered by one or very few SMS

messages and reproducing problems from log entries was

rarely problematic. However, during our fuzzing stud-

ies we stumbled across various forms of strange behav-

ior. Problems we faced included non-standard conform-

ing message replies and various kinds of weird behav-

ior. Some phones were not properly reporting memory

exhaustion. Others did not notice free memory until a re-

boot. Some did not display a received SMS message on

the user interface which made it hard to tell if the phone

accepted a message or silently discarded it on the phone.

Almost every phone we fuzzed needed a hard reset at

some point because it became simply unusable for un-

known reason, the mass of messages or a specific SMS

needed to be deleted from the SIM card using another

phone. One of the biggest issues we came across was

that very few manufacturers’ hard reset actually restored

the phone to an initial factory state. From what we know

this is done as a feature for customers in order to ensure

no personal data is lost. The behavior also differed be-

tween phones of the same manufacturer. When testing a

bug on the Samsung B5310 it was always sufficient to re-

move the offending SMS message from the phone’s SIM

card while the Samsung S5230 needed an additional hard

reset. Understanding such issues proved to be extremely

time-consuming. However, it is worth noting that purg-

ing a phone of all personal information can prove to be

nearly impossible for a user. This can become an issue

whenever a user plans to sell a used handset to a third

party.

4.8 Results

During our fuzz-testing we discovered quite a few bugs

that lead to security vulnerabilities. The bugs mostly

lead to phones crashing and rebooting, which discon-

nected the phones from the mobile network and inter-

rupted ongoing voice calls and data connections. Our

testing even resulted in two bricked phones that could

no longer be reset and brought back into working order.

We did not investigate the bricking in-depth because this

would have gotten quite costly. Furthermore, some of

the phones crash during the process of receiving the SMS

message, and, therefore, fail to acknowledge the message

thus causing re-transmission of the SMS message by the

network.

Below we present some of the bugs we discovered on

each platform. In most cases we fuzzed only one phone

from each platform and later only verified the bugs on

other phones we had access to. This is expected because

most manufacturers base their entire product line on a

single software platform. Only customizing options such

as the user interface depending on the hardware of a spe-

cific device.

We reported all bugs to the manufacturers including

full PDUs in order to verify and reproduce them. The

feedback we received indicates that the bugs are present

in most of their products based on their feature phone

platforms. So far we have not received any information

about fixes or updates.

Nokia S40: On our test devices 6300, 6233,

6131 NFC, 3110c we found a bug in the flash SMS

implementation. The phones run different versions of the

S40 operating system, the oldest of which was over 3

years older than the newest. The manufacturer confirmed

that this bug is present in almost all of their S40 phones.

By sending a certain flash SMS the phone crashes and

triggers the ”Nokia white-screen-of-death”. This also re-

sults in the phone disconnecting and re-connecting to the

mobile phone network. Most notably, the SMS actually

never reaches the mobile phone. The phone will crash

before it can fully process and acknowledge the message.

On the one hand this has the side effect that the GSM net-

8

work performs a Denial-of-Service attack for free as it

continuously tries to transmit the message to the phone.

On the other hand this has a side effect on the phone since

there seems to be a watchdog in place that is monitoring

such crashes. This watchdog shuts down the phone af-

ter 3 to 5 crashes depending on the delay between the

crashes.

Sony Ericsson: Our test devices W800i, W810i,

W890i, Aino running OSE have a problem similar

to the Nokia phones. When combining certain payload

lengths together with a specific protocol identifier value

it is possible to knock the phone off the network. In

this case there is no watchdog, but one SMS message is

enough to force a reboot of the phone. As in the case of

the Nokia bug, this SMS message will never be acknowl-

edged by the phone. To get an idea on how wide spread

the problem is, we investigated the age of the devices and

found that the oldest phone (W800i) is from 2005 while

the newest phone (Aino) is from late 2009.

LG: Our LG GM360 seems to do insufficient bounds

checking when parsing an MMS indication message.

This allows us to construct an MMS indication SMS

message containing long strings that span over three or

more sms. This crashes the phone and thus forces an un-

expected reboot when receiving the message or as well

when trying to open the SMS message on the phone.

Motorola: As aforementioned, SMS supports telem-

atic interworking with other network types. By send-

ing one SMS message that specifies an Internet elec-

tronic mail interworking combined with certain charac-

ters in the payload it is possible to knock the phone off

the mobile network. Upon receiving the message the

phone shows a flashing white screen similar to the one

shown by the Nokia phones. The phone does not com-

pletely reboot; instead it simply restarts the user interface

and reconnects to the network. This process takes a few

seconds and depending on the payload it is possible to

achieve this twice in a row with one message. We ver-

ified this on the Razr, Rokr, and the SVLR L7 –

older, but extremely popular devices. The devices span

3+ years, providing us with confidence that the bug is

present in their entire platform.

Samsung: Multipart UDH chunks are commonly used

for payloads that span over multiple SMS messages. The

header chunk for multipart messages is simple.

Our Samsung phonesS5230 and B5310 do not prop-

erly validate such multipart sequences. This allows us to

craft messages that show up as a very large SMS mes-

sage on the phone. When opening such a message the

phone tries to reassemble the message and crashes. De-

pending on the exact model one to four SMS messages

are needed to trigger the bug.

Micromax: The Micromax X114 is prone to a sim-

ilar issue like the Samsung phones but behaves slightly

differently. When sending one SMS that contains a mul-

tipart UDH with a higher chunk ID than the overall num-

ber of chunks and a reference ID that has not been used

yet, the phone receives the SMS message without in-

stantly crashing. However a few seconds after the re-

ceipt the display turns black for some seconds before the

phone disconnects and reconnects to the network.

4.9 Validation and Extended Testing

After the initial fuzz-testing we needed to validate our

results over a real operator network since we tested in a

closed environment – our own GSM network. We need

to evaluate if the bugs can be triggered in the real world

or if operator restrictions prevent this. For the validation

we put an active SIM card (of the four German operators)

into our test phones and connected them to a real mobile

phone network. We sent the SMS PDUs that triggered

the bugs using the AT command interface of another mo-

bile phone. These tests validated all the bugs described

in the previous section.

During our fuzzing tests we deactivated the security

PIN on the SIM cards we used in the target phones so that

we did not have to enter the PIN on every reboot. We also

tested the phoneswith an enabled SIM PIN. Our goal was

to determine if such reboots also reset the baseband and

the SIM card. If the SIM card is blocked after reboot the

phone is not reconnected to the GSM network, and, thus,

the user is cut off permanently. We determined that this

is true for our LG, Samsung, and Nokia devices.

4.10 Bug Characterization

We group the discovered bugs depending on the software

layer they trigger.

The first group are bugs that require user interaction

such as the bug we discovered in the Samsung mobile

phones. In this case the user has to view the message in

order to trigger the bug.

The second group are bugs that crash without user in-

teraction. These bugs occur as soon as the phone has

completed receiving the entire message and starts pro-

cessing it. In this group we put the bugs we found on the

Motorola, LG, and Micromax devices.

The third and last group are bugs that trigger at a lower

layer of the software stack. With lower layer we mean

during the process of receiving the SMS message from

the network. A crash during the transfer process means

that the process is not completed and the network be-

lieves the message is not successfully delivered to the

phone. We categorize the bugs discovered in our Nokia

S40 and the Sony Ericsson devices in this third group.

9

5 Implementing the Attack

The attacks presented in this work utilize SMS messages

to trigger software bugs and crash mobile handsets, in-

terrupting mobile communications. These bugs cover the

mobile phone platforms of all major handset manufactur-

ers and a wide variety of different models and firmware

versions. The resulting bug arsenal can potentially be

abused to carry out a large scale attack.

5.1 Building a Hit-List

To launch an attack phone numbers of mobile phones

need to be acquired since simply sending SMS messages

to every possible number is problematic. Furthermore,

sending SMSmessages to a large number of unconnected

phone numbers dark address space could trigger some

kind of fraud prevention system, such as observed on

the Internet to detect worms [7]. In addition, for the de-

scribed attack only phone numbers that are connected to

a mobile phone are of interest. Depending on the kind of

attack, a different set of phone numbers is required. In

one case an attack might be targeted towards a specific

mobile operator, therefore, only phone numbers that are

connected to the specific operator are of interest.

Regulatory Databases: In many countries around

the world mobile network operators have their own area

codes. Some examples are Germany1, Italy2, the United

Kingdom3, and Australia4. Such area codes can be read-

ily acquired to help building a hit-list. Likewise one can

use the North American Numbering Plan (NANP) to de-

termine which area exchange codes are used by mobile

operators.

Web Scraping: Web Scraping is a technique to col-

lect data from the World Wide Web through automated

querying of search engines using scripted tools. Find-

ing German mobile phone numbers can be easily done

through queries like "+49151*" site:.de. More-

over, online phonebooks [2] also include mobile phone

numbers. These sites often allowwild card searches, and,

thus can be abused to harvest mobile phone numbers.

HLR Queries: Some Bulk SMS operators [5] offer a

service to query the Home Location Register (HLR) for a

mobile phone number. These queries are very cheap (we

found one for only 0.006 Euro) and answers the ques-

tion if a mobile phone number exists and where it is

connected. Together with the information from the reg-

ulatory databases one can easily generate a list of a few

thousand mobile phone numbers that belong to a specific

mobile network operator.

5.2 Sending SMS Messages

SMS messages can be sent by a mobile phone that pro-

vides either an API that allows it to send arbitrary binary

messages or through its AT command interface. We used

the AT interface for most of our testing and validation.

To carry out any kind of large scale attack a way for de-

livering large quantities of SMS messages for low price

is needed. Multiple options exist to achieve this:

Bulk SMS Operators: Bulk SMS operators such

as [1, 5, 3] offer mass SMS sending over the Internet

providing various methods ranging from HTTP to FTP

and the specialized SMPP (Short Messaging Peer Proto-

col). Bulk SMS operators are so-called External Short

Message Entity (EMSE) that are often connected via In-

ternet to the mobile operators but sometimes have their

own SS7 connection to the Public Switched Telephone

Network (PSTN). Figure 4 shows the various connec-

tions of an EMSE. All Bulk SMS operators operate in

the same way. For a given amount of money they de-

liver SMS messages to the specified destination(s). No

questions asked. Most of the APIs support sending a sin-

gle message to a list of recipients. Prices range from 0.1

to 0.01 Euro depending on the volume and destination

of the messages. The APIs among the bulk SMS opera-

tors differ. Usually they allow to set a number of SMS

fields from which they assemble the actual payload. Not

all of them are offering the same predefined fields. For

example [3] was the only one that allows us to set a TP-

Protocol-Identifier field. However, we verified that the

provided APIs are sufficient to carry out the presented

attacks and to generate attack payloads that are identical

to those sent from one of our phones.

MNO BNetwork

MSC

Internet

SMSC

PSTN

ESME K

HLR

BS

BS

BS

SMSC

MNO A
ESME J

SS7

SS7

Figure 4: SMS relevant structure of a mobile network

operator (MNO) network and the links to the PSTN, ES-

MEs, and other MNOs.

Mobile Phone Botnets: A botnet consisting of hi-

jacked mobile or smartphones [35] could also be used

for such attacks since every mobile phone is capable of

sending SMS messages. A mobile botnet has the distinct

advantage of free message delivery and high anonymity

10

for the attacker. using a mobile phone botnet one could

circumvent restrictions Bulk SMS operator might have

in different countries.

SS7 Access: With direct access to the Signaling Sys-

tem 7 (SS7) of the Public Switched Telephone Network

(PSTN) an attacker can very easily send SMS messages

in large quantities, for example to send SMS spam [25].

Figure 4 shows the basic network connections of a mo-

bile network operator. SMS sending via SS7 also has the

advantage of not being easily traceable, thus an attacker

can stay hidden for a longer period of time. Addition-

ally, SMS messages sent via SS7 are not restricted by

the Bulk SMS Operators (APIs) in terms of content or

header information that they contain.

5.3 Reducing the Number of Messages

There is one issue left with our attack. That is how can

one determine the type of mobile phone that is connected

to a specific phone number. If money does not play a

role in carrying out the attack this issue is easily resolved.

The attacker just sendsmultiple SMSmessages, each one

containing the payload for a specific type of phone, to

each phone number. One of the messages will trigger the

bug if the phone is vulnerable at all. This works well

but is not optimal. To reduce the number of messages

an attacker has to send we developed a technique that

allows the attacker to determine what kind of phone is

connected to a specific phone number. Actually we can

only determine if a specific malicious message has an

effect on the phone that is connected to a specific number.

Our method abuses a specific feature present in the

SMS standard. This feature is called recipient noti-

fication, it is indicated through the TP-Status-Report-

Request flag in an SMS message. If the flag is set the

SMSC notifies the sender of the message when the re-

cipient has received the message. Most Bulk SMS oper-

ators support this feature through their APIs. Our method

works by measuring the delay between sending the mes-

sage and receiving the reception notification.

The technique works as follows: First, we send the

message containing the payload for crash(1). Second,

when we receive the receipt for that message we send the

payload for crash(2). Third, we measure the time differ-

ence between the two notifications. If the difference is

equal we continue with the next payload. If the differ-

ence between both notifications is significant we deter-

mine that the first message crashed the phone. The phone

needed to reboot and register on the network before be-

ing able to accept the next message. If there is no noti-

fication we determine that the phone did not receive the

message because it crashed before completely accepting

the message. Fourth, we continue until all crash pay-

loads are sent. If none of them trigger, the phone number

is removed from the hit-list. The method can be opti-

mized through ordering the crash payloads according to

the popularity of mobile phones in the targeted country.

With this method an attacker can optimize a hit-list

during an ongoing attack by matching bug-to-phone-

number. This optimized hit-list could as well be used for

highly targeted attacks. For example against the network

operator as described in Section 5.5, which explains our

attack scenarios.

5.4 Network Assisted Attack Amplification

Some of the bugs we discovered prevent the phone from

acknowledging the SMS message to the network. Fig-

ure 2 shows the states that happen during a message

transfer from the network to the phone. In the case of

some of our bugs (Nokia S40 and Sony Ericsson; Bug

Characterization Section 4.10) the message RP-ACK is

not sent by the phone. This leads the network to believe

that the message was not received, therefore, the SMSC

will try to resend the SMSmessage to the phone. This re-

delivery attempt is a perfect attack amplifier somewhat

similar to smurf attacks [26] on IP networks.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 1 2 3 4 5 6 7 8 9 10 11

m
in

u
te

delivery attempt

Vodafone Germany
E-Plus Germany

O2 Germany
T-Mobile Germany

Figure 5: Timing of SMS message delivery attempts.

In our tests, sending malicious SMS messages over

real operator networks, we discovered that operators

have different re-transmit timings, shown in Figure 5.

Furthermore, they also seem to have different transmit

queues. We measured the delivery timings of some Ger-

man mobile network operators in order to determine how

one could abuse the delivery attempts for improving our

Denial-of-Service attacks. We conducted the test by at-

tacking one of our Sony Ericsson devices and monitoring

the phone using the Bluetooth method described in Sec-

tion 4.4.

The tests were carried out on the networks of Voda-

fone, T-Mobile, O2 (Telefonica), and E-Plus. The initial

11

delivery attempt is at minute 0. It shows that all opera-

tors do a first re-transmit after 1 minute, and a few more

re-transmits every 5 minutes. In addition to what Fig-

ure 5 shows, Vodafone does an additional re-delivery 24

hours after the last delivery shown in the graph. O2 also

attempts an additional re-delivery 20 hours after the last

delivery shown in the graph.

Through the same test we determined that SMS mes-

sages are not queued, but have an individual re-transmit

timer. That means an attacker can send multiple mali-

cious SMS messages to a victim’s phone with a short

delay between each message and thus can increase the

effect of the network assisted attack by sending multiple

messages.

5.5 Attack Scenarios and Impact

There are multiple possible attack scenarios such as or-

ganized crime going after the end-user, the mobile op-

erator, and the manufacturer to demand money. Attacks

could also be carried out for fun by script kiddies and the

like. Below we discuss some possible scenarios. We ac-

knowledge that some scenarios such as the attack against

individuals are more likely then an attack against a man-

ufacturer.

Individuals: Individuals could be pressured to pay a

few Euros in order to keep their phone operational. This

has happened with the Ikke.A [35] worm that requested

the user to pay 5 Euros in order to get back the control

over their iPhone. In our case the victim could be forced

to send a text message to a premium rate number in order

to be taken off the hit-list.

Another attack against an individual or a group could

aim to prevent them from communicating. This can be

efficiently carried out if the target uses a SIM card with

security PIN enabled, as we describe in Section 4.9.

Operators: Operators could be threatened to have all

their customers attacked. Such an attack would mainly

kill the operator’s reputation as being reliable. The op-

erator might also lose money due to people being un-

able to call and send text messages. In order to have a

global impact such an attack has to be carried out on a

very large scale for a longer time. As a result, customers

could possibly terminate their contract with the operator.

Such extortion scams were and still are popular on the

Internet [8].

Furthermore, the operator’s mobile network can be

attacked directly or as a side effect of an large attack

against its users. This could work when thousands of at-

tacked phones drop off the network and try to re-connect

at the same time. This can cause an overload of the back-

end infrastructure such as the HLR. This kind of attack

seems likely since mobile networks are not optimized for

these specific kinds of requests. A similar attack based

on unusual requests was shown in [36]. It is not nor-

mal that thousands of phones try to connect and authen-

ticate at the same time over and over again. To optimize

this DoS attack, the attacker needs to make sure to tar-

get phones connected to different BTSs and MSCs (Fig-

ure 4) of the targeted operator in order to circumvent bot-

tlenecks such as the air interface at the BTS. A clogged

air interface would throttle the attack.

Manufacturers: Likewise manufacturers could be

threatened to have their brand name destroyed or weak-

ened by attacking random people owning their specific

brand of mobile phones. The attack could cost them

twice. Once for the bad reputation and second for re-

placement devices. Even if the phones are not broken

victims of such an attack will still try to claim their de-

vice broken to get a replacement.

Public Distress: A carefully placed attack during a

time of public distress could lead to large scale prob-

lems and possibly a panic. One example occurred in

Estonia [19] in 2007 when a group of people carried

out a Denial-of-Service attack against the countries Inter-

net infrastructure. Additionally, cutting off certain user

groups such as fireman or police officers during an emer-

gency situation would have a critical impact. Not ev-

ery country has special infrastructure for emergency per-

sonal, and, therefore, rely on mobile phones to communi-

cate. This is even true in countries like Germany where

every police officer carries a mobile phone since their

two-way-radios are often not usable.

6 Countermeasures

In this section we present countermeasures to detect and

prevent the kind of attacks we developed. First, we

present a mechanism to detect our and similar attacks

through monitoring for a specific misbehavior. Second,

we discuss filtering of SMS messages. Filtering can be

done on either the phones themselves or on the network.

We discuss the advantages and disadvantages of each of

them. Third, we briefly discuss amplification attacks.

6.1 Detection

To prevent our attacks, operators first need to be able

to detect them. Detection is not very easy since the

operator does not get to look inside the phone during

runtime. Therefore, the only possible way to monitor the

phone is through the network. We propose the following:

Monitor Phone Connectivity Status: Monitor if a

phone disconnects from the network right after receiving

an SMS message.

Log last N SMSMessages: Log the last N SMS mes-

sages sent to a particular phone in order to analyze pos-

12

sible malicious messages after a crash was detected. Use

the message as input for SMS filters/firewall.

Use IMEI to Detect Phone Type: The brand and

type of a mobile phone can be derived from the IMEI

(International Manufacturer Equipment Identity). This

is useful to correlated malicious SMS messages to a

specific brand and type of phone.

Using this technique it is possible to catch malicious

SMS messages that cause phones to reboot and lose net-

work connectivity. This should especially help to catch

unknown payloads that cause crashes. Such a monitor is

also capable of detecting if a large attack is in progress by

correlating multiple SMS-receive-disconnect events in a

certain time-frame.

6.2 SMS Filtering

SMS filtering can be implemented either directly on the

phone or within the operator’s network. Both possibil-

ities have inherent benefits and drawbacks that are pre-

sented in this section.

It is important to reconsider the process of SMS

delivery. First, an SMS message is sent from the

sender phone to the senders SMSC. Next, the senders

SMSC queries for the SMSC of the recipient and

delivers the message to the responsible SMSC. Fi-

nally, the relevant SMSC locates the recipient’s phone

and delivers the SMS message via the BTS Over-the-Air.

Client-side SMS Filtering would need to be done

right after the modem of the phone received and demod-

ulated all the frames carrying the SMS message and be-

fore pushing it up the application stack. The filter would

need to parse the SMS message and check for known bad

messages similar to signature-based antivirus software or

a packet filter firewalls. The problem with this solution

is the update of the signatures. Of course, the parser

in the SMS filter must be bug free otherwise the attack

just moves from the phone software to the filter software.

Also, devices that are already in the field would not profit

from such a filter since only new phones will have this.

Also, newer phones will likely not contain bugs that are

known at the time they are manufactured. Therefore, we

believe network-side filters make more sense.

Network-side SMS Filtering takes place on the

SMSC of the mobile network operator. Therefore, it can

inspect all incoming and outgoing SMS messages. There

are multiple advantages of network-side filtering. First,

the filter software runs on the network, therefore, it cov-

ers all mobile phones connected to that network. Second,

changing the filter rules can be done in one central place.

Third, malicious SMS messages are not sent out to the

destination mobile phones, therefore, reducing network

load during an attack.

Network-side filters also have drawbacks. First, if a

phone is roaming within another operator’s network, the

SMS message does not travel through the network of the

home operator. Thus the filters are not touched. This is

the only advantage of phone-side SMS filtering. In this

case the user becomes attackable as soon as he leaves

his home network. For traveling business people in Eu-

rope, this is quite normal. The GSMA already has a solu-

tion for this issue called SMS homerouting. SMS Home-

routing as specified in [11] defines that SMS messages

are always routed through the receiver’s home-network.

Meaning that all SMS messages travel through SMSCs

of his service provider at home. SMS messages, there-

fore, can be filtered by the receiver’s service provider.

The second issue with network-side filtering is privacy.

In order to do SMS filtering the operator must be allowed

to inspect SMS messages. This could be an issue in some

countries where mobile telephony falls under special reg-

ulations.

6.3 Preventing Network Amplification

Attack amplification through re-transmissions of SMS

messages should be avoided since this greatly helps an

attacker. We suggest that operators limit the number of

re-transmissions. Some operators re-send the messages

10 times, this seems unnecessary.

7 Conclusions

In this paper we have shown how to conduct vulnerabil-

ity analysis of feature phones. Feature phones are not

open in any way, the hardware and software are both

closed and thus do not support any classical debugging

methods. Throughout our work we have created analy-

sis tools based on a small GSM base station. We use the

base station to send SMS payloads to our test phones and

to monitor their behavior. Through this testing we were

able to identify vulnerabilities in mobile phones built by

six major manufacturers. The discovered vulnerabilities

can be abused for Denial-of-Service attacks. Our attacks

are significant because of the popularity of the affected

models – an attacker could potentially interrupt mobile

communication on a large scale. Our further analysis

of the mobile phone network infrastructure revealed that

networks configured in a certain way can be used to am-

plify our attack. In addition, our attack can be used to not

only attack the mobile handsets, but through their misbe-

havior can be used to carry out an attack against the core

of the mobile phone network.

To detect and prevent these kind of attacks we suggest

a set of countermeasures. We conceived a method to de-

13

tect our and similar attacks by monitoring for a specific

behavior.

Acknowledgements

The authors would like to thank Charlie Miller, An-

dreas Krennmair, Dmitry Nedospasov, Borgaonkar Rav-

ishankar, and Simon Schoar for their help reviewing the

paper and for helping us to acquire phones for testing.

References

[1] Clickatell Bulk SMS Gateway. http://www.c

lickatell.com.

[2] Das Örtliche. http://dasoertliche.de.

[3] Hay Systems Ltd. http://www.hslsms.com.

[4] Micromax mobile. http://www.micromaxi

nfo.com.

[5] Routo Messaging. http://www.routomessag

ing.com.

[6] Ping of Death. http://insecure.org/spl

oits/ping-o-death.html, October 1996.

[7] Honeynet Project. http://project.honeyne

t.org, 2005.

[8] DDoS extortion-themed scam circulating.

http://www.zdnet.com/blog/securi

ty/ddos-extortion-themed-scam-ci

rculating/7180, August 2010.

[9] Micromax becomes the third largest handset man-

ufacturer in India. http://www.topnews.in/

micromax-becomes-third-largest-h

andset-manufacturer-india-2260105,

April 2010.

[10] When It Comes to Apps, Feature Phones Are the

New Black. http://gigaom.com/2010/03/

27/when-it-comes-to-apps-feature-

phones-are-the-new-black/, May 2010.

[11] 3GPP/ETSI. TR 23.840 Study into routeing of

MT-SMs via the HPLMN.

[12] 3GPP/ETSI. 3GPP TS 03.38 Alpha-

bets and language-specific information.

http://www.3gpp.org/ftp/Specs/h

tml-info/0338.htm, 1998.

[13] 3GPP/ETSI. 3GPP TS 03.40 Technical

realization of the Short Message Service.

http://www.3gpp.org/ftp/specs/h

tml-info/0340.htm, 1998.

[14] 3GPP/ETSI. 3GPP TS 04.11 Point-to-Point (PP)

Short Message Service (SMS) Support on Mobile

Radio Interface. http://www.3gpp.org/ftp

/specs/html-info/0411.htm, 1998.

[15] 3GPP/ETSI. 3GPP TS 23.040 - Techni-

cal realization of the Short Message Service

(SMS). http://www.3gpp.org/ftp/Specs

/html-info/23040.htm, September 2004.

[16] ABI RESEARCH. Worldwide Mobile Subscrip-

tions Number More than Five Billion. http:

//www.abiresearch.com/press/3531-Wo

rldwide+Mobile+Subscriptions+Num

ber+More+than+Five+Billion, October

2010.

[17] B. JURRY XFOCUS TEAM. Siemens Mo-

bile SMS Exceptional Character Vulnerability.

http://www.xfocus.org/advisories/

200201/2.html, January 2002.

[18] B. MÜLLER. From 0 to 0-Day On Symbian.

https://www.sec-consult.com/files/S

EC Consult Vulnerability Lab Pwnin

g Symbian V1.03 PUBLIC.pdf, 2009.

[19] BBC NEWS. Estonia hit by ’Moscow cyber

war’. http://news.bbc.co.uk/2/hi/eur

ope/6665145.stm, 2007.

[20] C. GUO, H. J. WANG, W. ZHU. Smartphone at-

tacks and defenses. In Third ACM Workshop on

Hot Topics on Networks (2004).

[21] C. MILLER. Exploiting the iPhone.

http://securityevaluators.com/c

ontent/case-studies/iphone/, August

2007.

[22] C. MILLER, M. DANIEL, J. HONOROFF. Exploit-

ing Android. http://securityevaluators

.com/content/case-studies/android/

index.jsp, October 2008.

[23] C. MULLINER, C. MILLER. Injecting SMS Mes-

sages into Smart Phones for Security Analysis. In

Proceedings of the 3rd USENIX Workshop on Of-

fensive Technologies (WOOT) (Montreal, Canada,

August 2009).

[24] C. MULLINER, G. VIGNA. Vulnerability Analysis

ofMMSUser Agents. In Proceedings of the Annual

Computer Security Applications Conference (AC-

SAC) (Miami, FL, December 2006).

[25] CELLULAR-NEWS. A ”rising Tide” of SS7 Based

Mobile Network Fraud. http://www.cellu

14

lar-news.com/story/46377.php, Novem-

ber 2010.

[26] CERT. Advisory CA-1998-01 Smurf IP Denial-of-

Service Attacks. http://www.cert.org/adv

isories/CA-1998-01.html, January 1998.

[27] COMSCORE. German Mobile Market Share.

http://www.comscore.com/index.php/P

ress Events/Press Releases/2010/1/

comScore Reports November 2009 Ger

man Mobile Market Share, November 2010.

[28] COMSCORE. U.S. Mobile Subscriber Market

Share. http://comscore.com/Press Eve

nts/Press Releases/2010/7/comScore

Reports May 2010 U.S. Mobile Subscri

ber Market Share, May 2010.

[29] D. MOORE, V. PAXSON, S. SAVAGE, C. SHAN-

NON, S. STANIFORD, N. WEAVER. Inside the

Slammer Worm. IEEE Security and Privacy 1

(2003), 33–39.

[30] H. WELTE. OpenBSC. http://openbsc.osm

ocom.org/trac/, 2008.

[31] IDC. Western European Mobile Phone Mar-

ket Grows. http://www.idc.com/getdo

c.jsp?containerId=prUK22402810, June

2010.

[32] IP.ACCESS LTD. nanoBTS 1800. http:

//www.ipaccess.com/picocells/nanoB

TS picocells.php.

[33] MOBILE SECURITY LAB. SonyEricsson WAP

Push Denial of Service. http://www.mseclab

.com/?page id=123, January 2009.

[34] O. WHITEHOUSE. Nokia Phones Vulnerable to

DoS Attacks. http://www.infoworld.com

/article/03/02/26/HNnokiados 1.htm

l, February 2003.

[35] P. A. PORRAS, H. SAIDI, V. YEGNESWARAN. An

Analysis of the iKee.B iPhone Botnet. In Proceed-

ings of the 2nd International ICST Conference on

Security and Privacy on Mobile Information and

Communications Systems (Mobisec) (May 2010).

[36] P. TRAYNOR, M. LIN, M. ONGTANG, V. RAO, T.

JAEGER, T. LA PORTA, P. MCDANIEL. On Cel-

lular Botnets: Measuring the Impact of Malicious

Devices on a Cellular Network Core. In ACM Con-

ference on Computer and Communications Security

(CCS) (November 2009).

[37] P. TRAYNOR, W. ENCK, P. MCDANIEL, T. LA

PORTA. Mitigating attacks on open functionality

in sms-capable cellular networks. In In ACM Mo-

biCom (2006), pp. 182–193.

[38] R. FARROW. DNS Root Servers: Protecting the

Internet.

[39] R. RACIC, D. MA, H. CHEN. Exploiting MMS

vulnerabilities to stealthily exhaust mobile phone’s

battery. In Proceedings of the Second IEEE Com-

munications Society / CreateNet International Con-

ference on Security and Privacy in Communication

Network (SecureComm) (Baltimore, MD, Auguest

28 - September 1, 2006).

[40] S. BYERS, A. D. RUBIN, D. KORMANN. Defend-

ing against an Internet-based attack on the physical

world. ACM Trans. Internet Technol. 4, 3 (2004),

239–254.

[41] SUN MICROSYSTEMS. Java Micro Edition.

http://www.oracle.com/technetwork/j

ava/javame/index.html.

[42] T. AHONEN. Mobile Phone Market Shares for year

of 2009. http://communities-dominate

.blogs.com/brands/2010/02/phone-ma

rket-shares-for-year-of-2009-and-

last-quarter-2009.html, February 2010.

[43] T. AHONEN. Tomi Ahonen Almanac 2010 Mobile

Telecoms Industry Review. February 2010.

[44] T. ENGEL. Remote SMS/MMS Denial of Service

- Curse Of Silence. http://berlin.ccc.de/

˜tobias/cursesms.txt, December 2008.

[45] THE INTREPIDUS GROUP. WebOS: Ex-

amples of SMS delivered injection flaws.

http://intrepidusgroup.com/insig

ht/2010/04/webos-examples-of-sm

s-delivered-injection-flaws/, April

2010.

[46] V. IOZZO, P. WEINMANN. iPhone Sa-

fari vulnerability allowed to steal the SMS

database. http://news.cnet.com/8301-

27080 3-20001126-245.html, March 2010.

[47] W. ENCK, P. TRAYNOR, P. MCDANIEL, T. LA

PORTA. Exploiting Open Functionality in SMS-

Capable Cellular Networks. In Conference on

Computer and Communications Security (2005).

[48] WAP FORUM. WAP-209-WSP Wireless Applica-

tion Protocol MMS Encapsulation Protocol. ht

tp://www.wapforum.com, 2002.

15

Notes

1http://en.wikipedia.org/wiki/Telephone numbers in Germany

2http://en.wikipedia.org/wiki/Telephone numbers in Italy

3http://en.wikipedia.org/wiki/Telephone numbers in the United Kingdom

4http://en.wikipedia.org/wiki/Telephone numbers in Australia

APPENDIX

Figure 6 shows the layout of an SMS message in the

SMS SUBMIT format. Figure 7 shows the generic lay-

out of a User Data Header (UDH) with a number of In-

formation Elements.

Field Size

TP-Message-Type-Indicator 2 bit

TP-Reject-Duplicates 1 bit

TP-Validity-Period-Format 2 bit

TP-Status-Report-Request 1 bit

TP-User-Data-Header-Indicator 1 bit

TP-Reply-Path 1 bit

TP-Message-Reference integer

TP-Destination-Address 2-12 byte

TP-Protocol-Identifier 1 byte

TP-Data-Coding-Scheme 1 byte

TP-Validity-Period 1 byte/7 byte

TP-User-Data-Length integer

TP-User-Data depends on DCS/UDL

Figure 6: Format of the SMS SUBMIT PDU.

Field Size

UDHL 1 byte

IEI1 1 byte

IEIDL1 1 byte

IEID1 n bytes

...

IEIn 1 byte

IEIDLn 1 byte

IEIDn n bytes

Figure 7: The User Data Header

Table 8 shows an overview of the popularity of mobile

phone manufacturers in Germany, the United States, in

Europe, and around the world.

Manufacturer Market Share

Nokia 35.4%

Sony Ericsson 22.0%

Samsung 15.0%

Motorola 8.6%

Siemens 5.4%
(a) Germany, November 2009

Manufacturer Market Share

Samsung 22.4%

LG 21.5%

Motorola 21.2%

RIM 8.7%

Nokia 8.1%
(b) U.S.A., May 2010

Manufacturer Market Share

Nokia 32.8%

Samsung 12.5%

LG 4.1%

Sony Ericsson 3.7%

Apple 3.0%

RIM 2.4%

Others 3.0%
(c) Europe, June 2010

Manufacturer Market Share

Nokia 38.0%

Samsung 20.0%

LG 10.0%

Sony Ericsson 5.0%

Motorola 5.0%

ZTE 4.5%

Kyocera 4.0%

RIM 3.5%

Sharp 2.6%

Apple 2.2%

Others 5.0%
(d) World, for the year 2009

Figure 8: Mobile phone Manufacturer Market share

16

