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Abstract. Modern web technologies, like AJAX result in more responsive and 

usable web applications, sometimes called Rich Internet Applications (RIAs). 

Traditional crawling techniques are not sufficient for crawling RIAs. We 

present a new strategy for crawling RIAs. This new strategy is designed based 

on the concept of “Model-Based Crawling” introduced in [3] and uses statistics 

accumulated during the crawl to select what to explore next with a high 

probability of uncovering some new information. The performance of our 

strategy is compared with our previous strategy, as well as the classical 

Breadth-First and Depth-First on two real RIAs and two test RIAs. The results 

show this new strategy is significantly better than the Breadth-First and the 

Depth-First strategies (which are widely used to crawl RIAs), and outperforms 

our previous strategy while being much simpler to implement. 

Keywords: Rich Internet Applications, Web Crawling, Web Application 

Modeling. 

1   Introduction 

Web applications have been undergoing a significant change in the past decade. 

Initialy, the web applications were built using simple HTML pages on the client side. 

Each page had a unique URL to access it. The client (web browser) would send a 

request for these URLs to the server which in turn would send the corresponding page 

in response. The client would then entirely replace the previous content with the new 

information sent by the server.  

In the recent years, with the introduction of newer and richer technologies for web 

application development, web applications have become more useable and interactive. 

These applications, called Rich Internet Applications (RIAs), changed the traditional 

web applications in two important aspects: first, client side-scripting languages such 
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as JavaScript have allowed the modification of the web page by updating the 

Document Object Model (DOM) [5], which represents the client-side “state” of the 

application. Second, using technologies like AJAX [6] the client can communicate 

asynchronously with the server, without having the user to wait for the response from 

the server. In both cases, the URL typically does not change during these client side 

activities. Consequently, we can now have a quite complex web application addressed 

by a single URL. 

These improvements increased the usability of web applications but on the other 

hand introduced new challenges. One of the important problems is the difficulty to 

automatically crawl these websites. Crawling is the process of browsing a web 

application in a methodical, automated manner or in an orderly fashion. Traditional 

crawling techniques are not sufficient for RIAs.  In traditional web applications, a 

page is defined by its URL and all the pages reachable from the current page have 

their URL embedded in the current page. Crawling a traditional web application 

requires to extract these embedded URLs and traverse them in an effective sequence. 

But in RIAs, the client-state can also change by executing events which are user 

actions (or time-outs) that trigger client-side code execution and hence cannot be 

mapped to a single URL. All these changes mean that traditional crawlers are unable 

to crawl RIAs, save for a few pages that have distinct URLs. 

An important functionality of the web in general is the information it provides. 

This information can only be made available if the different information sources can 

be found and indexed. If search engines are not able to crawl websites with new 

information, they will not be able to index them.  Hence a good part of the web in 

general will be lost.  In addition, crawling is also required for any thorough analysis 

of the web application such as for security and accessibility testing. To our 

knowledge, none of the current search engines, web application testers and analyzers 

have the ability to crawl RIAs [1].  

In this paper, we introduce a RIA crawling strategy using a statistical model. This 

strategy is based on the model-based crawling approach introduced in [3] to crawl 

RIAs efficiently. We evaluate the performances of our statistical model on two real 

RIAs and two test applications. We further compare our experimental results against 

other RIA crawling strategies, the Depth-First, the Breadth-First and the Hypercube 

[3], and we show that the new strategy obtains overall better results. 

The paper is organized as follows: In Section 2, we give the basic concepts in RIA 

crawling. In Section 3, we present the details of the new strategy based on statistical 

model. In Section 4, we provide experimental results obtained with our prototype. We 

conclude in Section 5. We omit the related works for space restrictions. 

2 Crawling RIAs 

A web application can be conceptualized as a Finite State Machine with “states” 

representing the distinct DOMs that can be reached in the web application and 

transitions representing event executions. The result of crawling is called a “model” 

of the application. A model basically contains the states and the possible ways to 

move from one state to another. 



A crawling strategy is an algorithm that decides how the exploration proceeds. In 

the case of event-based exploration of RIAs, the strategy basically decides which 

event to explore next. We say that a crawling strategy that is able to find the states of 

the application early in the crawl is an efficient strategy, since this is the goal of 

crawling. This is important, since for large RIAs it might not be feasible to wait for 

the crawler to complete the crawl. In this case, a strategy which discovers a larger 

portion of the application early on will deliver more data during the alloted time, and 

thus be more efficient. However, the main problem is that we do not know how the 

web application has been built and without this prior knowledge of the web 

application, finding an efficient strategy is difficult. 

Primarily motivated by the above goals, we introduced the concept of “Model-

Based Crawling” in [3]. Along with that we also introduced a two phase approach. 

The first phase, “state exploration phase”, aims at discovering all the states of the 

RIA. Once our strategy believes that it has probably found all the reachable states, we 

proceed to the second phase, the “transition exploration phase” which tries to execute 

the remaining transitions after state exploration, to confirm that nothing has been 

overlooked.  

In [2], we compiled a list of challenges and assumptions such as state equivalence, 

user-inputs, server states; which are important to be able to design an efficient 

crawling strategy and can be handled as separate research efforts. 

3 The Probability Strategy 

A crawling strategy can be efficient if it is able to predict the results of the event 

executions with some degree of accuracy. This helps give priority to the events that 

are more likely to discover new states and hence improve efficiency. Statistics about 

the past behavior of the event (from different states) can be used to model the future 

behavior of the event. With this motivation, we introduce a crawling strategy which 

uses statistical data collected during crawling. The strategy is based on the belief that 

an event which was often observed to lead to new states in the past will be more likely 

to lead to new states in the future. We call this new strategy “the Probability strategy”. 

3.1 Events’ Probability of Discovering New States 

Let P(e) be the event e’s probability of discovering a new state. Remember that the 

same event “e” can be found in different states (we say that e is “enabled” in these 

states). The following Bayesian formula, known as the “Rule of Succession” in 

probability theory, is used to calculate P(e) 
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where 

 N(e) is the “execution count” of e, that is, the number of times e has been 

executed from different states so far. 



 S(e) is the “success count” of e, that is, the number of times e discovered a 

new state out of its N(e) executions. 

 ps and pn are the terms to represent initial success count and initial execution 

count respectively. These terms are preset and represent the initial 

probability of an unexplored event to find a new state.  

This Bayesian formula is useful for estimating the probabilities in situations when 

there are very few observations. To use this formula we assign values to ps and pn to 

set the initial probability. For example, ps = 1 and pn = 2 can be used to set an event’s 

initial probability to 0.5 (note that N(e) = S(e) = 0 initially).  

Having Bayesian probability instead of using the “classical” probability, P(e)=S(e)/ 

N(e), with some initial values for P(e), avoids in particular have events that get a 

probability of 0 because no new state were found at their first execution. With our 

formula, events never have a probability of 0 (or 1) and can always be picked up after 

a while. 

3.2 Choosing the Next Event to Explore 

In this section, we describe the logic that helps the strategy decide which event to 

explore next. We first introduce the notation and definitions used.  

 S denotes the set of already discovered states. Initially S contains the initial state. 

 scurrent, represents the current state, the state we are at currently in the application 

while executing the crawl. scurrent always refers to one of the states in S.  

 For a state s, we define the probability of the state, P(s), as the maximum 

probability of an unexecuted event in s. If s has no unexecuted events then P(s) = 0 

 d(s, s') is the distance from s ∈ S to s' ∈ S. It is the length of the shortest path from 

s to s' in the model of the application discovered so far. 

When deciding which event to explore next, the Probability strategy aims to take 

the action that will maximize the chances of discovering a new state while minimizing 

the cost (number of event executions). For this reason, starting from the current state 

scurrent, we search for a state schosen such that exploring the event with probability 

P(schosen) in schosen achieves this goal. 

All the states that still have unexplored events are candidates to be schosen. However 

we have to take into account the distance from the scurrent to the schosen in addition to the 

raw probabilities when deciding schosen. Note that from scurrent reaching to any other 

state in S means following a known path (consisting of already explored events). 

Between two states that are at different distances from scurrent, we may consider 

reaching the one that is farther away because of its higher probability. However, the 

time to execute the extra events in this path could actually be used for exploration if 

the closer state is chosen. To make decisions in such situations we need to balance the 

cost of executing known events with the higher probability of the farther state. 

For our analysis it is necessary to have an estimation of discovering a state by 

exploring an event from an “average” state in S. For this purpose, we will use the 

average probability Pavg that is defined as follows. 

 Pavg = (Σs∈ S P(s)) / |S| 



To select a state that maximizes the probability while minimizing the cost, we need 

a mechanism that compares two states and decides which is more preferable. Let’s 

say we want to compare s and s'. If both are at the same distance from scurrent then the 

one with the higher probability is obviously a better choice. But if the cost of reaching 

one of the states, is higher than the other, say d(scurrent, s) < d(scurrent, s')) then there can 

be two cases. If P(s) ≥ P(s') then s is clearly a better choice. But if P(s) < P(s') then the 

fact that reaching s' is costlier than reaching s should be reflected in the comparison 

mechanism. To make up for the difference in the cost, we should allow the 

exploration of a sequence of k = d(scurrent, s') - d(scurrent, s) extra events after executing 

the event with probability P(s) from s. Thus we use the probability of discovering a 

new state after executing the event from S and executing k more unexecuted events 

(each with a probability of Pavg to discover new state). This is given by the following 

formula  

  (   ( ))(      )
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Now we can compare this value with P(s') and choose the option with higher 

probability. 

Summarizing, the schosen that we are looking for is the state, s ∈  S that satisfies the 

following condition  

∀  s' ∈  S  

- if  (             )    (             
 )  (  )   ( ) 

- if  (             )    (             
 )   (   ( ))(      )

 (             
 )  (             )

  (  ) 

- if  (             )    (             
 )   (   (  ))(      )

 (             )  (             
 )

  ( ) 

3.3 The Algorithm 

In this section we give an algorithm that picks an schosen from S. The algorithm 

initializes the variable schosen to the scurrent and proceeds in iterations. At iteration i the 

states at a distance i from the scurrent are compared against the current schosen. We check 

if any of them is more preferable to schosen. 

We optimize the search by exploiting the fact that we do not necessarily need to 

explore all the states in S to find schosen .The search can be stopped the moment we 

detect that it is not possible to find any state further away with a higher probability. 

This is possible since we take into account the cost of distance while comparing the 

probability of states.  We only need to know Pbest, the probability of the state with 

maximum probability in S.  

Then the maximum distance that needs to be considered from schosen (noted as  

maxDistanceToCheckFrom(schosen)) is the value of smallest d that satisfies  

1 – (1- P(schosen))(1 - Pavg) 
d
 ≥ Pbest (2) 

When the left hand side of (2) becomes as large as Pbest then it is not required to 

look further since even the states that might have the maximum probability, Pbest, will 

not be preferable anymore to schosen due to the distance factor.  

 



Algorithm ChooseStateToExplore 

schosen := scurrent; i := 1; distanceToCheck := maxDistanceToCheckFrom(schosen); 

while ( i < distanceToCheck) { 

Let s be the state with max probability at distance i from scurrent; 

if (s is preferable to schosen) { 

 schosen := s; 

distanceToCheck += maxDistanceToCheckFrom(schosen); 

      } 

   i++; 

} 

return schosen; 

4   Experimental Results 

In this section, we evaluate the performance of the Probability strategy on two real 

RIAs and two test RIAs. We have used the following metrics for performance 

evaluation. 

(1) Number of events and resets required to discover all states 

(2) Number of events and resets required to explore all transitions 

A reset is loading the URL of the application to go back to the initial state. Resets 

are typically costlier (in terms of time of execution) than event execution. For 

simplicity we have combined the events and resets required for state exploration and 

transition exploration into a single cost factor. For this purpose, we have expressed 

the cost of resets in terms of number of event execution (the actual value used is 

application dependent). We believe that number of events execution is a good metrics 

for performance evaluation, since the time to crawl is proportional to the number of 

events executed during the crawl. 

We compare the performance of our strategy with the Breadth-First and the Depth-

First strategies and our existing Hypercube strategy. We also present, for each 

application the optimal number of events executions to explore all the states of the 

application. It is important to understand that this optimal value is calculated after the 

fact, once the model of the application is obtained. This number is found by an 

Asymmetric Traveling Salesman Problem (ATSP) solver [4] on the graph instance 

obtained for the application.  

In an effort to minimize any influence that may be caused by considering events in 

a specific order, the events at each state are randomly ordered for each crawl. Also, 

each application is crawled 5 times with each method and the average cost of these 5 

runs is used for comparison.  

The first real RIA we consider is an AJAX-based periodic table2. In total 240 states 

and 29034 transitions are identified by our crawler and the reset cost is 8. The second 

real application considered is Clipmarks3. For this experimental study we have used a 

partial local copy of the website. It consists of 129 states and 10580 transitions and 
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the reset cost is 18. The third application, TestRIA is a test application that we 

developed using AJAX4. It has 39 states and 305 transitions and a reset cost of 2. The 

fourth application is a demo web application maintained by the IBM
®
 AppScan

®
 

Team5. We have used the AJAX-fied version of the website. The application has 45 

states and 1210 transitions and a reset cost of 2. 

4.1 State Exploration 

For compactness we have used boxplots: the top of vertical lines show the maximum 

number required to discover all the states.The lower edge of the box, the line in the 

box and the higher edge of the box indicate the number required to discover a quarter, 

half and 3 quarters of all the states in the application, respectively.  

For all applications, Probability strategy has performed significantly better than the 

Breadth-First and the Depth-First strategies. The paper [3] proved the efficiency of 

the Hypercube strategy compared to the current state of the art commercial products 

and other research tools. Probability strategy also showed better performance than the 

Hypercube strategy. The box plots are drawn in logarithmic scale. 

 

 
Figure 1: State exploration statistics (Logarithmic scale) 

4.2 Transition Exploration 

Table 1: Transition Exploration Statistics 
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Table 1 presents the overall cost of crawling. For all applications, the cost required by 

the Probability strategy is better than or comparable to the Hypercube strategy but it 

exceeds the Depth-First and the Breadth-First strategies by a significant margin. 

5   Conclusion 

We have presented a new crawling strategy based on the idea of model-based 

crawling introduced in [3]. Experimental results show that this strategy outperforms 

the standard crawling strategies by a significant margin. Further, it also outperforms 

the Hypercube strategy in most cases and it performs comparably in the least 

favorable example, while being very much simpler to understand and to implement. 

This makes Probability a good choice for general purpose crawling. When compared 

to the optimal solution, there is still some room for improvement. However, the 

optimal solution is calculated after the website model is known, and thus can only be 

used as a benchmark, not to actually crawl an unknown web application.  
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