
Beware of Finer-Grained Origins

Collin Jackson
Stanford University

collinj@cs.stanford.edu

Adam Barth
Stanford University

abarth@cs.stanford.edu

Abstract

The security policy of browsers provides no isolation be-
tween documents from the same origin (scheme, host, and
port), even if those documents have different security char-
acteristics. We show how this lack of isolation leads to ori-
gin contamination vulnerabilities in a number of browser
security features, such as cookies, encryption, and code
signing. A tempting approach to fixing these vulnerabili-
ties is to refine the browser’s notion of origin, leveraging
the browser’s built-in isolation between security contexts.
We demonstrate that attackers can circumvent these “finer-
grained origins” using the library import and data export
features of browsers. We discuss several approaches to pre-
venting these attacks.

1 Introduction

Browsers grant scripting privileges to documents based
on their origin. A document’s origin is comprised of the
scheme (protocol), host, and port of the URL from which
the browser retrieved the document. One document can
read and modify (i.e., control completely) another docu-
ment if the two documents were retrieved from the same
origin. For web URLs, the same-origin, and therefore the
“can-script,” relation is transitive and symmetric, partition-
ing documents into equivalence classes. These equivalence
classes provide confidentiality and integrity for sensitive in-
formation by isolating different protection domains.

Origin Contamination. Many current and proposed
browser security features ignore the same-origin equiva-
lence classes and treat documents differently depending on
some security characteristics of the document. For exam-
ple, the browser restricts which cookies a document can
read based on the document’s path. A sub-origin privilege
is a privilege granted to some, but not all, of the documents
from an origin. Table 1 contains a number of browser secu-
rity features that attempt to grant sub-origin privileges.

These sub-origin privileges interact poorly with the
browser’s scripting policy. If left unmodified, the browser’s
scripting policy lets a document obtain all the sub-origin
privileges granted to any of the documents in its origin, a
phenomenon we refer to as origin contamination. For ex-
ample, a document can circumvent path-based restrictions
on cookies because the scripting policy permits the docu-
ment to inject script into a document with the appropriate
path. One approach to avoiding this privilege escalation is
to revise the browser’s scripting policy to recognize finer-
grained origins that isolate documents with different privi-
leges, preventing documents from gaining additional privi-
leges by injecting scripts into other documents.

Library Import and Data Export. Although finer-
grained origins prevent origin contamination as such, an at-
tacker can often circumvent the protection they provide by
using browser features that explicitly import libraries or ex-
port data. For example, importing a library (such as a script,
cascading style sheet, or a SWF movie) lets a document en-
dorse the contents of the library and execute the library in
the protection domain of the document. Submitting a form
lets a document declassify some information and export the
information to the URL specified by the “action” attribute
of the form element.

When importing a library or exporting data, documents
specify the library to import or the recipient of the data
by URL. If a browser security feature depends on informa-
tion not present in the URL, these import and export facil-
ities lead to undesired behavior. For example, the locked
same-origin policy [8] attempts to refine origins by seg-
regating documents retrieved over HTTPS using different
public keys, but this policy does not protect documents that
import libraries, for example via the script element, be-
cause URLs fail to designate public keys.

Solutions. We describe three approaches to modifying the
browser’s security policy to grant additional privileges to
documents safely.

1. Embrace. Grant the privilege to all documents in an
origin or to none of the documents in an origin. This



Circumvented by
Feature Sub-Origin Privilege Contaminated Origin Library Import Data Export
Cookie Paths Read Cookie X
WSKE Read Cookie X X X
Mixed Content Show Lock X N/A
Certificate Errors (IE7) Show Lock X X X
Extended Validation Show Organization X X X
Petname Toolbar Show Petname X X X
Passpet Obtain Password X X X
Signed JARs Install Software X X N/A
Locked SOP Read Cookie X X
IP-based Origins Network Requests X X

Table 1. Undesirable interactions between browser features

approach harmonizes the new security feature with the
current browser security policy.

2. Extend. Extend URLs to contain the relevant secu-
rity information and refine the browser’s notion of an
origin to distinguish URLs based on this information.
This approach lets authors specify the relevant secu-
rity information when importing libraries and export-
ing data.

3. Destroy. Prevent the browser from rendering docu-
ments that would not be granted the privilege. This ap-
proach prevents documents that lack the privilege from
obtaining the privilege because the browser acts as if
those documents did not exist.

Organization. The rest of this paper is organized as fol-
lows. In Section 2, we provide examples of origin contami-
nation. In Section 3, we describe existing finer-grained ori-
gin proposals and show their library import and data export
interactions. In Section 4, we show how these attacks can
be prevented. Section 5 concludes.

2 Origin Contamination

There are numerous browser security features that grant
privileges to a subset of documents in an origin. Many of
these features fail to account for the browser’s scripting pol-
icy and contain the same poor interaction: a document that
lacks the privilege can escalate its privileges by injecting
script into a document that has the privilege.

• Cookie Paths. One classic example of a sub-origin
privilege is the ability to read cookies with “path” at-
tributes. In order to read such a cookie, the path of the
document’s URL must extend the path of the cookie.
However, the ability to read these cookies leaks to all

documents in the origin because a same-origin doc-
ument can inject script into a document with the ap-
propriate path (even a 404 “not found” document) and
read the cookies. This “vulnerability” has been known
for a number of years [10]. This vulnerability was
“fixed” by declaring the path attribute to be a conve-
nience feature rather than a security feature.

• Web Server Key-Enabled Cookies. A modern ex-
ample of the same phenomenon is Web Server Key-
Enabled (WSKE) cookies [9]. A WSKE cookie can be
read only by documents retrieved over an HTTPS ses-
sion that uses the same public key as the session that
stored the cookie. This sub-origin privilege, the ability
to read a WSKE cookie for a specific key, has the same
vulnerability as the path attribute. A document from
the same origin (but retrieved using a different key) can
inject script into a document with the appropriate key
and read the cookie [8].

• Mixed Content. Browsers typically indicate whether
an HTTPS document imports script libraries over
HTTP. These scripts lack the protection afforded by
HTTPS and can be replaced by an active network at-
tacker. Browsers, however, fail to indicate that other
documents in the same origin are contaminated by
mixed content, as shown in Figure 1. Once an HTTPS
document has imported a malicious script, the script
can can inject malicious scripts into every reachable1

document in the same origin, including those currently
displaying a lock icon. Thus, a document without the
privilege to show a lock icon can obtain that privilege
due to origin contamination.

• Certificate Errors. In Internet Explorer 7, documents
obtained from HTTPS connections with certificate er-
rors are displayed with a red address bar and the text

1An attacker can reach a document either via a JavaScript pointer or by
designating the document’s window by name.

2



Figure 1. A sub-origin privilege. Both documents have the same scheme, host, and port, yet only
one of them is permitted to display a lock icon.

“certificate error” because such documents could have
been supplied by an active network attacker. The
browser does not degrade the security indicators for
other documents in the same origin even though the
potentially compromised document can inject script
and display malicious content in documents without
the certificate error warning. (Firefox 2 does not de-
grade a document’s security indicators after the user
clicks through a certificate error.)

• Extended Validation. The browser’s scripting pol-
icy does not distinguish between HTTPS connections
that use an Extended Validation (EV) certificates from
those that use non-EV certificates. For example, Pay-
Pal serves https://www.paypal.com/ using an
EV certificate, but a principal who has a non-EV cer-
tificate for www.paypal.com can inject script into
the PayPal login page without disrupting the browser’s
Extended Validation security indicators; see Figure 2.

• Petname Toolbar. The Petname Toolbar [3] allows a
user to associate a “pet name” (a short, user-specified
string) with an HTTPS certificate. If the browser re-
trieves a document over an HTTPS connection that
uses that certificate, the browser displays the certifi-
cate’s pet name, highlighted in green, as a security in-
dicator. Displaying the user’s pet name is a sub-origin
privilege granted only to those documents with the ap-
propriate certificate. If the attacker has contaminated
the https://bank.com/ origin (say by tricking
the user into clicking through a certificate warning),
the attacker can inject script into a document retrieved
over a legitimate HTTPS connection and control the
contents of a document decorated the user’s pet name
indicator. Passpet [11], a password manager based on
pet names, also exhibits this behavior.

• Signed JARs. In Firefox, documents contained in
signed archive files (JARs) are granted the privilege to

prompt the user for additional privileges (such as the
privilege to write to the user’s hard drive and to inject
script into any web site). The security user interface
for this prompt contains the common name of the cer-
tificate that served the document; see Figure 3. This
sub-origin privilege can be obtained by all documents
in the JAR’s origin because those documents can in-
ject script into a signed document once it resides in the
browser’s memory. This vulnerability is particularly
troubling because many well known brands, such as
Yahoo!, Google, and eBay have published signed JAR
files. A web attacker can mount this attack if the JAR
contains at least one file (such as LICENSE.txt) into
which to inject script.

3 Library Import and Data Export

The most natural way to repair the poor interactions in
the preceding section is refine the browser’s notion of a se-
curity origin to isolate documents that have the privilege
from documents that lack the privilege. This approach is
often ineffective because browsers provide a number of fa-
cilities for endorsing and declassifying information. The
most commonly used endorsement facility is importing a li-
brary (used on virtually every web site), which lets a docu-
ment import scripts, style sheets, SWF movies, Java applets,
and other resources that contain script. The most commonly
used declassification feature is form submission, which
lets a document send information to a network endpoint
addressable by a URL. Newer browser features, such as
cross-site XMLHttpRequest, XDomainRequest, and
postMessage, provide both endorsement and declassifi-
cation facilities because they can be used as two-way com-
munication channels.

Documents that import libraries and export data using
relative URLs are especially problematic. The authors of
these document typically intend to refer to URLs under their

3



https://bank.com/

CN=bank.com
Self-signed

CN=bank.com
https://bank.com/

AƩacker BankUser

Figure 2. Extended Validation origin contamination. An active network attacker contaminates the
bank’s origin. When the user visits the real bank, and the attacker injects script into the bank’s
document without disturbing the Extended Validation indicator.

own control, but the browser resolves these URLs relative
to the URL of the current document. If the attacker has al-
tered the URL of the document, for example by naming the
server containing the document evil.com, relative URLs
are resolved to an absolute URLs under the control of the
attacker.

• Locked Same-Origin Policy. The locked same-origin
policy [8] augments WSKE [9] by refining origins for
HTTPS documents to include the server’s public key.
The goal of this policy is to prevent a pharming at-
tacker (who controls DNS and can trick the user into
clicking through certificate warnings) from reading the
Secure cookies from a legitimate HTTPS session. If
the legitimate document imports a library, a pharming
attacker can circumvent the locked same-origin policy
and read the forbidden Secure cookies. Instead of in-
terposing on the loading of the document, the pharmer
waits for the document to import a library and then
supplies a malicious response. The malicious library is
executed with the document’s privileges and can read
the Secure cookies.

• IP-based Origins. The HTML 5 specification pro-
poses that browsers refine origins to include IP ad-
dresses in order to prevent DNS rebinding attacks [7],
preventing the attacker’s script from accesssing con-
tent host at the target’s IP address. In a DNS rebinding
attack, the attacker’s DNS server points evil.com to
both the attacker’s server and the victim’s server. If
a document hosted by the victim server uses a rela-
tive path to import a library, the browser will resolve

the path relative to evil.com. When the browser re-
trieves the library, the attacker can rebind evil.com
to the attacker’s server, reply with a malicious library,
and run script in the origin for the victim’s IP address,
circumventing the IP-based restrictions.

• Passpet. Passpet [11] is an extension of the Petname
Toolbar that generates passwords based pet names.
When the user clicks on his or her “pet,” Passpet in-
jects the generated password into the site’s password
field. The goal of this feature is to prevent phishing
attacks by training users to click their pet rather than
entering passwords into web pages. If the user is will-
ing to accept a common name mismatch (and the bank
exports data to a relative URL), a phishing attacker can
steal the user’s bank password (see Figure 4):

1. When the user visits https://evil.com/,
the attacker forwards each packet of the HTTPS
session to bank.com.

2. If the user clicks through the HTTPS warning di-
alog box, the browser establishes a TLS session
with the real bank, who responds with a login
form that submits to a relative path, /login.
The Passpet indicator considers only the certifi-
cate and shows the bank’s pet name, even though
the location bar reads https://evil.com.

3. The user clicks his or her pet to log in. Based
on the certificate, Passpet injects the user’s bank
password into the password field.

4



Figure 3. Signed JAR origin contamination. This Yahoo! Image Search document contains a frame
to evil.com, which is hosting a JAR signed by Yahoo!. Clicking “Allow” lets the attacker install
software on the user’s machine. If the user had previously granted Yahoo! this privilege, and checked
“Remember my decision,” the browser would let the attacker install software without prompting.

4. When the user submits the login form, the at-
tacker ceases to forward the session and estab-
lishes a new TLS session directly with the user,
presenting a valid certificate for evil.com.

5. The browser accepts this TLS session as valid
and sends the password to the attacker, who can
now log in as the user at the real bank site.

An attacker can also use this technique to steal pass-
words from users of the Petname Toolbar if the user
enters their password based on the displayed pet name,
as instructed by the documentation [3].

4 Solutions

Designers of new browser features must consider both
the implicit and explicit trust relations between documents.
We propose three approaches to improving the browser’s se-
curity policy that interact securely with the browser’s script-
ing policy and the browser’s architecture for importing li-
braries and exporting data.

Embrace. The simplest approach to designing new privi-
leges is to embrace the current scripting policy and explic-
itly grant the privilege either to all, or to none, of the docu-
ments in an origin. This is the most common approach and
is used by the vast majority of new browser features.

• Frame Navigation. The frame navigation policy in-
cluded in Internet Explorer 6, Firefox 2, and Opera 9
grants navigation privileges to documents based on
their location in the frame hierarchy. The mod-
ern frame navigation policy, adopted in Internet Ex-
plorer 7, Firefox 3, and Safari 3 [1], explicitly propa-
gates navigation privileges based on origin. This pol-
icy is more convenient for web developers because it is
less restrictive, but is no less secure because an attacker
could always have injected scripts into the appropriate
documents to achieve the same results.

• Phishing Filters. The phishing filters included in In-
ternet Explorer and Firefox consider an origin to con-
tain either entirely phishing or entirely non-phishing
documents. Had the designers of the phishing filter
attempted to classify individual documents, a phish-
ing page could have suppressed the phishing warning
by injecting script into a document classified as non-
phishing. The current design avoids this pitfall by em-
bracing origin contamination.

Extend. Finer-grained origins can be made secure by ex-
tending URLs to contain enough information to designate a
fine-grained origin fully. This prevents library import and
data export vulnerabilities because a document can fully
specify its trust relationships using URLs.

5



https://evil.com/login

CN=evil.com

CN=bank.com
https://evil.com/

POST /login
pwd=fido123

AƩacker BankUser

Figure 4. Passpet data export. The phishing web site forwards traffic between the user and the real
bank, causing a common name mismatch warning. Because the bank’s certificate was used, Passpet
injects the user’s bank password into the login form. When the login form is submitted to a relative
path, the browser establishes a valid TLS session with the attacker and sends the password.

• HTTPEV. The Extended Validation behavior de-
scribed in Section 2 could be addressed by creating
an HTTPEV scheme that is similar to the HTTPS
scheme, except that only Extended Validation cer-
tificates are permitted. A HTTPS document with a
domain-validated certificate would be unable to script
an HTTPEV document because their schemes would
not match. When a document includes a library, the
document’s author can use HTTPEV to require an EV
certificate, preventing domain-validated content from
being displayed with EV security indicators.

• YURL. A YURL [2] is a URL that includes a public
key before its host name. YURLs are retrieved using
a TLS session whose public key must match the key
embedded in the URL. Connections that do not use
the specified public key must be blocked without giv-
ing the user an opportunity to proceed insecurely. A
browser that supports YURLs would not consider two
documents to be in the same origin if their public keys
did not match. YURLs are not vulnerable to library
import or data export attacks because the URLs used
for import or export specify the public key for the in-
tended source of the library or recipient of the data [8].
In particular, the public key remains unchanged when
a relative URL is resolved to an absolute URL.

Destroy. Another approach to securing finer-grained ori-
gins is to destroy contaminated origins. The browser can
eliminate an origin by refusing to display or execute any of

its content. In some cases, the browser can revoke the priv-
ilege from the entire origin if the browser displays a docu-
ment that would not be granted the privilege.

• ForceHTTPS. When an origin enables Force-
HTTPS [5], the browser refuses to ignore certificate
errors for that origin and refuses to import non-HTTPS
libraries into that origin’s documents. ForceHTTPS
protects an origin from being contaminated by inse-
cure content by preventing that content from entering
the browser.

• SafeLock. When a document imports a non-HTTPS
library, the browser should revoke the privilege to
display a lock icon from all documents in the same
origin as the contaminated document, preventing the
non-HTTPS content from displaying a lock icon. We
have implemented this behavior as a 286-line exten-
sion to Firefox, which can be downloaded from our
web site [6].

• ForceCertificate. We collaborated with Mozilla to de-
ploy a finer-grained origin in Firefox 2.0.0.15 that pre-
vent unsigned documents from tampering with signed
JARs [4]. The goal of this security policy is to en-
sure that a document signed with a particular public
key certificate can be modified only both other doc-
uments signed with the same certificate. To prevent
library import attacks, the browser blocks signed JARs
from importing scripts that are unsigned or signed by
another certificate.

6



5 Conclusion

Many current and proposed browser features extend the
browser’s security policy by granting additional privileges
to documents. If designed incorrectly, these features inter-
act poorly with the browser’s existing security policy, re-
sulting in the unexpected privilege escalation. Most com-
monly, a privilege is granted to some, but not all, of the
documents in a origin. The documents without this sub-
origin privilege can often escalate their privileges by inject-
ing script into documents in their origin that do possess the
privilege. We describe a number of browser features that
are affected by such origin contamination.

The most natural response to origin contamination is to
refine the browser’s scripting policy to prohibit documents
that lack the privilege from scripting documents that have
the privilege. The design of these finer-grained origins is
complicated by the built-in browser facilities for explicit
endorsement and declassification. These features can be ex-
ploited by an attacker to bypass the stricter scripting policy.

We suggest three approaches for addressing the limita-
tions of finer-grained origins. In the embrace approach, the
privilege is granted explicitly to entire origins. In the ex-
tend approach, URLs are extended with additional security
information that is used to refine the browser’s notion of
origin and restrict which documents have the privilege. In
the destroy approach, the browser refuses to interact with
resources that lack the desired security property, preventing
them from escalating their privileges.

Acknowledgments

We thank Dan Boneh, Tyler Close, Chris Karloff, John
Mitchell, Ka-Ping Yee, and Boris Zbarsky for their helpful
suggestions and feedback. This work is supported by grants
from the National Science Foundation and the US Depart-
ment of Homeland Security.

References

[1] Adam Barth, Collin Jackson, and John C. Mitchell.
Securing frame communication in browsers. In Pro-
ceedings of the 17th USENIX Security Symposium,
2008.

[2] Tyler Close. Decentralized identification. http://
www.waterken.com/dev/YURL/.

[3] Tyler Close. Petname tool. http://www.
waterken.com/user/PetnameTool/.

[4] Mozilla Foundation. Signed JAR tampering,
July 2008. http://www.mozilla.org/

security/announce/2008/mfsa2008-23.
html.

[5] Collin Jackson and Adam Barth. ForceHTTPS: Pro-
tecting high-security web sites from network attacks.
In Proceedings of the 17th International World Wide
Web Conference, 2008.

[6] Collin Jackson and Adam Barth. SafeLock:
Preventing origin contamination by mixed con-
tent, 2008. http://crypto.stanford.edu/
websec/safelock.

[7] Collin Jackson, Adam Barth, Andrew Bortz, Weidong
Shao, and Dan Boneh. Protecting browsers from DNS
rebinding attacks. In Proceedings of the 14th ACM
Conference on Computer and Communications Secu-
rity (CCS 2007), November 2007.

[8] Chris Karlof, Umesh Shankar, J. D. Tygar, and David
Wagner. Dynamic pharming attacks and locked same-
origin policies for web browsers. In Proceedings of
the 14th ACM Conference on Computer and Commu-
nications Security (CCS 2007), November 2007.

[9] Chris Masone, Kwang-Hyun Baek, and Sean Smith.
Wske: Web server key enabled cookies. In Proceed-
ings of Usable Security 2007 (USEC ’07).

[10] Martin O’Neal. Cookie path best practice. http://
research.corsaire.com/whitepapers/
040323-cookie-path-best-practi%ce.
pdf.

[11] Ka-Ping Yee and Kragen Sitaker. Passpet: Conve-
nient password management and phishing protection.
In Proceedings of the 2006 Symposium on Usable Pri-
vacy and Security (SOUPS).

7


