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Human immunodeficiency virus (HIV) affects millions of people across the globe.  
Despite the introduction of powerful anti-viral therapies, one factor confounding viral 
elimination is the ability of HIV to remain latent within the host genome.  Here, we 
perform a network analysis of the viral reactivation process using human gene expression 
profiles and curated databases of both human-human and human-HIV protein 
interactions.  Based on this analysis, we report the identification of active pathways in 
both the latent and early phases of reactivation.  These active pathways suggest host 
functions that are altered and important for HIV pathogenesis. 

1.   Introduction 

Human Immunodeficiency Virus (HIV-1) infects T lymphocytes and 
macrophages, resulting in the depletion of CD4+ T cells , which is the defining 
feature of acquired immune deficiency syndrome (AIDS). Recently, highly 
active anti-retroviral therapy (HAART) has led to a dramatic decrease in 
morbidity and mortality due to HIV and, when successful, results in 
undetectable levels of HIV-1 RNA in blood plasma. This stage of latency 
represents a period of proviral integration with little to no viral replication [1]. 
HIV-1 persists in a small reservoir of latently infected resting memory CD4+ T 
cells, which shows minimal decay even in patients on HAART and can persist 
for the lifetime of the patient [2, 3]. Latent HIV reservoirs are the principal 
barriers preventing the eradication of HIV infection and viral reactivation is 
necessary for targeting by antiviral drugs [2, 4]. Although HIV has been the 
subject of much study, the precise mechanisms by which the virus reactivates 
within the host cell remain unclear. Evidence points to the alteration of cellular 
transcription machinery in order to maximize the viral replication process [5].  

Recently, microarray analysis has been employed to survey the changes 
of host cell transcription [6-8]. In particular, Krishnan and Zeichner have studied 
the changes in cellular gene expression associated with reactivation and 

Pacific Symposium on Biocomputing 11:354-366(2006) 



completion of the lytic viral cycle in cell lines chronically infected with HIV-1 
[6]. The viral lytic cycle follows distinct mechanistic changes corresponding to 
stages of HIV synthesis. In the early stage, fully spliced mRNAs for Rev, Tat 
and Nef are exported from the nucleus for translation. In the late stage, the 
accumulation of Rev protein in the cytoplasm triggers the export of unspliced 
viral RNAs from the nucleus to form new viral particles. [9]. Results indicated 
that uninduced, latent cells had an altered gene expression program and that the 
host cell underwent specific and ordered changes in gene expression upon 
reactivation that corresponds to different stages of the viral life cycle.  
 The authors arrived at these conclusions through application of 
hierarchical clustering and functional categorization of differentially expressed 
genes.  Clustering gene expression data allows similarly expressed genes to be 
grouped together, but does not provide any functional explanation for the 
mechanisms of regulation.  Functional categorization identifies known pathways 
and functional categories that are enriched for differentially expressed genes.  
This type of analysis provides limited functional insights by constraining 
analysis to known pathways and reactions [10]. Ideally, we would like to 
integrate the clustering of similarly expressed genes with an incorporation of a 
wide variety pathway and biological protein interaction information in a 
coherent fashion [11, 12]. Network based analysis can improve upon this 
approach by identifying interesting groups of genes which have not been 
specifically delineated as a pathway in an ontological framework. One such 
approach, “Active modules” , is a method for searching networks to find 
subnetworks of interactions with unexpectedly high levels of differential 
expression [13].  In this approach, gene expression data are mapped onto 
biological networks, a statistical measure is used to score sub-networks based on 
gene expression data, and a search algorithm is used to find sub-networks with 
high score.  
 Commonly, gene expression analysis using biological networks has 
been limited to lower organisms for which large scale experimentally derived 
protein-protein interactions networks are available.  The generation of literature-
based protein interaction networks from text mining has shown utility in the 
interpretation of gene expression [14]. However, manually curated protein 
interaction data is preferable to automated prediction of interactions through 
natural language processing. The Human Protein Reference Database (HPRD) 
includes information on protein–protein interactions, post-translational 
modifications, enzyme–substrate relationships and disease association of human 
genes which was derived manually by a critical reading of the published 
literature by expert biologists [15]. Another manually curated database, the HIV-
1, human interaction database, provides protein-protein interaction data among 7 
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of the 9 (excluding env and nef) HIV-1 genes and human host cell genes[16]. 
These interactions are traceable to primary literature and are annotated by an 
ontology of terms describing the nature of the interaction. Together, these 
networks strive to encompass all of the information that has been published 
concerning protein inter-relationships between both HIV-1 and human proteins.  
 Here, we report the identification of protein interaction modules that 
are significantly activated or repressed across different stages of the latent HIV-
1 replication cycle. Our results indicate multiple significant clusters of gene 
expression in which genes are linked together through established interactions in 
the literature. This computational analysis allows for the evaluation of a 
mechanism of the observed changes in gene expression. Analysis of the 
observed differences in active networks between HIV-1 life cycle stages suggest 
that these differences are associated with the movement from latent to actively 
replicating HIV in vivo. 
 

2.   METHODS 

2.1.   Microarray Data 

Microarray data was taken from Krishnan et. al. [6] Each array was normalized  
and the fold changes reported. 131 genes showed altered expression before 
induction and 1,740 spots showed significant altered gene expression at some 
point though the lytic replication cycle. Data were averaged over time points 
corresponding to specific stages in the HIV-1 life cycle which were determined 
by RT-PCR analysis of specific HIV-1 mRNA fragments. The early stage gene 
expression of the lytic cycle was taken as the mean over the 0.5,3,6 and 8 hour 
time points. The intermediate stage gene expression was taken as the mean over 
12, 18 and 24 hours post induction. The late stage was the mean over 48, 72 and 
96 hours post induction. Each stage included at least 18 arrays including 
replicates. In total, 1,334 genes were differentially expressed during the early 
time points, 756 during the intermediate stage, and 566 during the late stage 
(P<0.001). P-values were assigned to each probe for each of the four stages 
using the t-test using log ratios for all arrays for a specific stage, including 
replicates against a mean of 0 (no differential expression). 

2.2.   Network Generation 

Human – human protein interaction data was culled from HPRD [15] (June 2005 
download) and protein fragments were BLAST matched to Entrez Gene and 
unigene identifiers. HIV-human interactions were taken from the HIV-1, human 
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interaction database[16]. Each protein –protein link can be traced to a specific 
literature citation which assists in any hypothesis generation. 

2.3.   Algorithm Implementation 

Briefly, the ActiveModules algorithm attempts to identify connected regions of 
a network, which have an unexpectedly high occurrence of genes with 
significant changes in expression.  These network regions represent putative 
“active modules”  in response to a particular test condition.  The score of a 
subgraph is defined as the sum of expression Z-values divided by the square root 
of the number of nodes in the subgraph. 

�
∈

=
V|V|

1
)Score(V

v
vz
 

Here, V is a set of nodes which define a subgraph, while Zv refers to the Z score 
for node v. Individual Z scores are determined by application of an 
approximation of the inverse normal CDF to the individual expression p-values.  
This scoring system ensures that if the original Z scores are distributed 
according to the normal distribution, the expected mean and variance of the 
subgraph scores are independent of subgraph size.  In order to find high scoring 
regions according to this criterion, a greedy search is initiated from each protein 
in the network.  At each step of the search, all adjacent proteins are considered 
for inclusion in the result network.  The search is executed with a search depth 
of one node and a maximum diameter of three nodes (corresponding to a local 
search of “depth”=2 and “max depth”=2 with the jActiveModules plugin 
available for the Cytoscape Network Modeling package at 
http://www.cytoscape.org).  In order to reduce the influence of network 
topology on the significance of our final result, we employed a “neighborhood 
scoring”  method [17].  In this method, the search procedure is required to add 
either all or no node neighbors at each step in the search process.  This prevents 
the selection of a few highly scoring adjacent nodes in a large neighborhood. In 
order to assess the significance of our result, the search was repeated one-
hundred times with the assignment of expression significance values to proteins 
randomly permuted in each trial.  The top scoring result from each of these trials 
was retained.  Those networks which scored higher than 95% of these retained 
networks were considered significant. To produce smaller subnetworks for 
visualization in Figures 1 and 2 we repeated the Active Modules search within 
each original subnetwork with a local search of “depth”=1 and “max depth”=1 
to identify singleton nodes which had a significant number of neighbors with 
differential expression. 
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2.4.   GO ontology analysis 

We utilized the BiNGO plugin for Cytoscape to determine which Gene 
Ontology (GO) Molecular Function and Biological Process categories are 
statistically over-represented in a set of genes [18]. We applied a 
hypergeometric test to determine which categories were significantly 
represented (p-value cutoff of 0.01). This significance value was adjusted for 
multiple hypothesis testing using the Bonferroni Family-wise error rate 
correction.  Only those over-represented terms present at the 8th level of the GO 
hierarchy were reported. 
 

3.   Results  

3.1.   An integrated network of protein – protein interactions. 

We sought to elucidate mechanisms of HIV-1 latency and reactivation through 
integration of biological networks based on literature with measurements of 
cellular gene expression. Recently, the curation efforts of the Human Protein 
Reference Database (HPRD) have produced high confidence protein-protein 
interaction networks derived from literature on a scale such that systems biology 
based modeling is possible [15]. Additionally, the NCBI has produced a HIV-1- 
human protein interaction database, providing a summary of known interactions 
of HIV-1 proteins with those of the host cell [18]. The human protein-protein 
interaction data consisted of 17,558 interactions among 6,050 genes. HIV-
human interactions consisted of 2,420 total interactions over 796 human genes. 
Representing HIV-1 and human proteins as nodes and interactions between 
those nodes as edges, we constructed an integrated network which summarizes 
the corpus of literature-based knowledge about human and HIV interactions. 

3.2.   Discovering regulated subnetworks 

  The study of Krishnan and Zeichner [6] assayed cellular gene 
expression of human cell lines chronically infected with HIV, before and during 
activation of the lytic viral replication cycle. In this study, latently infected 
ACH-2 cells (derived from a human T-cell line) were treated with phorbol 
myristyl acetate (PMA), which induces the lytic replication cycle. The changes 
in cellular gene expression were assayed and compared to uninfected cells 
exposed to equal amounts of PMA. The authors defined several time points 
which correspond to different stages of the lytic replication cycle (early, 
intermediate, late) by comparative analysis of spliced to unspliced mRNAs and 
cell viability.  Their analysis of these stages indicates significant changes of host 
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gene expression in latently infected cells as compared to uninfected cells, as 
well as systematic, synchronous changes of gene expression in reactivated cells 
compared to uninfected controls. 
 To further characterize expression changes at various stages of the viral 
reactivation cycle, we used an integrated approach of expression clustering and 
network analysis to find “activated modules”  of connected proteins with 
significant levels of differential activity. We identified highly significant 
subnetworks for both the latent (uninduced) and early (up to 8 hour post-
induction) stages. Both the intermediate and late stages did not produce 
significant networks (P<0.05), which may be due to any combination of factors, 
notably loss of synchronization, the broad effects of cytopathicity, lack of 
adequate interaction data or this particular grouping of time points into phases.  
 In the uninduced stage of the HIV latent infection we found a single 
active network of 116 Tat-interacting proteins with a score of 10.9 (P<0.01). 
The overview in Figure 1 shows the active subnetwork with differentially 
expressed neighbors (P<0.05) and all HIV interactions removed for clarity. The 
network was significantly enriched for proteins associated with various aspects 
of HIV replication, including genes involved in apoptosis and cell death 
regulation [19] (see Table 1).  To condense the network and facilitate 
interpretation, we ran the algorithm again on the significant subnetwork to find 
local regions of significant differential expression. The top five modules from 
this analysis are shown in Figure 1 (a-d). In this stage there is significant down 
regulation of collagen and fibronectin associated genes (Figure 1c). These are 
mostly upregulated by Tat [20] during the intermediate stage of the lytic cycle 
(data not shown) corresponding to their roles in cell-cell adhesion. In the tubulin 
associated network (Figure 1a), TubA3 interacts with multiple differentially 
expressed genes. TubA3 expression levels were not available, but due to its in 
interactions with both Rev and Tat (Rev acts to depolymerize microtubules that 
are formed by tubulin [21] and Tat binds tubulin[22]) and other differentially 
expressed neighbors, one can infer its role in the maintenance of the HIV latent 
phase. 

  In the early stages of HIV reactivation we found a single active 
network with a score of 10.7 (P<0.01) composed of 79 proteins which all 
interact with Tat. The subnetwork was enriched for proteins involved in 
transcription.  The apparent importance of this process is consistent with the 
considerable transcription of integrated viral genes which occurs at this state of 
viral reactivation (Table 1). The overview Figure 2 shows the active subnetwork 
with differentially expressed neighbors (P<0.01) and all HIV links removed for 
clarity. We ran the active modules algorithm again and returned the top five 
proteins within the module which had significant numbers of differentially 
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expressed neighbors (Rb1, Polr2a, Jun, HSPca and Pten). The resulting network 
formed a single connected component, indicating the specific nature of 
expression changes in this subnetwork. Expectedly, a large portion of this 
subnetwork was geared toward the expression of HIV-1 proteins including p53 
(TP53) which cooperates with Tat in the activation of HIV-1 gene expression 
[23]. Additionally, casein kinase 2 (Csnk2a1) is activated by Rev in the 
activation of the HIV-1 replication process [24, 25]. Together these genes 
interact with ‘hubs’  of gene expression PTEN and Hsp90 (HSPca) both of which 
have been shown to associate with Tat [26, 27]. 
 
 Table 1: GO Categories significantly enriched in the active networks for latent and early 
reactivation stages of the HIV lytic cycle. The latent stage shows enrichment for apoptotic regulators 
and the early stage shows enrichment for genes involved in control of transcription. 
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Another goal of our analysis was to examine the differences between 

active subnetworks identified in different stages, to better understand the 
temporal progression from latent integrated HIV to active replication.  We 
searched the active modules for members interacting with a large number of 
unique differentially expressed neighbors in each stage.  We report a sampling 
of such human proteins from each stage in Table 2. Most these proteins are 
known to be involved in HIV related processes. Proteins such as Grb2, Cav1, 
and Cbl have been loosely implicated with HIV replication previously, but no 
definite role or interaction for them has been established in the literature. 
Specifically, it has only recently been identified that Cbl phosphorylation was 
upregulated by Nef [28]. The dramatically changing active partners with Cbl 
suggest a role for Cbl in the early stages of viral reactivation. Using the network 
and a similar scheme, a potential mechanism for the involvement of other 
proteins in the transition between stages of the HIV-1 cycle can be postulated.  
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Table 2: A selection of proteins within both control and early induction modules that show both a 
large number of differentially expressed neighbors and unique differentially expressed neighbors 
between stages. Shown is the number of differentially expressed neighbors found in either only the 
latent or early stages as well as the total number of differentially expressed neighbors found in each 
stage. Proteins annotated with an asterisk represent genes that had no HIV-human interaction in the 
network. 

  

4.   DISCUSSION 

In this report, we have identified a number of genes and pathways involved in 
HIV latency and reactivation.  This identification utilizes an integrated, literature 
curated network of protein-protein interactions combined with time series 
expression data for viral reactivation.  There are several advantages to an 
integrated network-based approach.  First, the analysis suggests the involvement 
of genes which are not differentially expressed or may even not have been 
profiled under a given condition. It may be the case that these genes are post-
transcriptionally regulated which cannot be detected by the current approach. In 
this case, the implication is made based on the combined evidence of many 
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interaction associations with other differentially expressed genes. For example, 
TUBA3 was involved in one of our most significant networks, but was not itself 
differentially expressed. Second, this analysis allows more freedom in the 
identification of active pathways.  Given that some pathways may exist in 
response only to a small number of conditions, it is advantageous to be able to 
identify such pathways as they are revealed in the interaction data. 

One major difference between this approach and previous work is the 
application of an integrated literature curated interaction network.  By using a 
HIV-human and human-human interaction map, the observed changes in gene 
expression can be interpreted by identifying altered human pathways stemmed 
by the invasive HIV-human interactions. Traditional high-throughput networks 
are known to have a high rate of false positives [34]. Here, since the gene 
associations are more certain, we can view these subnetworks as providing 
additional context to the types of conditions under which this association 
becomes active, such as is the case of genes with a changing neighborhood of 
differentially expressed genes in Table 2. An additional benefit of such a curated 
network is that we can interpret those interactions identified in active 
subnetworks in the context of primary literature citations.    

One interesting facet of this research was the examination of how these 
active networks change from one stage to the next.  By comparing and 
contrasting the members of the significant subnetworks for both latent 
uninduced and early induction stages of HIV replication we can also find genes 
who may or may not be differentially expressed themselves but whose 
neighborhood of differentially expressed genes changes between stages, 
implicating them in the transitional process.  Genes such as Grb2, Cav1, Cbl and 
Smad2 have no annotated HIV-1 interaction but can be postulated to play a role 
in the transition from latent to actively replicating HIV. Although we have 
presented examples that show a dramatic difference in the regulation of their 
interacting partners, our current approach does not address this question in a 
systematic fashion.  Further development is needed to achieve this goal. With 
the emergence of an increasing number of large scale protein-protein interaction 
networks either experimentally or computationally, this type of analysis, while 
still in its infancy, has the potential to have an immense impact on the 
investigation of regulatory circuits involved in drugs and disease. 
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