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With the growing number of determined protein structures and the availability
of classification schemes, it becomes increasingly important to develop computer
methods that automatically extract structural signatures for classes of proteins.
In this paper, we introduce and apply a new Machine Learning technique, Logical
Hidden Markov Models (LOHMMs), to the task of finding structural signatures
of folds according to the classification scheme SCOP. Our results indicate that
LOHMMs are applicable to this task and possess several advantages over other
approaches.

1 Introduction

In recent years, the number of proteins with determined structure has been
growing rapidly due to large-scale structural genomics projects. Consequently,
the Protein Data Bank (PDB) is growing at high rates. In parallel, researchers
have developed classification schemes of proteins based on their sequence,
structure and function. The development of classification schemes is a common
scientific activity to make sense and gain a deeper understanding of experi-
mental data. Given the determined structures and classification schemes, the
discovery of structural characteristics of protein classes becomes an important
topic. The primary interest is to gain insights into structural characteristics of
fold classes, but ultimately structural signatures should also be useful for the
prediction of protein folds. In fact, some successful approaches in the CASP
predictive exercises made use of knowledge about structural signatures. So far,
most signatures have been discovered by human experts based on extensive
manual/visual inspection of the data. However, few experts in the world are in
a position to find/provide these signatures, and few systematic attempts exist
to catalog known signatures. So, there is a need to develop computer methods
that automatically extract structural signatures in a systematic way '!.
Recently, Hidden Markov Models (HMM) have been used to analyze classes
in SCOP . HMMs are among the most widely and successfully used tools



for the analysis of sequence data in bioinformatics. Despite their successes,
however, it is well-known that HMMs have a number of weaknesses. One of
the major weaknesses is that HMMs handle only flat sequences, i.e. sequences
of unstructured symbols. In this paper we will overcome this weakness by
introducing Logical Hidden Markov Models (LOHMMs).

This paper is organized as follows. In Section 2, we present the task and the
dataset. In Section 3, we introduce LOHMMSs. Section 4 describes experiments
with LOHMMs for the discovery of structural signatures. Subsequently, we
discuss related work and conclude.

2 Task and Dataset

In this section, we describe the task of finding structural signatures of protein
folds and the dataset used. The basis of our study is the SCOP (Structural
Classification of Proteins) database due to A. Murzin and maintained by the
MRC Laboratory of Molecular Biology. Our goal was to find structural char-
acteristics of the domains at the second level of the SCOP hierarchy, i.e., the
level of folds. In our study, we focused on alpha and beta proteins (a/b), a
class consisting of domains with mainly parallel beta sheets (beta-alpha-beta
units). From this class, we chose the five most populated subclasses, that is,
folds: TIM beta/alpha-barrel, NAD(P)-binding Rossmann-fold domains, Ri-
bosomal protein L4, glucosamine 6-phosphate deaminase/isomerase and and
leucine aminopeptidas. The overall set-up is quite similar to the one by Tur-
cotte et al. '>11 The data have been extracted automatically from the PDB
release #96 and SCOP version 1.57.

Information for domains from the above five folds was extracted in the
form of “logical sequences” of secondary structure elements. Logical sequences
are sequences of logical atoms. An example of such a sequence (corresponding
to a Ribosomal protein L4) is:

st(null, 2), he(h(right, alpha), 6), st(plus, 2), he(h(right, alpha), 4), st(plus, 2),
he(h(right, alpha), 4), st(plus, 3), he(h(right, alpha), 4),
st(plus, 1), he(h(right, alpha), 6).

There are two predicates he and st. Atoms he(Type, Length) model he-
lices of a certain type and length, whereas atoms st(Orientation, Length)
model strands of a certain orientation and length. The helix
types are: h(left, alpha), h(right, alpha), h(left, gamma), h(right, gamma),
h(left, omega), h(right, omega), h(right, pi), h(right, 3to10), 27ribbon and
polyproline. The orientation of strands can be null (the beginning of a
sheet), plus (a parallel strand of a sheet), or minus (an anti-parallel strand of
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Figure 1: A logical hidden Markov model encoding default reasoning. The dashed edge
represents a more general than relation.

a sheet). The length is defined as the number of acids and was quantized in
the experiments (see below).

For each of the above five folds, we are modeling their domains in terms
of their secondary structure using a logical variant of HMMs. So, what can be
expected from an application of LOHMMSs to this task? First of all, it should
be clear that we do not obtain structural signatures for each of these classes
immediately. What we obtain instead, is a model for each fold. Each model
provides a precise probabilistic and logical characterization of the respective
fold. Structural signatures can then be found by a comparison of models. As
will be shown below, it is quite easy to find characteristics upon inspection of
the trained models.

3 Logical (Hidden) Markov Models

Logical (hidden) Markov models (LOHMM) extend the unstructured model
representation of HMMSs '%? by incorporating complex, internal structure into
the specification of transitions (and therefore of emissions) between states.

Sets of states are summarized by abstract states, which are represented by
logical atoms. A logical atom then represents all states that can be obtained
by instantiating the atoms (i.e. by replacing the variables by terms). E.g. the
abstract state he(X), where X is a variable, could represent the set of states
{he(1), he(2)} depending on the terms (1 and 2 in this case) in the LOHMM.
If the logical atom does not contain any variables such as he(1), it represents
a singleton set. Abstract states are connected by abstract transitions, which
summarize sets of transitions between states. When a transition is made, a state
is sampled from the encompassing abstract state. Subsequently an observation
symbol is generated in the same manner. We will explain these concepts on an
example. For more details, we refer to a technical report 7.



3.1 An Example of a LOHMM

Fig. 1 shows an example of a LOHMM. The vertices in the model represent
abstract (hidden) states where the predicate he(ID) (resp. s¢(ID)) represents
a block ID of consecutive helices (resp. strands). In such models, we find three
different types of edges:

Solid edges between abstract states specify the abstract transitions. Tran-

sition probabilities and emission symbols are associated to them. An example

transition from Fig. 1 is sc¢(X) QL 03 he(Y'). Such a solid edge expresses

that if one is in one of the states represented by hc(Y') one will go to one of
the states in sc¢(X) with probability 0.5 while emitting a symbol in st(O, L).
Dotted edges indicate that two abstract states behave in exactly the same
way. If we follow a transition to an abstract state with an outgoing dotted edge,
we will automatically follow that edge. Consider the dotted edge going from
sc(Z) to se(X) in Fig 1. The two abstract states are identical. The dotted
edge is needed in this case because the variables appearing in the abstract
states are different. We could not have written this using solid edges alone as

st(O(i):O.S sc(X) is different from that of

se(Z) QL0 sc(X). Whereas the first transition only allows a transition
between the same state, say sc(1) (because the X is identical), the second one
allows transition between different states such as sc¢(1) and sc¢(2). In a logical
sense, dotted edges implement a kind of recursion.

Dashed edges represent a kind of default reasoning. This is often used
to model exceptions. Consider the dashed edge in Fig. 1 connecting he(Y') and
he(2). This dashed edge denotes that he(2) is a more specific state than he(Y).
This implies that the set of states represented by the more specific (abstract)
state is a subset of that represented by the more general one. Logically
speaking, the more specific state hc(2) can be obtained by substituting Y by
2 in the more general state he(Y). Dashed edges and default reasoning are
useful because they represent exceptions. Indeed, in our current example, the
outgoing probability labels associated to he(2) are different from those for
he(Y'). This actually implies that the hc(2) acts as an exception to the states
represented by he(Y). So for Y = 2 we employ the transitions from he(2) and
for Y # 2 we follow those indicated by he(Y).

the meaning of the solid edge sc(X)

Let us now explain how the model in Fig. 1 generates the sequence of ob-
servations he(h(right, 3to10), 10), st(plus, 10), st(plus, 15), he(h(right, alpha),9),
(cf. Fig. 2). Starting from the artificial state start, it chooses an initial abstract
state, say hc(1). Forced to follow the dotted edge, it enters the abstract state
he(Y). In each abstract state, the model samples values for all variables that
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Figure 2: Generating the observation sequence he(h(right, 3to10), 10), st(plus, 10), st(plus, 15),
he(h(right, alpha),9) by the LOHMM in Fig. 1 (* = 1.0 due to unification).

are not instantiated yet according to a selection distribution .

The function u specifies for each abstract state a distribution over the
possible instantiations of the abstract state. E.g. u(he(h(right, alpha),4) |
he(h(T, alpha),4)) = 0.5 says that the model samples he(h(right, alpha),4)
with probability 0.5 from he(h(T, alpha),4) whereas p(he(h(right, alpha),4) |
he(h(T, A),4)) = 0.05 specifies that he(h(right, alpha), 4) is sampled with prob-
ability 0.05 from he(h(T, A),4). In general, any probabilistic representation
such as Markov chains or Bayesian networks might be used to represent pu.
In our experiments, we followed a naive Bayes approach, i.e. each argument
of a predicate is assumed to be independent of the other arguments. E.g.,
to compute p(he(h(right, alpha),4) | he(T,L)), we compute the product of
Py (h(right, alpha)) and Py, (4).

Since the value of Y was already instantiated in the previous abstract
state hec(l), the model samples with probability 1.0 the state he(1). It se-
lects the transition to hc(Y') observing he(T, L). Since Y is shared among the
head and the body, the state he(1) is selected with probability 1.0. The ob-
servation he(h(right,3to10),10) is sampled from he(T, L) using the selection
distribution pu. Now, the model goes over to the abstract state sc(X), emitting
st(plus, 10) which in turn was sampled from st(O, L). Variable X in sc¢(X) is
not yet bound; so, a value, say 2, is sampled using p. Next, we move on to
abstract state s¢(Z), emitting st(plus, 15). The variable Z is sampled to be 3.
The dotted edge brings us back to s¢(X) and automatically unifies X with Z,
which is bound to 3. Emitting he(h(right, alpha),9), the model returns to ab-
stract state he(Y). Assume that it samples 2 for variable Y, it has to follow the
dashed outgoing edge to he(2), which represents an exception to he(Y'). This
process is similar to unrolling dynamic Bayesian networks? and to grounding

logic programs®.
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Figure 3: Illustration of the trellis induced by the LOHMM in Fig. 1. In contrast with HMMs,
there is an additional layer where the states are sampled from abstract states.

3.2  Semantics and FEvaluation

Each HMM is a LOHMM consisting of propositional, logical transitions only.
Having the described grounding/unrolling process in mind, it is clear that a
LOHMM defines a HMM given a selection distribution p. There is a finite
set of abstract transitions, and each domain associated to an argument of a
predicate is finite. Thus, the set of states and, therefore, the set of (ground)
transitions is finite. To summarize, there are two primary differences to HMMs.
First, transition probabilities are defined by a product of abstract transition
probabilities and the selection probability. Second, the set of states represented
by an abstract state can vary with the domains associated to predicates.

A trellis can be built as follows: After selecting an abstract transition,
1 generates the relevant states from the head of the abstract transition
(cf. Fig. 3). Based on the trellis, it is easy to adapt the forward- back-
ward, the Viterbi and the Baum-Welch algorithms for HMMs to LOHMMs.
E.g. in the forward-backward procedure, the probabilities « and 8 are com-
puted for each reachable state (sets S;) recursively. The a:(s) is the prob-
ability of the partial observation sequence o1,...,0;—1 and state s at time
t given the LOHMM. The S:(s) is the probability of the partial obser-
vation sequence o¢,...,or given a state s at time ¢t and the LOHMM.
Set ag(start) = 1.0 and Sr(s) = 1.0 for every s € Sr. Recursive
formulae are ai(h) = >0, > 4cs,_, @t-1(0)papud(cl,b,h,0r) and Bi(b) =
Yol ZheSHl Bi+1(R)peapud(cl, b, h,o0:), where cl is a transition in the LOHMM,
Der is the transition probability and p, is the selection probability given by p.
The indicator function d§(cl, b, h,0t) = 1 whenever transition ¢l can take from
state b to h observing o; and the transition ¢/ has the most specific body for b.
The other algorithms can be adapted analogously.



4 Experiments

The aim of the experiments described below is to put the following hypotheses
to test:

H1 LOHMMs are capable of distinguishing between different folds based on
a logical representation of the secondary structure of domains.

H2 The inspection of LOHMMSs reveals distinguishing features of folds.
H3 LOHMDMs can be applied to real-world problems.

H4 In some applications in computational biology, LOHMMs are by at least
an order of magnitude smaller than their instantiations which are HMMs.

We implemented the EM algorithm (with pseudocounts) using the Prolog
system Sicstus-3.8.6. The experiments were ran on a Pentium-I1I1-600 MHz
machine. Our task was to classify sequences representing protein secondary
structures into one of five folds. To do so, we followed the standard approach
to classification based on HMMs. We chose a LOHMM (see Fig. 5), fixed
its structure, and randomly generated for each fold a set of initial abstract
transition probabilities and domain distributions. From each fold dataset ®
described in Section 2, we randomly sampled a training set consisting of 200
sequences. The remaining sequences were used as a test set. Then, we trained
these five LOHMMs, one per fold. We used a simple, but common stopping
criterion: EM stops if a change in log-likelihood is less than 10~! from one
iteration to the next. To evaluate the learned models, we computed the log-
likelihood that each model gave to a sequence in the test sets. If the i-th model
was the most likely one, then we classified the sequence as a member of class i.

The used LOHMM structure is given in Fig. 5. The hidden states are
modeled using he(ID, T, L) and sc(ID, O, L) representing blocks of consecutive
helices and strands. Being in a block ID of consecutive helices (resp. strands),
the model will remain in the block or transition to a new block s(ID) of strands
(resp. helices). This model takes into account type T, length L and orienta-
tion O information. Moreover, there are specific abstract transitions for helices
of types h(right, alpha) and h(right, 3to10), and for parallel and anti-parallel
strands, and for being at the beginning of a sheet. This enabled us to model the
“process” within blocks of consecutive helices quite detailed, and of transitions
from blocks of consecutive helices to strands and vice versa. The ID enables

“For the extraction of the Prolog facts from the PDB, we adapted the program
secondary.c made available by the Learning and Planning group of the University of Texas
at Arlington (http://cygnus.uta.edu/subdue/databases/db/proteins.tar.gz).



Table 1: Confusion matrix showing actual vs. predicted fold classification.

actual \ predicted | foldl fold2 fold23 fold37 fold55
fold1 736 61 51 62 30
fold2 49 291 53 31 11
fold23 18 23 166 11 15
fold37 55 44 27 282 19
foldb5 0 1 1 3 147

Table 2: Precision and recall for each fold rounded to second decimal.

foldl1 fold2 fold23 fold37 fold55
Precision 0.86 0.69 0.56 0.72 0.66
Recall 0.78 0.67 0.71 0.66 0.96

us to have general directed transitions from one block to exactly one successor
block.

Results

Our implementation of EM took at most five iterations and approximately
5 minutes to estimate the maximum-likelihood parameters per fold. Given
our quantization of the helix and strand lengths, the LOHMM consisted of
74 abstract transition and 46 domain distribution probabilities, whereas the
corresponding HMM would consist of over 62,000 transition probabilities. So,
the abstract representation of states and transitions in LOHMMs achieves, by
design, a remarkable compression of the model, which supports hypothesis H4.

The classification results are summarized by the confusion matrix in Ta-
ble 1. In this section, the TIM beta/alpha-barrel fold will be denoted as foldl,
the NAD(P)-binding Rossmann-fold as fold2, the Ribosomal protein L4 fold
as fold23, the glucosamine 6-phosphate deaminase/isomerase fold as fold37,
and the leucine aminopeptidas fold as fold55. In total, 74% (1622 out of 2187)
sequences were correctly classified. This result is in the same range as the one
reported by Turcotte et al. ' (75%). However, we have to emphasize that the
datasets are not completely comparable. In contrast to this result, a learner
predicting always the majority class would achieve an predictive accuracy of
43%. These results suggest that hypothesis H1 holds. In Table 2, we also give
our results in terms of the recall and precision. Recall is defined as the sum of
true positives divided by the sum of true positives and false negatives. Preci-
sion is defined as the sum of true positives divided by the sum of true positives
and false positives. As can be seen, the recall and precision figures vary among
the folds, but within the folds recall and precision are well balanced. In other
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Figure 4: Estimated selection distributions for the five folds (from left to right: helix types,
helix lengths, strand lengths, and strand orientations). The distributions specify the proba-
bility that a state is sampled from an abstract state (if needed) using a naive Bayes scheme.
The distribution over helix types shows, that only the types hi(right, alpha) (shortly hi(r,a))
and ht(right, 3to10) (shortly ht(r,3)) occurred in the data. Due to pseudocounts, no proba-
bility value is zero.

words, a good precision is not bought at the expense of a good recall, and vice
versa. The relatively low precision values for fold23 and fold55 are explained
by a smaller number of test examples for these two folds. Finally, we inspected
the trained LOHMM for characteristic differences. More precisely, we plotted
for each of the five estimated LOHMMs the probability distributions implic-
itly defining u (see Fig. 4) following a naive Bayes scheme. Please note that
i defines the probability of sampling a state from an abstract state taking
variable binding into account, i.e. that p and therefore the distributions in
Fig. 4 depend on the logical structure of the LOHMM. Upon visual inspection,
differences can be found as follows (hypothesis H2):

e Regarding the helix types, fold23 differs from the others in that the
probability of selecting right-handed alpha helices seems to be lower.
Also, the probability of right-handed 3t010 helices to be selected seems
to be higher than for the other folds.

e The first three and last two folds can be grouped w.r.t. the strand lengths.



e As for strand orientations, we have uniform “patterns” for foldl, fold2
and fold23, but characteristic patterns for fold37 and fold55.

To summarize, we believe that the results obtained in our experiments are
quite promising also for what concerns the application domain. Therefore, they
indicate that the answer to hypothesis H3 should be positive.

5 Related Work

Gough et al. % presented an approach to sequence annotation based on profile
HMMs trained on the primary structure of domains for each superfamily in
SCOP. The present study is at a different level of abstraction: Firstly, we
are working with a secondary structure representation, and not a primary
structure representation. Secondly, we are dealing with SCOP folds, not SCOP
superfamilies. It might be interesting to apply our approach also at the (more
detailed) superfamily level. The goal in the work by Gough et al. ¢ was to
annotate sequences based on a library of HMMs that represent all proteins of
known structure. In contrast, our short-term goal was to give a proof of the
principle, with the intermediate-term goal of providing a tool that helps to
gain insights into structural characteristics. In further work we are planning
to predict the fold based on the primary structure, with the stepping stone of
secondary structure prediction.

Turcotte et al. 1211 applied the Machine Learning and Inductive Logic
Programming (ILP) tool Progol to a similar task as the one tackled in this
paper. The task there was also to predict SCOP folds based on a high-level
logical representation. The difference is that we are working with a larger, more
recent dataset, a different representation, and that we are applying a different
Machine Learning approach based on probability theory.

HMDMs have been extended in a number of different ways e.g. hierarchical
HMMSs?, factorial HMMs® and based on tree automata*. None of them utilize
logical representations. Relational Markov Models (RMMs), as recently intro-
duced and applied to web navigation by Anderson et al. !, are an exception.
RMNMs do not allow for variable binding, unification nor hidden states.

6 Conclusion

In this paper, we have introduced Logical Hidden Markov Models (LOHMMs)
and applied them to the task of finding structural signatures of protein folds.
LOHMMs offer the possibility to specify states and transitions at an abstract
level, and thereby offer a significant reduction in model size compared to regular



HMMs. Our experiments show that the learning performance of LOHMMs is
good. We have also shown that it is easy to extract characteristic patterns from
the learned models. In the future, we will conduct further experiments with
more folds in SCOP. Current work includes the development of algorithms for
learning the (logical) structure of LOHMMs.
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Figure 5: The estimated logical (hidden) Markov model of fold 1. The end state is omitted.
If probabilities do not sum to 1.0, then there is a transition to end. The symbol _ denotes
anonymous variables which are read and treated as distinct, new variables each time they

are encountered. There are copies of the shaded part for he(s2(0),T, L), ...,he(s7(0), T, L).
Terms are abbreviated using their starting alphanumerical and « for alpha.





