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Abstract

Neural networks trained with backpropagation
often struggle to identify classes that have been
observed a small number of times. In applications
where most class labels are rare, such as language
modelling, this can become a performance bottle-
neck. One potential remedy is to augment the net-
work with a fast-learning non-parametric model
which stores recent activations and class labels
into an external memory. We explore a simpli-
fied architecture where we treat a subset of the
model parameters as fast memory stores. This can
help retain information over longer time intervals
than a traditional memory, and does not require
additional space or compute. In the case of image
classification, we display faster binding of novel
classes on an Omniglot image curriculum task.
We also show improved performance for word-
based language models on news reports (Giga-
Word), books (Project Gutenberg) and Wikipedia
articles (WikiText-103) — the latter achieving a
state-of-the-art perplexity of 29.2.

1. Introduction

Neural networks can be trained to classify discrete outputs
by appending a softmax output layer. This is a linear map
projecting the d-dimensional hidden output of the network
to m outputs, where m is the number of distinct classes. A
softmax operator (Bridle, 1990) is then applied to produce a
probability distribution over classes. The parameters in this
softmax layer are typically optimized with the network’s
parameters by gradient descent.

We can think of the weights in the softmax layer ✓ 2 Rm⇥d

as a set of m vectors ✓[i]; i = 1, . . . ,m that each corre-
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spond to a given class. When trained with a supervised loss,
such as cross-entropy, each step of gradient descent pulls the
parameter ✓[y], corresponding to the class label y, towards
having a greater inner product with the network output h,
and pushes all other parameters ✓[j] , j 6= y towards having
a smaller inner product with h.

One shortcoming of neural network classifiers trained with
backpropagation is that they require many input examples
for a given class in order to predict it with reasonable accu-
racy. That is, many positive class examples and optimization
steps are required to pull ✓[i] towards a point in space where
class i can then be recognized. While the learner will have
many opportunities to organize ✓[i] parameters associated
with frequent classes, infrequent class parameters will be
poorly estimated. In domains where new classes are fre-
quently introduced, or large-scale classification problems
where some classes are very infrequently observed, this
estimation problem is potentially quite serious.

One approach to speed up learning, which has received re-
vived interest, is meta-learning. Here, meta-learning refers
to algorithms which learn to produce or manipulate learning
algorithms (Thrun, 1998; Hochreiter et al., 2001), and it
operates by learning over a distribution of tasks or datasets.
A meta-learner applies knowledge from the global distri-
bution of tasks to produce or optimize algorithms which
specialize to a given task instance. Meta-learning of neural
networks has seen promising results for applications such
as parameter optimization (Andrychowicz et al., 2016; Ravi
& Larochelle, 2016; Finn et al., 2017) and classification
(Santoro et al., 2016; Vinyals et al., 2016; Zhou et al., 2018).
For classification, the networks are augmented with a differ-
entiable external memory, and are trained with many rounds
of data — with class labels permuted between episodes.

Meta-learning can be very powerful for few-shot learning
in cases where there is a set of similar prior data to meta-
learn over, however it may not be practical for standalone
datasets. For example, if one wants to model the grammar
of computer code, it is unclear that a meta-learning system
trained over natural language will be useful. Also memory-
based meta-learning requires backpropagating from the read
time to the original write time, which is not well suited to
applications where writes and reads are separated by many
time steps. In the case of modelling language, for example,



Fast Parametric Learning with Activation Memorization

ht ht

Key Value0 V

tenant

soup

despair

spy

soup

soup

soup

tenant T

Memory

Softmax 
layer

Figure 1. Mixture model of parametric and non-parametric classi-
fiers connected to a recurrent language model. The non-parametric
model (right hand side) stores a history of past activations and
associated labels as key, value pairs. The parametric model (left
hand side) contains learnable parameters ✓ for each class in the
output vocabulary V . We can view both components as key, value
memories — one slow-moving, optimized with gradient descent,
and one rapidly updating but ephemeral.

infrequent words will not occur for large time intervals —
rendering memory-based meta-learning challenging.

The task of statistical language modelling itself is inter-
esting to investigate issues of binding new or infrequent
classes, because most classes (words) are infrequent (Zipf,
1935) and new classes naturally emerge over time. Re-
cent approaches to improve neural language models have
involved augmenting the network with a non-parametric
cache, which stores past hidden activations ht�n, . . . , ht�1

and corresponding labels, yt�n, . . . , yt�1 (Vinyals et al.,
2015; Merity et al., 2016; Grave et al., 2016b; Kawakami
et al., 2017; Grave et al., 2017). Attention over this cache
provides better modelling of infrequent words that occur
in a recent context, including previously unknown words
(Gulcehre et al., 2016). However there is a diminishing
return to increasing the cache size (Grave et al., 2016b), and
once rare words fall outside the recent context the boost in
predictive performance expires.

Motivated from these memory systems, we explore a very
simple optimization procedure where the network accumu-
lates activations ht directly into the softmax layer weights
✓[yt] when a class yt has been seen a small number of
times, and uses gradient descent otherwise. Accumulating
or smoothing network activations into the weights actually
corresponds to the well-known Hebbian learning update
rule W [i, j]  1

n

Pn
t=1 x

i
tx

j
t (Hebb, 1949) in the special

case of classification on the output layer, where W,xi
t, x

j
t

correspond to ✓, ht, yt respectively. We see that mixing the
two rules provides better initial representations and can also
preserve these representations for much longer time spans.

This is because memorized activations for one class are
not competing for space with activations from other (more
frequent, say) classes — unlike a conventional external
memory. In this sense, the parameters become an instance
of a quickly updated compressed memory, we explore this
idea in Section 3.2

We demonstrate this model adapts quickly to novel classes
in a simple image classification task using handwritten char-
acters from Omniglot (Lake et al., 2015). We then show
it improves overall test perplexity for two medium-scale
language modelling corpora, WikiText103 (wikipedia ar-
ticles) from Merity et al. (2016) and Project Gutenberg1

(books), alongside a large-scale corpus GigaWord v5 (news
articles) from Parker et al. (2011). By splitting accuracy
over word frequency buckets, we see improved perplexity
for less frequent words.

2. Background

2.1. Memory

There has been recent interest in models which store past hid-
den activations through time h1, h2, . . . , ht�1 into a mem-
ory matrix and query the contents with a differentiable at-
tention mechanism. This has been applied to machine trans-
lation (Bahdanau et al., 2014), program induction (Graves
et al., 2014; 2016), and question answering (Sukhbaatar
et al., 2015). Memory-augmented neural networks have also
been successfully applied to language modelling (Mikolov
et al., 2010; Vinyals et al., 2015; Kawakami et al., 2017;
Merity et al., 2016; Grave et al., 2016b; 2017) to facilitate
the learning of unknown words, capture the tendency for
globally rare words to be repeated in close proximity, and
to quickly adapt the network to contextually relevant prior
text (Sprechmann et al., 2018).

There are many variants of how to read from memory and
mix this information with the network’s activations. One
approach is to retrieve hidden activations and mix these
with network activations in latent space (Gulcehre et al.,
2016). Another approach is a classic mixture model, as
shown in Figure 1; the output probability distribution can
be obtained by interpolating the probabilities pp, pnp from
the parametric model and memory respectively.

For intuition we briefly explain a particular architecture,
the Neural Cache (Grave et al., 2016b), whose operation is
related to our model. The cache is a store of the last n hidden
activations along with their corresponding target outputs
(next words) from a trained parametric language model,
such as the Long Short Term Memory (LSTM) (Hochreiter
& Schmidhuber, 1997). The conditional probability of a

1Project Gutenberg. (n.d.). Retrieved January 2, 2018, from
www.gutenberg.org
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word w occurring is proportional to the sum over kernalized
inner product similarities between the current hidden state
ht and past hidden states when word w occurred.

pc(w | ht) /
t�1X

i=t�n

eh
T
t hi I{yi = w} (1)

Where I{p} = 1 if p is true, 0 otherwise. This is then inter-
polated with the parametric language model using a fixed
hyper-parameter, swept over during validation. Although
the cache is of fixed size n, it can be defined to be very large
with sparse attention and efficient data-structures (Rae et al.,
2016; Kaiser et al., 2017; Grave et al., 2017).

2.2. Language modelling

We can model a sequence of text as the product of condi-
tional word probabilities,

p(w1, w2, . . . , wt) =
tY

i=1

p(wi | w1, w2, . . . , wi�1)

which are estimated separately. Traditional n-gram mod-
els take frequency-based estimates of these conditional
probabilities with truncated contexts pn = p(wi |
wi�n, . . . , wi�1) and smooth between them to estimate
the full conditional probability, p(wi | w1, . . . , wi�1) =Pn

j=1 �jpj . A popular approach is Kneser-Ney smooth-
ing (Kneser & Ney, 1995). More recently, neural lan-
guage models such as LSTMs and convolutional neural net-
works directly model the conditional probabilities through
sequence-to-sequence training and achieve state-of-the-art
performance in many established benchmarks (Collobert
& Weston, 2008; Sundermeyer et al., 2012; Kalchbrenner
et al., 2014; Jozefowicz et al., 2016; Dauphin et al., 2016;
Melis et al., 2017).

3. Model

We propose the Hebbian Softmax, a modification of the tra-
ditional softmax layer with an updated learning rule. The
Hebbian Softmax contains the same linear map from the
hidden state to the output vocabulary, but learns by smooth-
ing hidden activations into the weight parameters for novel
classes whilst concurrently applying gradient descent. This
is to facilitate faster binding of novel classes, and improve
learning of infrequent classes. We note this corresponds
to a learning rule that transitions from Hebbian learning to
gradient descent, and we will show that the combination
of the two learning rules works better than either one in
isolation.

Many of the features of the Hebbian Softmax are motivated
from memory systems, and the theory of complementary
learning systems in the brain (McClelland et al., 1995). Dur-
ing training, the weights corresponding to a given class
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Figure 2. Update rule. Here the vector ✓̂t+0.5 denotes the param-
eters ✓t[yt] of the final layer softmax corresponding to the active
class yt after one step of gradient descent. This is interpolated
with the hidden activation at the time of class occurrence, ht. The
remaining parameters are optimized with gradient descent. Here,
I{yt} is the one-hot target vector, V denotes the vocabulary of
classes, and ct is defined to be a counter of class occurrences
during training — which is used to anneal �t as described in (4).

will initially correspond to a compressed2 episodic memory
store — with new activations memorized and older activa-
tions eventually forgotten.

The parameters of the softmax layer are treated both as
regular slow-adapting network parameters through which
gradients flow to the rest of the network, and fast-adapting
memory slots which are updated sparsely without altering
the rest of the network. In comparison to an external mem-
ory, the advantage of Hebbian Softmax is that it is simple
to implement and requires almost no additional space or
computation.

We will describe the learning rule in detail, and contrast
the conditional probabilities from Hebbian Softmax to those
generated by a non-parametric cache. We also generalize the
memorization procedure in Section 3.3 as an instance of a
secondary fast-learning overfitting procedure with respect to
a euclidean objective, and explore several promising variant
objective functions.

3.1. Update Rule

Given the weights of a linear projection ✓ 2 Rd⇥m in the
final softmax layer of a network, we calculate the gradient
descent update with respect to a cross-entropy loss,

✓̂t+0.5[i] 
(
✓t[i]� ↵ (pi � 1)ht i = yt
✓t[i]� ↵ pi ht i 6= yt

(2)

where pi = eh
T
t ✓i/

Pn
j=1 e

hT
t ✓j is the probability output

from the softmax, and ↵ is the learning rate. In practice
the gradient descent update ✓̂t+0.5 can be calculated with
adaptive optimizers, such as RMSProp (Tieleman & Hinton,
2012). This is interpolated with the previous layer’s hidden

2The memory is denoted ‘compressed’ because multiple ac-
tivations corresponding to the same class are smoothed into one
vector, instead of being stored separately.
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activation ht for the active class yt,

✓t+1[i] 
(
�t ht + (1� �t) ✓̂t+0.5[i] i = yt
✓̂t+0.5[i] i 6= yt ,

(3)

as illustrated in Figure 2. When �t = 1 this corresponds to
the rule ✓t+1  ht · I{yt} where I{yt} 2 [0, 1]m is a one-
hot target vector. In this case Hebbian update rule, Wij  
xixj for xi = ht the hidden output and xj = I{yt} the
target. Naturally when � = 0 this is gradient descent, and
so we see Hebbian Softmax is mixture of the two learning
rules. All remaining parameters in the model are optimized
with gradient descent as usual.

When mixing the two learning rules, we would like to benefit
from fast initial learning of classes that have not been seen
many times, along with stable consolidation of frequently
seen classes. As such we do not want �t to be constant, but
instead something that is eventually annealed to zero. We
add an additional counter array c 2 Zm which counts class
occurrences, and propose an annealing function of

�t = max(1 / c[yt], �) · I{c[yt] < T} (4)

where �, T are tuning parameters. T is the number of
class occurrences before switching completely to gradient
descent and � is the minimum activation mixing parameter.
Although heuristic, we found this worked well in practice vs.
a constant � or pure annealing �t = 1/c[yt]. If training from
scratch, we suggest setting � = 1/Nmin and T = Nmin ⇥
(# epochs until convergence) where Nmin is the minimum
number of occurrences of any class in a training epoch. This
is to ensure we smooth over many class examples in a given
epoch, and the memorization of activations continues until
the representation of ht stabilizes. We describe the full
algorithm in Algorithm 1, including details for training with
minibatches.

The final layer trains with a two-speed dynamic. For some
training steps the full network will be optimized slowly
via gradient descent as usual (when frequently-encountered
classes are observed), and for other time steps a sparse
subset of parameters will rapidly change. The remaining
network parameters are optimized with gradient descent.

It is worth noting that simply increasing the learning rate of
the softmax layer, or running multiple steps of optimization
on rare class inputs, would not achieve the same effect. The
value ✓[yt] would indeed be pulled towards a large inner
product with ht, however neighbouring parameters ✓[i]; i 6=
yt would be pushed towards a large negative inner product
with ht and this could lead to catastrophic forgetting of
previously consolidated classes. Instead we allow gradient
descent to slowly push neighbouring parameters away, and
thus disambiguate similar classes in a gradual fashion.

Algorithm 1 Hebbian Softmax batched update
— At iteration 0
�  min. discount (hyper-parameter)
T  smoothing limit (hyper-parameter)
M  num. classes
B  batch size
c0[i] 0; i = 1, . . . ,M
— At iteration t
ht,1:B  softmax inputs
pt,1:B  softmax outputs
yt,1:B  target labels
✓̂t+0.5  SGD(✓t,ht,1:B ,pt,1:B ,y1:B)
for i = 1, . . . ,M do

nt,i  
PB

j=1 I{yt,j = i}
if nt,i > 0 then

�t,i  max(1/ct[i], �) I{ct[i] < T}
h̄t,i  1

nt,i

PB
j=1 ht,jI{yt,j = i}

✓t+1  �t,ih̄t,i + (1� �t,i)✓̂t+0.5[i]
else

✓t+1  ✓̂t+0.5[i]
end if

ct+1[i] ct[i] + nt,i

end for

3.2. Relation to cache models

We can consider the weights constructed from the above
optimization procedure as a compressed memory, stor-
ing historic activations. We contrast the output probabil-
ities of Hebbian Softmax with those produced from a non-
parametric cache model.

Recall the conditional probability of a class, w, given a
cache of previous activations (1). If we set Iw(j) to be the
time step of j-th most recent occurrence of w, then we can
re-write the cache probability,

pc(w | ht) /
t�1X

i=t�n

eh
T
t hiI{yi = w}

=
NwX

j=1

eg(j)h
T
t hIw(j) (5)

where g(j) = �1 if j < t�n and 1 otherwise, is a weight-
ing function which places uniform weight to the attention
over classes in the past n time steps. However if we wish to
characterize infrequent classes, we may want a weighting
scheme with a larger time horizon that has a smooth decay.

If we modified the cache to have infinite memory capacity
and used a geometric weighting scheme to decay the contri-
bution of the j-th most recent activation corresponding to
the given class, e.g. g(j) = � (1� �)j�1, then the resulting
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conditional probability is,

p̃c(w | ht) /
NwX

j=1

e� (1��)j�1 hT
t hIw(j) (6)

where Nw is the total number of occurrences of class
w. Let us now consider the conditional probability from
Hebbian Softmax for class w, where w has been observed
less than T times. If ✓ has not received large gradients from
the occurrence of nearby neighboring classes, and we fix
�t = � over time, then (3) gives

✓i ⇡
NwX

j=1

� (1� �)j�1hIw(j) ,

plugging this into our softmax conditional probability,

p✓(w | ht) / eh
T
t ✓w ⇡ eh

T
t

PNw
j=1 � (1��)j�1hIw(j)

=
NwY

j=1

e� (1��)j�1hT
t hIw(j) .

we see the parametric Hebbian Softmax actually becomes
a proxy for the conditional probability output by the non-
parametric infinite cache model p̃c. Past activations now
have a geometric contribution to the probability, versus the
cache’s arithmetic reduction (6). This form is useful because
we can compute psm much more efficiently than p̃c and it
does not require storing the entire history of past activations.

3.3. Alternate Objective Functions

We briefly discuss a generalization of the
Hebbian Softmax update by casting it as an overfit-
ting procedure to an inner objective function. Recall
equation (3) for parameters corresponding to the active
class,

✓t+1[i] �t ht + (1� �t) ✓̂t+0.5[i].

We can re-phrase this as smoothing ✓̂t+0.5[i] with the trivial
solution to a euclidean objective function, which we overfit
to.

✓t+1[i] �w⇤ + (1� �) ✓̂t+0.5[i]

w⇤  argmax
w

�||w � ht||2

From this perspective we are performing a two-level op-
timization procedure. The outer optimization loop is the
mixture of gradient descent and exponential smoothing, and
the inner optimization loop determines a good value for w⇤

based on the activation ht and the current parameters.

We consider several other objective functions that are more
expensive to compute, but may be preferable to a simple
Euclidean distance. Notably, switching to inner product

similarity (IP), and also incorporating a cost to parameter
similarity (SVM, Smax) to push w⇤ towards ht but away
from neighbouring parameters — to avoid confusion or in-
terference with other classes. As we keep neighbouring
parameters fixed, we hope to avoid the catastrophic forget-
ting typically associated with model overfitting. We list the
set of objectives considered,

w⇤  argmax
w

g(w)

gL2(w) = �||w � ht||2 (7)

gIP(w) = wTht (8)

gSVM(w) = wTht �
X

✓j2Nk(ht)

⇠wT ✓j · I(wT ✓j > ✏) (9)

gSmax(w) = ew
Tht/

X

✓j2Nk(ht)

ew
T ✓j (10)

where Nk(ht) refers to the k nearest parameters to the ac-
tivation ht that do not correspond to yt, the class label.
Including all M parameters in ✓t would make the inner
optimization loop very slow, so we choose a sparse subset
k ⌧M . These are all optimized under the hard norm con-
straint ||w||2 < 10 with gradient descent for multiple steps,
typically 20, at a given point in training.

4. Results

4.1. Image Curriculum

We apply Hebbian Softmax to the problem of image classi-
fication. We create a simple curriculum task using Omniglot
data (Lake et al., 2015), where a subset of classes (30) are
initially provided, and 5 new classes are added when test
performance exceeds a threshold (60%). Although this is a
toy setup, it allows us to investigate the basic properties of
fast class binding without other confounding factors, found
in real-world problems.

Omniglot contains handwritten characters from 50 alpha-
bets, totalling 1623 unique character classes. There are 20
examples per class. We partition the first 5 examples per
class to a test set, and assign the rest for training.

We use the same architectural setup as Matching Networks
(Vinyals et al., 2016) where the images are re-sized to
28⇥ 28 and a 4 layer convolutional neural network is used.
Each layer has 64 filters, 3⇥ 3 convolutions, batch normal-
ization, ReLU activations, and 2 ⇥ 2 max pooling. Each
channel maps the input to a scalar, so the resulting hidden
size is 64. All weight parameter in the softmax are ini-
tialized with Glorot initialization (Glorot & Bengio, 2010).
Models were trained with 20% dropout on the final layer and
a small amount of data augmentation was applied to training
examples (rotation 2 [�30, 30], translation) to avoid over-
fitting. Otherwise the models quickly plateau on a low level.
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Figure 3. Number of training steps taken to complete each level
on the Omniglot curriculum task. Comparisons between the
Hebbian Softmax and softmax baseline are averaged over 10 inde-
pendent seeds. As classes are sampled uniformly, we expect the
number of steps taken to level completion to rise linearly with the
number of classes.

For the Hebbian Softmax update, we store the pristine hid-
den activation pre-dropout. Unlike many one-shot Omniglot
papers, we do not train in a meta-learning setup — namely,
labels are not shuffled between episodes.

We trained the convnet classifier with RMSProp (Tieleman
& Hinton, 2012), Adam (Kingma & Ba, 2014), and AdaGrad
(Duchi et al., 2011). We swept over learning rates to find
the fastest-learning baseline softmax model (see Figure 11
in Appendix B). We then compared the regular softmax
layer with the Hebbian Softmax, both placed on top of the
convnet encoder.

If we inspect the number of steps spent on each level aver-
aged over 10 seeds, focusing on RMSProp for simplicity,
we see in Figure 3 that the model is noticeably more data
efficient after 80 total classes. In Appendix B, Figure 10 we
see this faster curriculum progression is consistent across
RMSProp, Adam, and AdaGrad. Although the models are
far from one-shot, there is a 1� 2X data efficiency gain on
average.

4.2. Language Modelling

We would like to evaluate the Hebbian Softmax in the con-
text of a large-scale classification task, where some classes
are infrequently observed. Word-level language modelling
is an ideal fit because it satisfies both criteria, and there
are established performance benchmarks. Some large-scale
language modelling corpora require the use of efficient soft-
max approximations, such as the adaptive softmax (Grave
et al., 2016a) or hierarchical softmax (Goodman, 2001) due
to the very large vocabulary size. To reduce confounding
factors, we restrict ourselves to applications where the full
softmax can be used. We investigate two medium-sized
corpora, WikiText-103 which contains just over 100M to-
kens derived from Wikipedia articles (Merity et al., 2016),
and Gutenberg which contains a subset of open-access texts

Figure 4. Validation perplexity for WikiText-103 over 9 billion
words of training (⇡ 90 epochs). The LSTM drops to a per-
plexity of 36.4 with a regular softmax layer, and 34.3 with the
Hebbian Softmax , T = 500, when representations from the
LSTM begin to settle. For tuning parameter T ; T = 100 converges
quicker, but begins to overfit after 5.5B training words (coinciding
when all classes have been observed at least 100 times).

from Project Gutenberg listed in Appendix A.3. The idea
is that Wikipedia articles should cover factual information,
where the style of writing is somewhat consistent and named
entities may appear across many articles; whereas books
should be more self-contained (unique named entities) and
stylistically different. We also consider a very large corpus,
GigaWord v5, which is a collection of articles from eight
press associations exceeding a decade’s worth of global
news.

We selected the baseline model to be a single-layer LSTM
with 2048 units, tied input/output embedding parameters,
and an embedding dropout rate of 0.3. These were selected
from a baseline sweep on WikiText-103. Hyper-parameters
and further training details are described in Appendix A.1.

4.2.1. WIKITEXT-103

The WikiText-103 corpus contains 267, 735 unique words
and each word occurs at least three times in the train-
ing set. We take the best LSTM parameter configura-
tion (described above) as a baseline, and compare it to
an identical model where the final layer is replaced with
Hebbian Softmax . We swept over the insertion limit pa-
rameter T 2 {100, 500, 1000} and discount factor � 2
{0.05, 0.1, 0.25} using the validation set. We found T =
500, � = 0.25 worked best, achieving a test perplexity of
34.3 on this dataset (Table 1). Inspecting the validation
curves in Figure 4 we see the Hebbian Softmax initially
hampers validation performance, until around 2–3B training
tokens have been consumed. This makes sense, as stor-
ing activations from prior layers of the network is only an
effective strategy once the network has rich intermediate rep-
resentations of its inputs. Table 2 shows the test perplexity
broken down by word frequency, we see the gain in overall
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Table 1. Validation and test perplexities on WikiText-103.

Valid. Test

LSTM (Grave et al., 2016b) - 48.7
Temporal CNN (Bai et al., 2018) - 45.2
Gated CNN (Dauphin et al., 2016) - 37.2
LSTM (ours) 36.0 36.4
LSTM + Cache 34.5 34.8
LSTM + Hebbian 34.1 34.3
LSTM + Hebbian + Cache 29.7 29.9
LSTM + Hebbian + Cache + MbPA 29.0 29.2

Table 2. Test perplexity versus training word frequency.
Hebbian Softmax models less frequent words with better accuracy.
Note the training set size of WikiText is smaller than Gutenberg,
which is itself much smaller than GigaWord; so the > 10K bucket
includes an increasing number of unique words. This explains
GigaWord’s larger perplexity in this bucket. Furthermore there
were no words observed < 100 times within the GigaWord
250K vocabulary. A random model would have a perplexity of
|V | ⇡ 2.5e5 for all frequency buckets.

> 10K 1K-10K 100-1K < 100 ALL

WIKITEXT-103

SOFTMAX 12.1 2.2E2 1.2E3 9.7E3 36.4
HEBBIAN SOFTMAX 12.1 1.8E2 7.6E2 5.2E3 34.3

GUTENBERG

SOFTMAX 19.0 9.8E2 6.9E3 8.6E4 47.9
HEBBIAN SOFTMAX 18.1 9.4E2 6.6E3 5.9E4 45.5

GIGAWORD

SOFTMAX 39.4 6.5E3 3.7E4 - 53.5
HEBBIAN SOFTMAX 33.2 3.2E3 1.6E4 - 43.7

performance is obtained from less frequent vocabulary.

We also investigate the model evaluated dynamically on
the test using (a) a Neural Cache (Grave et al., 2016b) and
(b) Memory-based Parameter Adaptation (MbPA) (Sprech-
mann et al., 2018). Hyper-parameter details for these mod-
els are detailed in Appendix A.2. The cache reduces the
test perplexity by 1.6 for the LSTM and 4.4 for LSTM +
Hebbian Softmax . The addition of MbPA reaches a test
perplexity of 29.2 which is, to the authors’ knowledge, state-
of-the-art at time of writing.

4.2.2. GUTENBERG

Books provide several different linguistic challenges to arti-
cles. The style of writing is intentionally varied between au-
thors, and named entities can be wholly fictional — confined
to a single text. We extract a subset of English-language
books from the corpus, strip the Gutenberg headers and
tokenize the text (Appendix A.3.2). We select a dataset
of comparable size to WikiText-103; 2042 books in total
with 2017 training books (175, 181, 505 tokens), 12 valida-

tion books (609, 545 tokens), and 13 test books (526, 646
tokens) — see Appendix A.3 for full details. We select all
words that occur at least five times in the training set, a total
vocabulary of 242, 621 and map the remainder to an unk
token.

We use the same LSTM hyper-parameters as those cho-
sen from the wikipedia sweep, and compare against
Hebbian Softmax with T = 100, T = 500 and � = 0.1.
Figure 5 in Appendix A.3 shows the validation performance
after 15B steps of training, equating to roughly 80 epochs
and 6 days of training with 8 P100s training synchronously.
After approximately 4B steps of training the softmax per-
formance is surpassed, and this gap widens even up to
15B steps to a gap of 2-3 points in perplexity. Similar to
WikiText-103, we see in Table 2 the gain in perplexity is
more pronounced over less frequent words.

4.2.3. GIGAWORD V5

We evaluate Hebbian Softmax on a large-scale language
modelling corpus. GigaWord is interesting because it is
a vast collection of news articles, and there is a natural tem-
poral order. We pre-process the dataset (Appendix A.3.2),
select all articles from 2000-2009 for the training set, and
test on all articles from 2010. The total number of train-
ing tokens is 4.0B and the total number of test tokens is
260M. The total unique tokens (after pre-processing) for the
training set reaches 6M, however for parity with the other ex-
periments we choose a vocabulary size of 250K. We use the
same LSTM hyper-parameters and Hebbian Softmax hyper-
parameters, and train the model for 6B steps, after which
the models plateau in evaluation performance. We observe
a 9.8-point drop in perplexity, from 53.5 to 43.7, illustrated
in Table 2.

4.3. Softmax Approximations

So far we have always used the full softmax as a baseline.
This is to make experimental comparisons straightforward,
however in many applications the full softmax is too expen-
sive to compute. We now consider the interaction between
the Hebbian Softmax update rule and computationally effi-
cient softmax approximations, namely the sampled softmax
(Jean et al., 2014). When the baseline language model is
trained on WikiText-103 with a sampled softmax (using
8192 samples) we see in Appendix A.5.2, Figure 8 that
the learning update from Hebbian Softmax improves upon
the sampled softmax by approximately 2 perplexity points,
however both models plateau 2� 3 perplexity points higher
than the exact softmax models from Section 4.2.1.

4.4. Alternate Objective Functions

We test out some of the alternate inner objective functions
described in (7) from Section 3.3. The inner objective func-
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tions include Euclidean, Inner Product, SVM, (sparse) Soft-
max. These could be applied to any of the described experi-
ments, we chose the WikiText-103 language modelling task
because it is more comparable to prior work.

Although more expressive objective functions appear
promising, in practice we find that validation performance
is roughly equivalent between all inner objective functions
(Figure 9 in Appendix A.5.3). This suggests the network
activation ht naturally do not land too close to other class
parameters, and the norm of activations is not too large or
small, in comparison to the model parameters ✓. The lat-
ter may be due to the use of layer normalization from the
LSTM.

5. Related Work

Few-shot classification has been investigated in a meta-
learning setup with a mixture model of a parametric neural
network and a non-parametric memory (Santoro et al., 2016;
Vinyals et al., 2016). Here, a subset of classes are used with
permuted labels per episode, activations are stored to mem-
ory, and gradients are passed through the memory. This
allows the network to shape its activations to be conducive
to accurate retrieval and classification. In this study we
do not meta-learn the activations stored into network pa-
rameters and instead rely on their representation being rich
enough from regular training. We do this to avoid backprop-
agating through time to the point of memory write, which
is impractical when memories are stored millions of time
steps ago, such as in the case of modelling rare words.

In natural language processing memory-augmented models
have been shown to improve the modelling of unknown
words and adaptation to new domains (Grave et al., 2016b;
Merity et al., 2016; Kawakami et al., 2017). However in
these works the memory is typically small and models the
recent past. During evaluation the test activations and cor-
responding labels are stored in memory, and the model is
evaluated dynamically — adapting to the test data on the fly.
Whilst dynamic evaluation provides insights into domain
transfer, it is limited in applicability as the model may not
receive ground-truth labels when launched into production.

More recent work has investigated methods of memorizing
and searching over the training set to enhance performance
(Kaiser et al., 2017; Grave et al., 2017; Gu et al., 2017).
These approaches typically require complex engineering to
efficiently index this memory store. Part of the benefit of
the Hebbian Softmax is implementation simplicity.

Prior literature on the softmax operator for language mod-
elling computational efficiency (Chen et al., 2015; Grave
et al., 2016a) or tricks such as smoothing across many soft-
max layers (Yang et al., 2017). However these do not focus
on increasing the data-efficiency or faster learning of infre-

quent classes.

Other architectures have been considered for fast learning,
such as the ‘fast weights’ auto-associative memory (Ba et al.,
2016a). This focuses on fast adaptation to recent informa-
tion that persists over a short window of time. The LEABRA
architecture (O’Reilly, 1996a) contains a mixture of con-
trastive Hebbian learning (GENEREC) (O’Reilly, 1996b)
and gradient descent for fast and slow learning, however
this cognitively-inspired model has not been shown to scale
to large-scale classification problems.

6. Discussion

This paper explores one way in which we can achieve fast
parametric learning in neural networks, and preserve this
knowledge over time. We show that activation memoriza-
tion is useful for vision in the binding of newly introduced
classes, beating well tuned adaptive learning rate optimizers,
RMSProp and AdaGrad.

For language we show improvement in the modelling of
text with an extensive vocabulary. In the latter we show
the model beats a very strong LSTM benchmark on three
stylistically different corpora, and achieves state of the art
on WikiText-103. This is achieved with effectively no addi-
tional compute or memory resources. Breaking down per-
plexity over word frequency bucket, we see that less frequent
words are better modelled, as hypothesized. We suggest that
the Hebbian Softmax could be applied to any classification
domain with infrequent classes, or non-stationary data. It
may also be useful in quickly adapting a pre-trained classi-
fier to a new task / set of classes — however this is beyond
the scope of our initial investigation.

It would also be interesting to explore activation memoriza-
tion deeper within the network, and thus in more general
scenarios to classification. In this case, there is no direct
feedback from a ground-truth class label and the update rule
would not necessarily be an instance of Hebbian learning.
A natural first step would be to generalize the ideas to large-
scale softmax operators that are internal to the network —
such as attention over a large memory.
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Grave, E., Joulin, A., Cissé, M., Grangier, D., and Jégou, H.
Efficient softmax approximation for gpus. arXiv preprint
arXiv:1609.04309, 2016a.

Grave, E., Joulin, A., and Usunier, N. Improving neural
language models with a continuous cache. arXiv preprint
arXiv:1612.04426, 2016b.

Grave, E., Cisse, M. M., and Joulin, A. Unbounded cache
model for online language modeling with open vocab-
ulary. In Advances in Neural Information Processing
Systems, pp. 6044–6054, 2017.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
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