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Abstract

Asynchronous parallel stochastic gradient opti-
mization has been playing a pivotal role to solve
large-scale machine learning problems in big data
applications. Zeroth-order (derivative-free) meth-
ods estimate the gradient only by two function
evaluations, thus have been applied to solve the
problems where the explicit gradient calculations
are computationally expensive or infeasible. Re-
cently, the first asynchronous parallel stochastic
zeroth-order algorithm (AsySZO) was proposed.
However, its convergence rate is O(ﬁ) for the
smooth, possibly non-convex learning problems,
which is significantly slower than O(#) the best
convergence rate of (asynchronous) stochastic gra-
dient algorithm. To fill this gap, in this paper, we
first point out the fundamental reason leading to
the slow convergence rate of AsySZO, and then
propose a new asynchronous stochastic zeroth-
order algorithm (AsySZO+). We provide a faster
convergence rate O() (b is the mini-batch size)
for AsySZO+ by the rigorous theoretical analysis,
which is a significant improvement over O(ﬁ)
The experimental results on the application of en-
semble learning confirm that our AsySZO+ has
a faster convergence rate than the existing (asyn-
chronous) stochastic zeroth-order algorithms.

1. Introduction

In the current big data era, the asynchronous parallel al-
gorithms for stochastic optimization have achieved huge
successes in machine learning community. Most of the
asynchronous parallel stochastic algorithms are built on the
first-order gradient or second-order information (e.g. Hes-
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sian matrix or its approximations) of the objective function.
For example, Hogwild! (Recht et al., 2011) (the first asyn-
chronous parallel stochastic gradient descent, SGD, algo-
rithm) uses the first-order gradient to update the solution for
smooth convex functions. Other variational asynchronous
parallel SGD algorithms (Mania et al., 2015; Lian et al.,
2015; Gu et al., 2018a; Zhao & Li, 2016; Gu et al., 2018b)
also use the first-order derivative to update the solution for
smooth convex or non-convex problems. The second-order
information (e.g. approximated Hessian matrix) (Byrd et al.,
2016) was also used to accelerate the optimization. To sum
up, the asynchronous parallel stochastic gradient optimiza-
tion has been playing a pivotal role for handling large-scale
machine learning problems.

However, for a large number of machine learning prob-
lems, calculating the explicit gradient is computationally
expensive. Specifically, as mentioned in (Wainwright &
Jordan, 2008; Taskar et al., 2005), it is difficult to com-
pute the explicit gradients for the objective functions of
graphical model inference (Wainwright & Jordan, 2008)
and structured-prediction (Taskar et al., 2005). Even worse,
for several machine learning applications, the explicit gra-
dient calculations are infeasible. For example, in bandit
problems (Bubeck et al., 2012) and black box ensemble
learning problems (Lian et al., 2016), it is infeasible to get
the explicit gradients of the objective functions because
only the observations of function values are available. In the
above scenarios, zeroth-order (also called derivative-free)
method is the best and only choice of the optimization, be-
cause zeroth-order method estimates the gradient only by
two function evaluations. Thus, zeroth-order optimization is
important and attracts a lot of attentions in recent machine
learning research.

As discussed above, designing the asynchronous stochastic
zeroth-order algorithms is crucial and desired for large-scale
machine learning problems. However, existing works (Nes-
terov & Spokoiny, 2011; Ghadimi & Lan, 2013; Duchi
et al., 2012; Bach & Perchet, 2016) mainly focus on the non-
parallel (i.e., sequential) stochastic zeroth-order algorithms
(8Z0). These works are summarized in Table 1. Specifi-
cally, Nesterov & Spokoiny (2011) first proposed SZO algo-
rithm for convex problems, and proved the convergence rate
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Table 1. Representative zeroth-order stochastic algorithms. (S, NS, C and PNC are the abbreviations of smooth, non-smooth, convex and
possibly non-convex, respectively. T is the iteration number, b is the mini-batch size, and [ is the degree of smoothness of a function.)

Algorithm Reference Problem | Asynchronous | Accelerated | Mini-batch | Convergence rate
SZO  |Nesterov & Spokoiny (2011) C No No No O(ﬁ)
SZO Ghadimi & Lan (2013) S (PNC) No No No O(ﬁ)
SZO Duchi et al. (2012) S+NS & C No No No O(+ + %)
SZ0 Bach & Perchet (2016) S&C No No No O(%) %, 8>2
AsySZO Lian et al. (2016) S (PNC) Yes No No O(+ + %)
AsySZO+ Our S (PNC) Yes Yes Yes O(%)

O(ﬁ) Ghadimi & Lan (2013) proved the convergence

rate of SZO as O(#) for the smooth, possibly non-convex
problems. Duchi et al. (2012) proposed the SZO algorithm
for smooth and non-smooth convex problems, and proved
the convergence rate O(7 + ﬁ) Bach & Perchet (2016)
used the degree of smoothness to prove the convergence rate

of SZO. They obtained the convergence rate O(7) %5 for
the smooth and convex problems, where [ is the degree of
smoothness of a function.

To the best of our knowledge, the only work of asynchronous
stochastic zeroth-order algorithm (AsySZO) was recently
proposed in (Lian et al., 2016). Lian et al. (2016) proved
that the convergence rate of AsySZO is O(# + ﬁ) for
the smooth, possibly non-convex problems, which basically

; 1 1 ;
can be viewed as O ( ﬁ) because the term T dominates

T+ ﬁ As summarized in Table 1, the convergence rates
of AsySZO and SZO (Nesterov & Spokoiny, 2011; Ghadimi
& Lan, 2013; Duchi et al., 2012; Bach & Perchet, 2016) are
1
N
functions without strongly convex assumption. The conver-

gence rates of the state-of-the-art (asynchronous) stochastic
gradient algorithms (Reddi et al., 2016; Lian et al., 2015;
Gu et al., 2018a) are O( ) for the smooth, possibly non-
convex problems, and O(biT) for mini-batch version with
the mini-batch size of b, which are significantly faster than

L) for AsySZO and SZO. Due

of the same order of or lower than O ( ) for the smooth

VT
to the deviation of the stochastic gradient induced by the

zeroth-order approximation, and the inconsistent reading
induced by asynchronous parallel computation, there is still
no fast asynchronous stochastic zeroth-order algorithm with
the guaranteed convergence rate O(7:) or O(7).

the convergence rate O (

To fill this important gap, we first point out the fundamen-
tal reason leading to the slow convergence rate of AsySZO.
After that, we propose a new asynchronous stochastic zeroth-
order optimization algorithm, called as AsySZO+, and also
show that our new AsySZO+ algorithm can achieve a faster
convergence rate O () (b is the mini-batch size) with rig-
orous theoretical analysis, which is a significant improve-

ment over the convergence rate O (i) of AsySZO. To the

VT
best of our knowledge, AsySZO+ is the first asynchronous

stochastic zeroth-order algorithm with the guaranteed con-
vergence rate O(%) The experimental results on the appli-
cation of ensemble learning confirm that our AsySZO+ has
a faster convergence rate than the existing (asynchronous)
stochastic zeroth-order algorithms. Our preliminary theoret-
ical results were published in arXiv.org (Gu et al., 2016).

Notations. To make the paper easier to follow, we provide
the following notations:

* z denotes the vector data in the shared memory. If
reading the vector z from the shared memory to the
local memory, which is denoted as Z.

* ¢; is the N-dimensional zero vector except that the
j-th coordinate is 1.

* V, f(x) is the j-th coordinate of the gradient V f(x).

o { I } j=1...,n are the approximate parameters for com-
puting the zeroth-order gradient.

* {vi}i=0,...m—1 are the decreasing steplengths in
AsySZO0, and 7y is the steplength in AsySZO+.

e T, m and S are the total number of iterations, the
number of iterations in the inner loop, and the number
of iterations in the outer loop, respectively.

¢ Y is the size of the coordinate set .J.

e Lo, L and L are the Lipschitz constants for f;(x),
V fi(x) and Zj\;l V; [ (z) respectively.

Organization. We organize the rest of the paper as follows.
In Section 2, we propose our new AsySZO+ algorithm. In
Section 3, we prove the convergence rate of AsySZO+. In
Section 4, we show the experimental results. Finally, we
give concluding remarks in Section 5.
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2. Faster Asynchronous Stochastic
Zeroth-Order Algorithm

In this section, we first introduce the problem addressed in
this paper, and then give a brief review of AsySZO algo-
rithm. After that, we analyze the reason leading to the slow
convergence rate of AsySZO. To address this challenging
problem, we propose our new AsySZO+ algorithm.

2.1. Problem Statement

In theory, optimizing an expected risk minimization prob-
lem is the ultimate goal of many machine learning problems.
However, due to the fact that the distribution of samples is
unknown, optimizing the expected risk minimization prob-
lem is challenging. Because a huge number of samples are
available in the current big data era, instead of optimizing
the expected risk minimization problem, we usually opti-
mize a finite-sum problem with deterministic functions as
following:

. 1
Jnin f(z) = Zl fiz), (1)
where each f; : RY — R is considered as a smooth, pos-
sibly non-convex function in this paper. Obviously, the
empirical risk minimization problem is a special case of
the problem (1). In addition to the empirical risk mini-
mization problem, problem (1) summarizes an extensive
number of important regularized learning problems, such as,
£o-regularized logistic regression (Conroy & Sajda, 2012),
ridge regression (Shen et al., 2013), least squares SVM
(Suykens & Vandewalle, 1999) and so on.

2.2. Brief Review of AsySZO

To the best of our knowledge, AsySZO (Lian et al., 2016) is
the first and only work of asynchronous stochastic zeroth-
order algorithm, which is designed for the parallel environ-
ment with the shared memory, such as multi-core processors
and GPU-accelerators. Specifically, AsySZO repeats the
following three steps concurrently for each thread without
any lock. First, AsySZO reads the vector = from the shared
memory to the local memory. After that, AsySZO randomly
chooses a component function f; and a set of coordinates
J C {1,..., N}, and locally computes G ;(Zy; f;) by the
zeroth-order method as an approximate estimation of the
gradient V 5 f;(Z):

Gy (Z; i) 2

N - ~
= Z Y (fi(@e + pyeg) — fi(@e — pjes)) e;
jeJ H

where p; is the approximate parameter for the j-th coor-
dinate. Finally, AsySZO updates the set of coordinates

J of the vector x in the shared memory by (Izjﬁl)J —
((x5™) = %Gy (@ fi)) ;. where 4 is the steplength at
the ¢-th iteration. The detailed description of AsySZO is
summarized in Algorithm 1.

Algorithm 1 Asynchronous Stochastic Zeroth-order Opti-
mization (AsySZO)

Input: {v;}i—o,...m—1, {#tj}j=1...n, T,and Y.
Output: zx,,.
1: Initialize zy € RY.
2: For each thread, do:
3: fort=0,1,2,..., 7T — 1do
4:  Randomly select a component function f; from
{1, ...,1} with equal probability.
5:  Randomly choose a set of coordinates J () of size Y
from {1, ..., n} with equal probability.
(@e1)a) < ((20) = G @ £i)) ;-
7: end for

a

2.3. Slow Convergence Rate of AsySZO

For the convergence of AsySZO, Lian et al. (2016) gave the
following conclusion.

Theorem 1. If we appropriately set the steplengths
{Vi}t=o0,...,m—1 for AsySZO, we have

lXT:JEHVJL‘(;E)\|2<O(l+i)+L2§: 2 3
= vl ="\ T j:luj'

According to Theorem 1, the convergence rate of AsySZO

algorithm is O(% + %) which is dominated by O (%)
1

The convergence rate O ( ﬁ) is significantly slower than

O(%), which is the best convergence rate of (asynchronous)
stochastic gradient algorithm. In the following, we will
analyze the major reasons leading to the slow convergence
rate of AsySZO.

First, we consider the zeroth-order approximation. As men-
tioned before, G j(x; f;) is a zeroth-order approximation
of V ; fi(Z;). Thus, there would exist a deviation between
G j(z; f;) and V ; f;(Z+) which is inherent from the zeroth-
order approximation with the approximate parameters ;.
According to Theorem 1, the zeroth-order approximation
does not affect the convergence rate of AsySZO, which
only makes the deviation of objective functions of (1) with
L? Zj\]:1 N?-

Second, we consider the stochastic approximation.
G j(x; f;) is a stochastic approximation of the full zeroth-
order gradient G ;(x; f). Thus, G j(x; f;) has a large vari-
ance due to the random sampling similar to the SGD al-
gorithm (Recht et al., 2011). To handle the large vari-
ance, AsySZO algorithm introduces a decreasing steplength
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sequence {%}t:o,_._,m—1 to guarantee the convergence of
AsySZO, which finally leads to a slow convergence rate.

Thus, the large variance of G ;(z; f;) is the fundamental
reason leading to the slow convergence rate of AsySZO
algorithm.

2.4. New AsySZO+ Algorithm

As mentioned above, the fundamental reason of the slow
convergence of AsySZO is the large variance of G j(z; f;).
To speed up AsySZO, we use the techniques of variance
reduction (SVRG) (Johnson & Zhang, 2013) and mini-
batch (Li et al., 2014) to reduce the variance of stochastic
zeroth-order gradients G j(z; f;), and propose a faster asyn-
chronous stochastic zeroth-order algorithm (AsySZO+).

Following the SVRG framework (Johnson & Zhang, 2013),
AsySZO+ has two-layer loops. The outer layer is to par-
allelly Compute the full zeroth-order gradient! G(z°; f) =
1 ZZ 1 G(z%; f;), where the superscript s denotes the s-
th outer loop The inner layer is parallelly repeating the
following three steps:

1. Read: Read the vector = from the shared memory to the
local memory without reading lock. We use Z5 to de-
note the value in the local memory, where the subscript
t denotes the ¢-th inner loop.

2. Compute: Randomly choose a mini-batch B(t)
of the component functions, and a set of co-
ordinates J () from {1 . N}, and locally com-

s+1 X
pute U = \B(t)\zqezs(t)GJ(f)(fEt L)

B t)| Yiesw Gaw(@% fi) + Gy (@ f) 2 to reduce
the variance of stochastic zeroth-order gradients.

3. Update: Update the set of coordinates J(t) of the
vector z in the shared memory as (zf]);q) <+

((xt+1) ,YAS]J(%) - without writing lock.

The detailed description of AsySZO+ is summarized in
Algorithm 2.

Note that vf,(% computed locally is an approximation of

the full zeroth-order gradient G ;(Z51'; f). It is easy to

verify that the expectation of ﬁj@; on B(t) is equal to

Gy(@T5 f), ies Bowyly = Guu(@ T f). Thus,

!Given p threads, we partition the whole datasets into p parts
equally, and each thread computes the gradient on each subset.
Finally, we merge all the p results to get the full zeroth-order
gradient.

>The space complexity of computing G ;(Z°; f) is O(N),
where NN is the dimensionality of x. Specifically, we keep the
zeroth-order gradient G(z°; f) in memory. For any J, we select
coordinates indexed by J from G(z, f).

Algorithm 2 New Asynchronous Stochastic Zeroth-Order
Algorithm with Variance Reduction and Mini-Batch
(AsySZO+)

Input: m, S, s {/}Jj}jzl___7N, and Y.
Output: z°.

1: Initialize 2° € RY.

2: fors=0,1,2,...,5—1do

3 Tzt
4:  All threads parallelly compute the full approximate

: ~s l ~s
gradient G(z%; f) = >, 1G(@%; i)
5:  For each thread, do:
6: fort=20,1,2,...,m—1do
7: Randomly sample a mini-batch B(t) from
{1,...,1} with equal probability.
8: Randomly choose a set of coordinates J(t) of size
Y from {1, ..., n} with equal probability.
9: Compute AGB =
‘B(f)‘ ZzeB(t) GJ(t)( ) fz)
\B(t 1 2ien) Gaw (@5 fi) + G (2% f).
. s+1 As+1
0 @i < (@ =95)
11:  end for
I e
13: end for
~s+1 :

U(r) 18 called a stochastic approximation of the full zeroth-
order gradient G J(t)(xt
ance than G j(x; f7) More 1mportantly, we provide an up-

:f), and ¥ ASJF% has smaller vari-

per bound to "' E HUSHH in Lemma 2. The upper
bound shows that @S]J(; would vanish after a large number
of iterations. Thus, we do not use a decreasing steplength
sequence {7 }1=o,....m—1 to guarantee the convergence of
AsySZO+. In our AsySZO+, +y is set as a fixed constant,
which is totally different to AsySZO. The detailed setting of
~ is given in Theorem 2. The differences between AsySZO

and AsySZO+ are summarized in Table 1.

3. Faster Convergence Rate

In this section, we prove the convergence rate of AsySZO+
(Theorem 2) which improves the convergence rate of asyn-
chronous stochastic zeroth-order algorithm from O( \F) to

O(45). To the best of our knowledge, this is the first work
to achieve the convergence rate O(%) for the asynchronous
stochastic zeroth-order algorithm.

We first give the basic Lipschitz smooth assumptions, and
then discuss two major difficulties for proving the conver-
gence rate of AsySZO+. Finally, we prove the convergence
rate of AsySZO+.
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3.1. Lipschitz Smooth Assumptions

We give the Lipschitz smooth assumptions (i.e., Assump-
tions 1 and 2) for f;(z) and V f;(z), which is widely used
in the optimization analysis (Mania et al., 2015; Lian et al.,
2015; Gu et al., 2018a; Zhao & Li, 2016).

Assumption 1 (Lipschitz constant for f;(z)). Lo is the
Lipschitz constant for f; (Vi € {1,--- ,1})in(1). Yz and
Yy, we have that

|fi(z) = Vfi(y)| < Lollz — | 4)

Assumption 2 (Lipschitz constant for V f;(z)). L is the
Lipschitz constant for V f;(x) (Vi € {1,...,1})in(1). Thus,
for all x and y, L-Lipschitz smooth can be presented as

IVfi(z) = Vi)l < Lllx -yl )

Equivalently, L-Lipschitz smooth can also be written as the
formulation (6).

fil#) < o) + (VI e )+ 5 ool ©

3.2. Difficulties for Convergence Rate Analysis

There are two major difficulties for proving the convergence
rate of AsySZO+. One is the deviation of the gradient
induced by the zeroth-order approximation. Another is the
inconsistent reading induced by the asynchronous parallel
computation.

3.2.1. DEVIATION OF ZEROTH-ORDER GRADIENT

Coordinated smpoth
Function f/(x)

¥

Coordinated (8)| Coordinated gradient | (g) | Original

zero?h—order of the coordinated [ *» coordinated

gradient G («, ) smooth function V; f(x) gradient V, /()
j. i

v
Mixture gradient of the (10) — -
New . . <> (Original gradient
coordlnateq smooth functions V()
I —— f(x)

SN V)

Figure 1. Coordinated smooth function f7(z) bridges between
zeroth-order gradient G (z, f) and original gradient V f(z). The
mixture gradient Z;V: L V; ] (x) of the coordinated smooth func-
tions is new in our AsySZO+.

To address the difficulty of the deviation on the zeroth-order
gradient, we introduce a coordinated smooth function f7 ()
to bridge between zeroth-order gradient and original gradi-
ent (see Figure 1). The definition of coordinated smooth
function f7(x) is presented as follows.

Definition 1 (Coordinated Smooth Function). Given a
function f(x) and predefined approximation parameters

{wj}j=1,...N, the coordinated smooth function f7(z) is an
average smoothing version of f(x) w.rt. the j-th dimension
via a window size 2u; as following.

fi(z) = ]EUNU[_“MJ_]f(x + ve;) 7

1 1 ( )
— f(x +wve;)dv
25 J—p, !

where v ~ U_,,. ..) means that v follows the uniform dis-
tribution over the interval [—pi;, j1;].

The relationship between the coordinated zeroth-order gradi-
ent G (x, f) and the coordinated gradient of the coordinated
smooth function V; f7(x) is obtained as follows (see Figure

1):

. Hj
Vifi() = i Vi toe)do  ®)
3 —p;
= %j(f(erMjej)—f(x—ﬂjej))
= j\[(;]'ctv.f)

The relationship between V; f7(x) and V; f(z) is provided
in (9) (see Figure 1) which is proved in (26) of (Lian et al.,
2016).

2NV 2
L Zj:p%‘ def W

BV, 7(2) - V()] < 51 e 2

€))

L2 ZN:1 NQ
where w = —==—.
To prove the converj%ence rate of AsySZO+, we define a
mixture gradient 3~ V; f7(z) in Definition 2, which is
new in our AsySZO+.
Definition 2 (Mixture Gradient). Given the coordinated
smooth functions f? (), j = 1,..., N, the mixture gradient
is a mixture gradient on the coordinated smooth functions

as Y00, Vi fi (@).

Because fl-j (x) (i = 1,...,10)is an average smoothing ver-
sion of f;(z) with the window size 24, as defined in (7),
it is reasonable to assume that there exists a proportional
constant L between the original gradient V f;(x) and the
mixture gradient Ejvzl V; fij (z) (see Figure 1), as Assump-
tion 3. Specifically, if [p1, g2, ..., un] = 0, it is easy to
verify that L = 1. If yu; = oo forall j = 1,..., N, itis
easy to verify that L=0.

Assumption 3. For any smooth function f;(z), (i =
1,...,1), there exists a proportional constant L between
the original gradient V f;(x) and the mixture gradient

Z;V:l V; [ (x) such that

N
S Vi) < LIVE(@)] .- (10)
j=1
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In addition, it is reasonable to have a Lipschitz con-
stant L on the mixture gradient Z 1 V;fl(xz). Lemma

1 shows that there exists a L1psch1tz constant L

(L < min{]\fL,E;.V:1 %}) for the mixture gradient

N j .

Zj:l V]fLJ(:E) (VZ € {1a AR
pendix.
Lemma 1 (Lipschitz constant for Z;V=1 V;f!(x)). There
exists a Lipschitz constant L for the mixture gradient
Z;V:l V;fl(x) (Vi € {1,...,1}), such that, Va and Vy,
we have

Zv fl(a Zv fly

where L < min{NL, E;\Ll ﬁ—;’}

Remark 1. Specifically, if [u1, po, - - ., un] = 0, it is easy
to verify that L = L. If p; = oo forall j = 1,..., N, it is
easy to verify that L = 0. Both the facts are consistent with
the conclusion of Lemma 1.

1}), which is proved in Ap-

<Lllz—yll, (D

3.2.2. INCONSISTENT READING

For the second difficulty, we give a reasonable representa-
tion to :cf“ which allows the conflicts of writing operations
for different threads. Because AsySZO+ does not use the
reading and writing locks, the vector xf+ read into the
local memory may be inconsistent to the vector :cs+

the shared memory, which means that some components of
Z5T are different to the ones in 1. Tt is the so-called in-
consistent reading. For our AsySZO+, we give a reasonable
representation to x‘5+1 which allows the conflicts of writing
operations for different threads. The representation to z”‘l
is written as:

S+1 /\S-‘rl _ 7 Z BS+1/\3—(~;}) , (12)
tEK(t)
where K () is a set of inner iterations with ¢’ < ¢ —1, Bf,“

is a diagonal matrix with diagonal entries as either 1 or 0
(0 denotes that the corresponding coordinate is overwritten
by other thread, and 1 denotes that the corresponding co-
ordinate is written successfully by the current thread). It
is reasonable to assume that there exists an upper bound 7
such that 7 > ¢t — min{t'[t’ € K(t)} (i.e., Assumption 4).

Assumption 4 (Bound of delay). There exists an upper
bound T such that T > t — min{t'|t’ € K (t)} for all inner
iterations t in AsySZO+.

It is worth pointing out that, AsySZO (Lian et al., 2016)
assumes x; = Ty — V; Zt,eK(t) G 1) (T¢; fi). This repre-
sentation could not formulate the conflicts of two writing
operations. Even worse, based on this representation, (Lian
et al., 2016) implicitly assumes that they use the writing
lock in the analysis.

3.3. Convergence Rate Analysis

In this section, we prove that the convergence rate of
AsySZO+ is O(%) (Theorem 2 and Corollary 1). Due
to the limited space, all detailed proofs in this paper are
presented in our Appendix.

Before providing Theorem 2, we first give an upper bound
of 7", IEva'HH in Lemma 2.

Lemma 2. IfY — 2NZ2727'2 > 0, under Assumptions 3
and 4, we have that

m—1

E ~s+1 e 13
Zo H H 2NL27 T2 (1)
m—1 T2

(”fum:“ SRESTERT
t=0

Remark 2. The upper bound in (13) shows that 634(‘5

would vanish after a large number of iterations. Thus, the
steplength v in our AsySZO+ can be set as a fixed constant
instead of a decreasing steplength sequence {t}1—o,....m—1
used in AsySZO. The detailed setting of v is given in Theo-
rem 2.

Because f(x) is possibly non-convex, the global optimum
solution cannot be guaranteed by AsySZO+. Thus, in our
analysis, we use the gradient V f(z5) to analyze the con-
vergence rate of AsySZO+ as following.

Theorem 2. Let ¢,, = 0, v = %Toi’ By = @
0 < a < 1, 0 < w < 1, ¢¢ = Ct+1(1 +
ct+1N'y LY~? | ¥3NL?*r 2) 4Y NL?
Vﬁt) + ( + 2N + Y b(Y*QNE‘Z’yQTQ)
for t = 0,....m — 1, o =
1 13LY ugb , SNL?72u2b?\ 7
o (5 - ( SNT T v )4L)'
Under  Assumptions 2, 3 and 4, if
. %_% (LA M)5YL
T < mm{ SL7ugb 0 ENIZu Zp2 }
TZ E ||V f( S'H)H in AsySZO+  satis-
fies the bound
1 S—1m—1
s+1
72 Y E[Vi@’ (14)
s=0 t=0
_ I (%) ~E() | Nugw
_|_
- obT 4o

Remark 3. Theorem 2 shows that, AsySZO+ converges to
a stationary point with the convergence rate O(%). Note
that the delay parameter T is reflected in the parameter o.
In general , if T is larger, o is smaller.

Remark 4. If we force AsySZO+ to run on one core, we
obtain a non-parallel (i.e., sequential) version of AsySZO+,
which is called as SZO+ in this paper. The convergence rate
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of SZO+ can be obtained according to Theorem 2 by setting
7 =0.
Corollary 1. Let ¢, = 0, v = Llu B = L)JYQ,
0 < a <1, 0 < uy < 1, o 1s a small value
independent to I, and ¢ = c1(1 + v6t) +
(cH_lN’y + LY ~? i ¥*NL27 2) 4Y NL?

Y

2N Y b(Y —2NL24272)
for t = 0,....m — 1, o =
1 (13LYwob 8NL2T2u§b2) A>
o (2 ( sNE T avE AL ).
Under Assumptions 2, 3 and 4, if w = 0,
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TZ m'E E||Vf(zit) || in AsySZO+ satisfies the

bound:
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4. Experiments

In this section, we first describe the experimental setup.
After that, we provide our experimental results with discus-
sions.

4.1. Experimental Setup

We will provide the details of experiment design and algo-
rithm implementations in this subsection.

4.1.1. DESIGN OF EXPERIMENTS

In the experiments, we apply our AsySZO+ to an application
of ensemble learning. As mentioned in (Dror et al., 2012),
KDD-Cup 2011 challenged the community to identify user
tastes in music by leveraging Yahoo! Music user ratings.
The winning team from National Taiwan University created
237 models based on various machine learning algorithms
(Chen et al., 2011). They combined the 237 models based
on neural networks and binned linear regression, and created
an ensemble model. We were able to obtain the predicted
ratings of N = 237 individual models on the KDD-Cup
Track 1 testing data set from the NTU KDD-Cup team,
which is a matrix A with 6,005,940 rows (corresponding
to the 6,005,940 samples in the testing data set) and 237
columns (corresponding to the outputs of 237 models on all
samples in the testing set). We expect to learn an ensemble
model which is a linear combination of these 237 models
as Az, where x includes the combination coefficients. The
evaluation criteria for the combination coefficients x is to

minimize the average error on the validation set as:

!
%Z A — ¢;)? (16)

where [ = 6,005, 940 is the size of the validation set, c is
the corresponding true ratings in the validation set, and A;x
is the predicted rating for the ¢-th sample by our ensemble
model. For the KDD-Cup competition, we cannot obtain the
true ratings. We only can obtain the output of function f(z).
Obviously, in this case, we cannot compute the gradient of
f(x). Thus, the zeroth-order approach is the only choice
for optimizing the evaluation function f(x). We compare
our AsySZO+ algorithm with AsySZO in the application of
ensemble learning. We also compare our SZO+ algorithm
with SZO for non-parallel condition.

4.1.2. IMPLEMENTATION

Our experiments are performed on a 32-core two-socket In-
tel Xeon E5-2699 machine where each socket has 16 cores.
We implement our AsySZO+ in C++, where the shared
memory parallel computation is handled via OpenMP (Chan-
dra, 2001). Similarly, we implement AsySZO using C++
and OpenMP. We implement SZO+ and SZO by forcing
AsySZO+ and AsySZO to run on one core.

4.2. Experimental Results and Discussions

We first compare the experimental results of AsySZO+ and
AsySZO algorithms using 8 cores. The experimental re-
sults are plotted in Figures 2a-2d. Specifically, Figures 2a
and 2b show the convergence of objective value of (16)
vs. the epoch and running time, respectively, for AsySZO+
and AsySZO. Figures 2c¢ and 2d compare the convergence
of ||V f(2)]|? of (16) vs. the epoch and running time, re-
spectively, for AsySZO+ and AsySZO. The results confirm
that our new AsySZO+ has a faster convergence rate than
existing AsySZO.

We also conduct the experiments of SZO+ and SZO algo-
rithms using 1 core, and Figures 2e-2h display the empir-
ical results. Figures 2e and 2f present the convergence of
objective value of (16) vs. the epoch and running time, re-
spectively, for SZO+ and SZO. Figures 2g and 2h illustrate
the convergence of ||V f(x)||? of (16) vs. the epoch and run-
ning time, respectively, for SZO+ and SZO algorithms. The
results confirm that our new SZO+ has a faster convergence
rate than existing SZO.

To evaluate the scalability of our AsySZO+ algorithm, we
perform AsySZO+ on 1, 2, 4, 8, 12 and 16 cores, respec-
tively, to observe the speedup of AsySZO+. Figures 3a and
3b display the speedup results of AsySZO+, which show
that AsySZO+ can have a near-linear speedup on a parallel
system with shared memory. The reason is that we do not
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Figure 3. (a) and (b) show the speedup of AsySZO+ with different cores. (c) and (d) show the convergence of AsySZO+ with different

mini-batch sizes 1 and 100.

use any lock in the implementation of AsySZO+.

To check the speedup of the mini-batch method, we perform
AsySZO0+ algorithm with different mini-batch sizes 1 and
100. Figures 3c and 3d present the convergence of objective
value and |V f()||? of the function (16) vs. the epoch with
the mini-batch sizes 1 and 100, respectively, for AsySZO+.
The results confirm that the mini-batch method can speed up
the asynchronous stochastic zeroth-order algorithm. How-
ever, it cannot provide a significant improvement compared
with the SVRG technique. The reason is that, more vari-
ance is reduced for stochastic zeroth-order gradients, more
speedup can be achieved for the stochastic optimization
algorithm. Therefore, the mini-batch technique cannot re-
duce the variance of stochastic zeroth-order gradients as
significantly as the SVRG technique.

5. Conclusion

The convergence rate of the newly proposed AsySZO al-

gorithm (Lian et al., 2016) is O(ﬁ), which is signifi-

cantly slower than O(%), the best convergence rate of (asyn-
chronous) stochastic gradient algorithm. To fill this impor-
tant gap, in this paper, we first point out the fundamental rea-
sons leading to the slow convergence rate of AsySZO. After
that, we propose a faster asynchronous stochastic zeroth-
order optimization algorithm (AsySZO+). We prove that
our AsySZO+ has a faster convergence rate O(%) (bis the
mini-batch size) via rigorous theoretical analysis, which is a
)
for AsySZO. The experimental results on the application of
ensemble learning confirm that our AsySZO+ has a faster
convergence rate than the existing (asynchronous) stochastic
zeroth-order algorithms.

significant improvement on the convergence rate O (
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