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Abstract—We propose a differentiable loss function for learn-
ing an embedding space by minimizing the upper bound of
the leave-one-out classification error rate of 1-nearest neighbor
classification error in the latent space. To evaluate the resulting
space, in addition to the classification performance, we examine
the problem of finding subclasses. In many applications, it is
desired to detect unknown subclasses that might exist within
known classes. For example, discovering subtypes of a known
disease may help develop customized treatments. Analogous to
the hierarchical clustering, subclasses might exist on different
scales. The proposed method provides a mechanism to target
subclasses in different scales.

I. INTRODUCTION

K-nearest neighbor is one of the most intuitive and in-
terpretable classifiers in that the intuition behind the model
is easy to understand; a decision can be understood by its
neighbouring samples. However, in many applications such
as image classification, k-NN does not work in the original
space. The predictive power of the k-NN classifier decreases
in high dimensional spaces due to the curse of dimensionality
where all pairs of samples have almost the same distance.
There has been a lot of efforts in improving the input space
of k-NN. Earlier efforts focused on manually designing feature
descriptors for extracting a low dimensional space. Examples
of such descriptors are Histogram of Gradients (HOG) [1], Lo-
cal Binary Patterns (LBP) [2] for images and term frequency-
inverse document frequency (TF-IDF) [3] for text data.

Instead of manually extracting features from input data,
one can learn a representation by projecting the input space
to an embedding space. Along this line, large margin near-
est neighbor (LMNN) [4] learns a linear transformation by
maximizing the margin defined over three samples: an anchor,
a sample that has the same label as the anchor (also called
a positive sample), and a sample that has a label different
than the anchor (also called a negative sample or imposter).
LMNN is designed for k-NN but its main limitation is that it
can only learn a linear mapping from the input space to an
embedding space. More recently in the field of deep learning,
deep neural networks have been used to learn a non-linear
transformation into an Embedding space. To learn such a
transformation of input to a latent space many methods are
motivated by various loss functions. More notably, the triplet
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loss [5] aims to maximize the margin defined over a set of
triplets where a triplet consists of an anchor, positive, and
negative samples. In [6] the triplet loss is motivated to increase
the distance between the anchor and hardest negative (i.e. the
nearest negative) while decreasing the distance between the
anchor and hardest positive (i.e. farthest positive). The triplet
loss is a discontinuous function and shows poor convergence
behaviour [6] and often additional steps for triplet selection
[6] or constructing batches [7] are required to make a neural
network converge with triplet loss. Another issue is that it
assumes that classes have a single mode. It does not allow
disjoint sets within classes. In many applications, it is essential
to learn an embedding space that preserves the subclass or
clusters within the classes originally fed to the classifier.
Identifying homogeneous subgroups is important because it
may enable the researchers to focus on each subgroup and
find more efficient and effective treatments specific to that
subgroup [8].

In this paper, we propose a loss function to learn an
embedding space designed for k-NN that aims to satisfy the
above conditions. It learns to distinguish the known classes in
a supervised fashion while implicitly improving the clustering
behavior within the known classes by minimizing the upper
bound of the leave-one-out classification error rate of 1-nearest
neighbor classifier in the latent space. We will refer to the
proposed loss as multi-scale deep nearest neighbors (MsDNN).
There have been several previous works at the intersection
of k-NN and neural networks. Deep k-nearest neighbours [9]
and neural nearest neighbours (N®) [10] do not provide a
loss function and hence are not comparable with MsDNN.
Compared with the soft nearest neighbor (SNN) [11], [12],
MsDNN loss is formulated in a large margin framework where
sample margins are updated only if the sample is misclassified.
MsDNN loss is fully differentiable and can be used with
common neural network structures to train end-to-end.

We evaluate the resulting space from two angles. From the
classification view, during testing, we run the k-nn classifier
and report the classification accuracy. But classification accu-
racy does not guarantee a good embedding space. Therefore,
we run k-means clustering in the embedding space. We hy-
pothesize that if a class consists of several disjoint sets (aka
subclasses or clusters), a good embedding space should keep
them separate. So, a simple clustering method such as k-means
would identify them. Analogous to the hierarchical clustering,



MsDNN can be used to target subclasses at different scales.

II. RELATED WORK

There has been a number of previous attempts at the
intersection of k-NN and neural networks. In the following,
we briefly review them and highlight their difference with the
proposed method. Papernot and McDaniel introduced Deep
k-nearest neighbors (DkNN) [9] which applies an ensemble
of k-NN classifiers to the activations at intermediate layers
of a neural network to measure uncertainty and improve the
robustness against adversarial attacks. DkNN does not offer
a loss function. It can be seen as a post-hoc approach for
improving the robustness of a neural network classifier against
adversarial attacks. The neural network itself needs to be
trained separately using common loss functions such as cross-
entropy.

MsDNN is different than DKNN in the following ways: a)
Unlike MsDNN, DKNN is a post-hoc mechanism that should
be applied on top of an already-trained neural network. In
contrast, MsDNN is a loss function for training a network. b)
The post-hoc mechanism of DkNN requires calibration data in
addition to the training data. MsDNN only requires training
data. ¢) The output of DKNN is prediction, confidence, and
credibility, whereas the output of MsDNN is an embedding
space. d) From the results reported in [9], DKNN gives almost
no improvement on classification accuracy compared to the
original network.

Plotz and Roth [10] introduced neural nearest neighbors
block (N3 block) for non-local processing which can be used
for exploiting self-similarity, for example, in image restoration.
However, N? does not offer a loss function. Indeed, it relies
on a loss function such as cross-entropy for training neural
networks augmented with (N* block) blocks.

MsDNN is different than N? in the following ways: a) In
N3, there is no notion of margin—neither expected margin
nor otherwise. b) N3 does not discuss how the class labels
could be used to determine the label of a query sample. For
a query sample, the output of the N° method is a set of
k expected nearest neighbors, and this process has nothing
to do with class labels. ¢) In N3, the set mentioned above
is only incorporated inside a special block called N3Block,
which is meant to be interleaved somewhere between layers
of a local processing network. In contrast, MsDNN is a loss
function that allows learning a “space” where classes can
have disjoint subsets. Therefore, N3Block and MsDNN serve
very different purposes. d) The experiments in [10] are all
about the N3Block, and all comparison methods are about the
very specific areas of image denoising and correspondence
estimation/classification. In contrast, our experiments are on
the general area of deep metric learning, and we compare our
method with the related general-purpose methods.

Salakhutdinov and Hinton introduced soft nearest neighbor
(SNN) for training neural networks [11]. Recently [12] demon-
strated several use cases of the SNN loss. MsDNN is related to
the SNN loss in that both compute a notion of the probability
of being the nearest sample. However, MsDNN aggregates

the features of the neighbors while SNN aggregates the labels
of the neighbors. This allows us to explicitly define sample
margin and relate it to the expected LOO 1-NN classification
error; —i.e. a sample is misclassified if its margin is negative.
MsDNN loss maximizes the margin of a sample only if the
sample is misclassified. In contrast, SNN does not have such
a selective update mechanism.

Relation to metric learning methods: Metric learning meth-
ods have been used in many tasks such as face verification
[13], [14], image-based search [15], visual tracking [16], [17]
and person re-identification [18], [19] where the goal is to
learn a metric such that samples from the same class are more
similar while samples from opposite classes are less similar.
They treat each training class as a monolithic entity and
usually lose most of the distinctions of the sub-divisions inside
these classes. Most of the recent metric learning methods are
based on deep learning, the two most common of which are
Siamese networks and triplet loss based networks [20]. Similar
to MsDNN, the triplet loss [6] is based on a large margin
framework applied to a set of triplets: anchor p;, positive p;*
and negative p; . However, an important difference is that
the triplet loss is based on the hardest positive and hardest
negative samples. The choice of the hardest (farthest) positive
instead of the nearest positive (nearest hit) effectively forces
the subclasses to collapse into a single mode. Moreover, the
triplet loss is a discontinuous function in that a small change
in the backbone network’s parameters may cause a jump in
the loss value due to a change in the hardest positive and/or
hardest negative samples of some anchors. This makes it
hard to train a neural network with triplet loss [6]. There
has been a lot of works on devising strategies for triplet
mining [21] or batch construction [7] to alleviate this issue.
In contrast, MsDNN is seeking a different direction by using
a differentiable formulation that eliminates the need for such
workarounds.

III. PROPOSED METHOD

Consider an embedding space defined by a mapping func-
tion f parameterized with 6. The margin of an input sample
x(® in the embedding space can be defined as follows.

r(0) = d (£ (x™). f5(NM(x))
—d (o) F(NHx™))) (1)

where NM(x(")) is the nearest neighbor of x(*) with a different
class label (nearest miss) and NH(x(?)) is the nearest neighbor
of x(¥) with the same class label as x(*) (nearest hit). d(-) is a
distance function. For this paper, we use Euclidean distance.
Intuitively, a positive margin for a sample means that the
sample will be correctly classified using 1-NN classifier when
we leave that sample out. Ideally, the parameters € should
be learned such that r(™(6) be positive for all samples, i.e.
zero LOO 1-NN classification error rate. The margin defined
in (1) is quite discontinuous and hence hard to optimize. To
alleviate this, following [10], we define the nearest sample



as the expectation over all possible candidates for being the
nearest sample and define the expected margin for the n-th
sample as follows.

—(n "L
£ (0) = ||£o(x™)) — Eiopr, fo (x)
n 7 2
— ||fo(x™) — Eione, £o (x|
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M, and H, denote the set of all possible candidates
for NM(x(™) and NH(x(™) respectively and are defined
as M, = {je{l,....M}|yD £y™} and H, =
{je{t,.... M} |yD =y j#n} Ejopn, denotes the
expectation computed with respect to M,. P(x(®) =
NM(x(™)|#) and P(x(* = NH(x(™))|6) are the probabilities
of a sample x(?) being the nearest miss or hit of x("),
respectively. They can be estimated via the standard kernel
density estimation.
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k(-) is a kernel function. We use the exponent kernel k(d) =
exp(—d/c), where o is a hyper-parameter that determines the
resolution at which the data is locally analyzed. Now that the
margins are defined, the problem of learning the mapping fy
can be solved within a large margin framework. The two most
common margin formulations are based on Hinge loss and
logistic loss. We use logistic loss, though experimentally we
noticed similar results with Hinge loss as well. Using a logistic
loss formulation leads to the following loss function.

Largin(0) = i/[: log (1 + exp (—f(")(ﬁ))) (5)
n=1

M is the number of samples in a batch. By adding the logistic
loss, optimization process focuses mostly on increasing the
negative margins (i.e. correcting the erroneous samples) rather
than further increasing the margin of the samples already have
a positive margin. Moreover, since the logistic loss function is
an upper bound of the misclassification loss function, up to a
difference of a constant factor, our algorithm can be regarded
as minimizing the upper bound of the LOO classification error
in the embedding space.

Motivated by the success of the autoencoders (AE) in deep
embedding clustering [22], [23], we propose to augment the
loss function in (5) with an additional term based on the
reconstruction loss of an autoencoder. The autoencoder term

Input: D = {(x™, ¢y} 5 A
Output: {fy,gs}
1 repeat
2 fé)'r‘eu _ f0;
T
4 for n < 1 to M do
5 Compute p\'), using £2"°"" and gy, " using (3);
6 Compute p%ﬁ[ using £5"°"" and g}}"*"" using (4);
7 Compute 7™ () using (2);
8 end
9 Compute £ as in (6) and update 6 and ¢ using
gradient descent.;
10 until one epoch is done;

Algorithm 1: Pseudo code of the proposed method
for one epoch.

acts as a regularization and helps the embedding space encode
more relevant information. Using an autoencoder defined with
fo and g4 as encoder and decoder respectively, leads to the
following loss function.

M
 La _ g
£ = Lytargin + Mo ;log (1+exp (—29)))

+ Mirec (g¢(f9 (X(n))); X(n)) 6)

where A is a hyper-parameter that trades the supervised term
LMargin for the autoencoder loss Lag. We use mean square
error as the reconstruction loss ¢, of the autoencoder. Pseu-
docode of the proposed methods is shown in Algorithm 1.

In the extreme case when ¢ — 0, MsDNN will reduce
to a triplet selection method where anchors simply pick their
nearest positive and nearest negative samples (i.e. using eq. (1)
instead of the probabilistic version of margin as in eq. (2). We
have implemented such a baseline and in spite of our efforts,
it did not converged in most cases. This might be expected
since a similar issue has been previously reported in the
literature for the popular triplet loss [6]. While the mainstream
approach to address this issue is based on carefully designing
a strategy for triplet selection [6] or constructing batches [7],
we suggest that this issue may be alleviated by replacing the
positive and negative samples with their expected values. To
validate this, we modified the triplet loss accordingly and run
experiments on MNIST. The resulting loss achieved about
99% classification accuracy for a wide range of o. This is
comparable to the performance of the triplet loss with hard
negative mining [6] but trains on average about 30% faster
and don’t need any hard negative mining too.

IV. EXPERIMENTAL RESULTS

In this section, we first demonstrate the ability of the Ms-
DNN loss in learning similarities among samples at different
scales.

A. MsDNN for learning at different scales

We first present a simulation study on a synthesized dataset.
This dataset consisted of 500 points in a 2-dimensional space



® -
o. ﬁ‘
. - p".

(@) (b)

©)

Fig. 1: Effect of minimize the MsDNN loss by applying gradient descent on the input space. (a) 2-dimensional synthetic data with two
classes shown in yellow and black. Each class initially has two subclasses. (b) The resulting input space when ¢ is small. (c) The resulting

input space when o is large.

where the points belong to two classes shown with different
colors. The points in each subclass are sampled from a
Gaussian distribution as shown in Figure 1 (a). We apply
gradient descent to the dimensions of the input space. Through
gradient descent, the points are moved in the input space such
that the MsDNN loss be minimized. The parameter o controls
the resolution at which samples are locally processed such
that their margin is maximized. Figure 1 (b) shows the results
when o is small (here it is set to 1). Likewise, Figure 1 (c)
shows the results space when o is large (here it is set to
25). We want to highlight that there is no backbone network
involved in this experiment and the input itself is updated with
gradient descent. Intuitively, samples in Figure 1 (a) move in
the direction of the gradient and depending on the value of o
they will end up in either Figure 1 (b) or (c). In both cases,
the two classes become separated. When o is small, MsDNN
preserves the subclasses. When o is large, subclasses merge.
The proposed method not only learns to separate different
classes but also enables us to look for subclasses at different
scales.

To further illustrate the effect of o we designed another
experiment using the MNIST' dataset. MNIST originally has
10 classes. We define a binary classification problem on it:
small numbers versus large numbers. Digits 0 to 4 belong
to one class and digits 5 to 9 belong to the other class.
This way, we simulate a binary classification problem where
each class has five unknown subclasses. We trained a simple
convolutional network on this dataset using MsDNN loss.
The backbone network is similar to LeNet architecture. See
Section IV-D for details. To demonstrate the effectiveness
of MsDNN in learning embedding spaces that preserve or
merge subclasses (depending on o), we visualize the resulting
embedding space in two ways: 1) using t-SNE to reduce
the dimension to two. 2) computing pair-wise symmetric
Kullback-Leibler divergence between subclasses. Figure 2 (a)
shows the t-SNE plots [24] when o is small. One may observe
that the two classes are well separated and subclasses are
also quite visible. For comparison, the ground-truth for the
subclasses are shown in Figure 2 (b) using ten different colors.

Thttp://yann.lecun.com/exdb/mnist/

Figure 2 (d) shows the t-SNE plots when ¢ is large. It can be
seen that the two classes are well separated but no distinct
subclass exists. The ground-truth for the subclasses are shown
in Figure 2 (e) which indicates that the subclasses are blended.
We used t-SNE with default parameters as implemented in
scikit-learn, a public ML library. Ideally, we would like to
see that the distribution of samples from different subclasses
overlaps when o is larges; and likewise, when o is small,
subclasses come from distinct distributions. To verify this,
the pair-wise symmetric Kullback-Leibler divergence between
subclasses are shown in Figure 2. Figure 2 (c) shows the results
when o is small, and Figure 2 (f) shows the results when o
is large. For example, consider the yellow quarter at the top
left corner of Figure 2 (f). This indicates that the symmetric
KL divergence between the distribution of the subclasses are
small which is in line with the t-SNE plot in Figure 2 (d). Note
that the pair-wise symmetric Kullback—Leibler divergence is
computed in the embedding space not the 2D space of t-SNE.
The dimension of the embedding space is 128.

We further investigate the performance of MsDNN for
different values of o using Normalized Mutual Information
(NMI). In addition to the MNIST, we perform experiments
on USPS?, 20NewsGroup?, and Fashion-MNIST*. All datasets
except the 20NewsGroup originally come with 10 classes
and we simulate a binary classification problem for each
dataset by assigning the first five classes to one class and the
rest to another class. Each of the resulting datasets (except
20NewGroup) has two classes where each class contains five
unknown subclasses. The 20NewsGroup dataset originally has
twenty classes categorized into six categories. We pick the six
categories as six classes where each class has several unknown
subclasses. We train a classifier using MsDNN loss and run
k-means in the resulting embedding space and compare the
resulting clusters with the ground-truth using NMI. As shown
in Figure 3, as o becomes larger, k-means’ ability to detect
the unknown subclasses in the embedding space diminishes,
suggesting that the subclasses are being merged as the MsDNN

Zhttps://www.openml.org/d/41070
3http://qwone.com/ jason/20Newsgroups/
“https://github.com/zalandoresearch/fashion-mnist
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Fig. 2: Visualization of the resulting embedding space for MNIST dataset when sigma is small (a-c) versus when sigma is large (d-f).
(a) and (d) show t-SNE plots where samples are colored according to the ground-truth binary labels. (b) and (e) is the same as (a) and (d)
respectively, but samples are colored according to the ten ground-truth subclasses. (c¢) and (d) show the pairwise symmetric KL-divergence
between the ten subclasses. Lighter colors denote lower KL-divergence. The dimension of the embedding space is 128 and the value of o

for (a-c) and (d-f) are 0.03 and 1 respectively.

processes data with a coarser resolution. Here, the parameter
k in k-means is set to the number of clusters/subclasses i.e.
twenty for the 20NewsGroup and ten for the rest of the
datasets.

B. Evaluating the embedding space

In general, a good embedding space should learn the sim-
ilarity structures among samples. From a supervised learning
perspective, classes should be well separated from each other.
Moreover, beyond the class labels, the unknown subclasses
should also be preserved. Here subclasses are the clusters
within the classes. As a result, we evaluate our models from
two different angles: Clustering performance and classification
performance.

Clustering performance: We consider the k-means’ ability
in detecting subclasses as a measure of how well the sub-
classes are separated in an embedding space. We compare the
proposed methods with the metric learning methods including
triplet loss [6], contrastive loss [25], SNN loss [11] and lifted
structure loss [7]. Table I shows the NMI and clustering
accuracy of k-means where the parameter k in k-means is set to
the number of subclasses i.e. twenty for the 20NewsGroup and
ten for the rest of the datasets. It can be seen that, on average,
the proposed methods outperform all comparison methods
in both NMI and clustering accuracy. Also, the addition of
the autoencoder term to the loss function has improved the
results compared with the original MsDNN. We used the
same backbone networks for all methods. For DKNN, we
trained the networks with cross-entropy loss and applied the
DKNN mechanism on top. For N3 [10], we augmented the
same backbone network with the N3 block and trained with
cross-entropy loss. Note that in both cases, by embedding
space, we mean the layer before the final layer and it has

the same dimension as other metric learning methods (more
implementation details in Section IV-D).

Comparison with deep clustering methods: MsDNN learns
an embedding space to distinguish different classes while
allowing disjoint subclasses. Therefore, a shallow clustering
method such as k-means can be used in the resulting em-
bedding space to discover subclasses. Since we measure the
clustering performance as a proxy to the true similarities
between samples, the reader might be interested to know
how clustering methods and specially deep clustering methods
perform. Deep clustering methods learn an embedding space
such that samples form tight clusters. We compare with
Deep Embedding Clustering (DEC) [23] and Deep Clustering
Networks (DCN) [22]. There is another category of clustering
methods known as semi-supervised clustering that use some
auxiliary information, often in the form of cluster labels
of a small portion of samples, to facilitate the clustering
process. Since such fine-grained labels are not available in our
scenario, we cannot compare our method with them. However,
a subcategory of the semi-supervised clustering methods is
based on forming a set of pairwise constraints in the form of
must-link and cannot-link pairs [26]-[31]. In a classification
setting, we know that samples from opposite classes should
not be in the same cluster. So, we can assume a cannot-
link between them. Along this line, we compare with Semi-
supervised Deep Embedded Clustering (SDEC) [32]. Note that
most of the existing deep semi-supervised clustering methods
[29]-[31], [33], [34] requires both must-link and cannot-link
information to function, and therefore we cannot compare with
them. Table II shows the NMI and clustering accuracy for the
comparison clustering methods. It can be seen that, on average,
the proposed methods outperform them in both NMI and
clustering accuracy. Unlike metric learning methods, clustering
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Fig. 3: NMI for different values of o. (a) MNIST. (b) USPS. (c) 20NewsGroup. (d) F-MNIST.

methods do not use the coarse class labels, but instead they are
equipped with mechanisms specially designed for the harder
task of detecting clusters in data. For scientific rigor, we
compare with them. The proposed methods, despite being
simple, outperform the deep embedded clustering methods.

Classification performance: We use a k-NN classifier to
measure how well different classes are separated in the em-
bedded space. Different values for k are tested from among
1, 3, 5, and 7 and the results on the test set for the best
k are reported in Table III. Note that this is a six-way
classification for the 20NewsGroup and binary classification
for the rest of the datasets. It can be seen that the classification
performance of the proposed methods, are comparable or
better than the comparison methods. The two methods with
closer classification accuracy to the proposed methods are
N3Net and Triplet loss. While the proposed methods still
have 1-2% better classification accuracy, the actual merit of
the proposed methods is in their superior clustering accuracy
which is, on average, approximately twice better than N>Net
and Triplet loss (34.1% and 31.77% for N*Net and Triplet loss
versus 64.06% and 67.7% for MsDNN and MsDNN-AE). This
is analogous to the two scenarios illustrated in Figure 2 where
in both scenarios the coarse classes are well separated while
subclasses are separated (on the left) and mixed (on the right).
Considering both clustering and classification accuracy, we
conclude that the proposed methods have learned an embedded
space that preserves the similarities between samples better
than the comparison methods.

Probabilistic margin versus deterministic margin: The
choice of the expected margin £(™)(#) as in (2) over r(")(f)

as in (1) is crucial. To show the effectiveness of the expected
margin ¥("™ (0), we tried to train the networks using the deter-
ministic margin r(")(#), however in most cases the networks
with deterministic margin did not converge.

Fair comparison in Experiments We used the same
backbone network in all experiments for both classification and
clustering tasks, except for DEC and DCN, where we report
the results from other papers. However, our backbone network
indeed has fewer parameters than DCN/DEC. All datasets
come with their standard train/test splits. For each dataset, we
do an internal 5-fold cross-validation on the standard train set
to select the best hyperparameters based on the classification
accuracy. We then train on the entire standard train set using
the selected hyperparameters and calculate classification accu-
racy on the test set. We want to highlight that for evaluating
clustering performance, there is no such a notion of train/test
splits. None of the comparison clustering methods have been
considered a separate test set. This is a common practice in the
clustering community [23]. Nevertheless, we want to highlight
that MsDNN is not a clustering method, and we do not tune
for clustering performance. We do model selection based on
classification performance via cross-validation.

C. Computational complexity

For a batch of M samples, MsDNN loss has M margin
terms and for each 2(M — 1) distances should be computed.
Therefore, following [38] the overall complexity of the Ms-
DNN is O(n?) where n is the number of data points. This is
better than the time complexity of the unmodified triplet loss
which is O(n?) [38]. In practice, we found that the training



TABLE I: For comparison with supervised methods. Evaluation of the proposed
method on the train set after using cross validation for parameter selection.

MNIST USPS 20NewsGroup F-MNIST
Methods NMI ACC NMI ACC NMI ACC NMI ACC
SNN 89.05 9397 4658 5550 5938 3295 59.80 49.86
Triplet loss 38.01 27.60 3838 3854 5745 30.59 3828 30.38
Contrasive loss 3557 28.06 49.11 51.55 61.84 32.61 4239 27.64
Lifted Structure loss | 31.67 25.07 2092 2856 5740 31.87 39.10 33.21
N3Net 46.44 3885 37.89 3629 6135 3192 4504 29.37
DKNN 8559 8144 5733 4984 59.15 2938 5126 43.59
MsDNN 8749 9412 79.03 78.61 6196 3227 60.13 51.27
MsDNN-AE 88.09 9440 80.13 81.12 64.34 3234 62.60 63.04

TABLE II: For comparison with clustering methods. Evaluation of the
proposed method on the train set after using cross validation for parameter

selection.
MNIST USPS 20NewsGroup F-MNIST
Methods NMI ACC NMI ACC NMI ACC NMI ACC
K-means 4907 5130 6383 6765 3570 2647 51.19 4738
DEC 80 84 7529 7408 45367 50017  54% 51%
DCN 81 83 68.3 68.8 48% 447 5585 50.1°
SDEC 7458 7107 4323 5004 7.76 992 50.80 51.58
MsDNN 8749 9412 79.03 7861 6196 3227 60.13 51.27
MsDNN-AE | 83.09 94.40 80.13 SI1.12 64.3@ 3234 62.60 63.04

The results denoted by ("), (%), ), (") are reported from [32], [35], [36], and

[37] respectively.

TABLE III: Evaluation of the classification accuracy of the
proposed method. Here, 20NG stands for the 20NewsGroup
dataset. The last column, AVG, is the average classification
accuracy over all datasets.

MNIST USPS 20NG F-MNIST AVG
SNN 99.19 8595 90.56  94.64  92.59
Triplet 99.24 95.15 8747 9480  94.17
Lifted Structure | 99.30 70.21 69.59 9475  83.46
Contrastive 99.04 92.09 88.72 94.03  93.47
N3Net 98.94 96.73 90.59  94.62  95.22
DkKNN 96.83 852 89.72  89.72  90.37
MsDNN 99.23 97.06 90.76 9427  95.33
MsDNN-AE 99.08 9691 91.79 9377  95.39

time of our method is similar to that of the triplet loss and SNN
loss. For example, the average time per epoch on the MNIST
dataset is 23, 33, and 21 seconds respectively for MsDNN loss,
triplet loss, and SNN loss using a P100 GPU and four CPU
cores. That is because the computational time for computing
the gradient of the loss is negligible compared with the time
needed to update the parameters of the backbone network.
MsDNN-AE took 38 seconds per epoch. We run experiments
for up to 100 epochs except for the USPS dataset where we
run for 500 epochs.

D. Implementation details

For MNIST, and F-MNIST we used a neural network with
six convolutional layers followed by one fully connected layer.
For the USPS dataset, we used a similar architecture, but
with fewer filters. For the 20Newsgroup dataset, we used a
feed-forward network with 11 layers. The data was vectorized

using TF-IDF [3] with a maximum word count of 75000.
For MsDNN-AE, the decoder for MNIST, F-MNIST, and
USPS consisted of one fully connected layer followed by
six deconvolution layers. For 20NewsGroup, the decoder is
simply a mirror of the encoder’s layers. The embedding layer
was of size 128 for MNIST, and F-MNIST and 32 for other
datasets. The hyper-parameters ¢ and A are searched among
{2710 279 ... 2103 "and {0.1,0.5,1.0,10} respectively. For
the sake of fair comparison, for the temperature parameter of
the SNN loss, we searched the same range as in o in MsDNN.
The parameter k is searched among {1,3,5} for N*Net. The
parameters are selected based on 5-fold cross-validation. The
train/test splits come originally with each dataset. We have
implemented MsDNN in TensorFlow. Our code is included as
supplementary material and will be made publicly available
upon publication.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we offered MsDNN, a differentiable loss that
minimizes the upper bound of the leave-one-out classification
error rate of 1-nearest neighbor classifier in the latent space.
MsDNN is formulated in a large margin framework where
the sample margins are defined based on the expected nearest
hit (same label) and expected nearest miss (opposite label)
samples. MsDNN aims to maximize the sample margins so
that all samples have a positive margin. The output of the
MsDNN is an embedding space. In our experiments, k-NN and
k-means were used for evaluating the utility of the resulting
space. We empirically demonstrated that the embedding space
learned by MsDNN can preserve the relationship between



samples to discover subclasses while separating classes that
were originally given during training.

A direction for further research could be to use MsDNN
to find subclasses in applications such as diagnosing autism
spectrum disorder (ASD) or depression, where a large vari-
ability has been observed among the patients [39]. It has
been suggested that such variability can be associated with
the existence of some unknown homogeneous subgroups [8],
[39], [40]. Identifying homogeneous subgroups is important
because it may enable researchers to focus on each subgroup
and find more efficient and effective treatments specific to that
subgroup [8].
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