TakustralRe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

TIMO BERTHOLD

Heuristics of the
Branch-Cut-and-Price-Framework
SCIP

http://www.zib.de/Optimization/Projects/MIP/

Z1B-Report 07-30 (October 2007)


http://www.zib.de/Optimization/Projects/MIP/

Heuristics of the
Branch-Cut-and-Price-Framework SCIP

Timo Berthold*
October 31, 2007

Abstract
In this paper we give an overview of the heuristics which are integrated
into the open source branch-cut-and-price-framework SCIP. We briefly
describe the fundamental ideas of different categories of heuristics and
present some computational results which demonstrate the impact of
heuristics on the overall solving process of SCIP.

1 Introduction

A lot of problems arising in various areas of Combinatorial Optimization and
Operations Research can be formulated as Mized Integer Programs (MIP). Al-
though MIP-solving is an NP-hard optimization problem, many practically rel-
evant instances can be solved in reasonable time. The standard exact method for
solving MIPs is branch-and-cut, a combination of LP-based branch-and-bound
and cutting plane techniques. Besides that, heuristics (Greek eiploxewv — to
find) are incomplete methods which quickly try to construct feasible solutions
of high quality, but without any guarantee to find one.

In state-of-the-art MIP-solvers like the branch-cut-and-price-framework SCIP
(Solving Constraint Integer Programs) [IL B] heuristics play a major role in find-
ing and improving feasible solutions at early stages of the solution process. This
helps to reduce the overall computational effort, guides the remaining search
process, and proves the feasibility of the MIP model. Furthermore, a heuristic
solution with a small gap to optimality often is sufficient for practical applica-
tions.

Overall, there are 23 heuristics integrated into SCIP version 1.00. They
can be roughly subclassified into four categories: rounding, diving, objective
diving, and large neighborhood search heuristics. In the remainder, we will
give a short introduction into these strategies and afterwards we will present
some computational results. For more detail, we refer to Achterberg [I] and
Berthold [6].

2 Rounding Heuristics

All rounding heuristics in SCIP work in the following way: they take an LP-
feasible but fractional point — normally the optimum of some LP-relaxation —

*Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, berthold@zib.de



and iteratively round the fractional variables. Thereby, the number of fractional
variables is reduced one by one in each iteration step (except if a shift is per-
formed, see below). Regarding rounding heuristics, the most important issue
is, not to loose the LP-feasibility during the iteration process, or if so, try to
immediately recover LP-feasibility.

There are four rounding heuristics in SCIP:

e Simple Rounding only performs roundings, which assure to keep feasibil-
ity;

e Rounding conducts roundings, which potentially violate some constraints
and reduces existent violations by further roundings;

e Shifting is allowed to change (shift) the values of integral or continuous
variables in order to recover feasibility;

o Integer Shifting proceeds like Shifting, but does not consider continuous
variables. If it succeeds, it solves an LP in order to set the continuous
variables to their optimal value.

Each of these procedures is an extension of the ones which are listed before it.
The latter are more powerful, but also more expensive in terms of running time
and therefrom they are applied less frequently.

3 Diving Heuristics

The principal idea of diving heuristics comes from the branch-and-bound pro-
cedure. They start with an LP-feasible but fractional point, iteratively round
some fractional variable and resolve the LP-relaxation. Thereby, a depth-first-
search in the branch-and-bound tree is simulated. In doing so, diving heuristics
use a special branching rule which tends towards feasibility and not primary
towards a good subdivision of the problem, as common branching rules do.

The six diving heuristics implemented in SCIP mainly differ in the applied
branching rule. It chooses a variable with:

e Fractional Diving: smallest fractionality;
e (Cocfficient Diving: smallest number of potentially violated rows;

e Linesearch Diving: greatest difference of the root solution and the current
LP solution;

e Guided Diving: smallest difference to the best known integral solution;

e Pseudocost Diving: smallest ratio of estimated objective increase if round-
ing to either direction;

e Vectorlength Diving: smallest ratio of potential objective change and num-
ber of affected constraints.

In [6], it is shown that none of them dominates the others in terms of perfor-
mance.



4 Objective Diving Heuristics

Heuristics of this category iteratively manipulate the objective function and re-
solve the LP-relaxation in order to reach an integral vertex of the LP-polyhedron.
They perform “soft roundings” by adding punishment terms to the objective in-
stead of performing “hard roundings”, i.e., fixing variables like the heuristics of
Sections B and Bl

There are actually three objective diving heuristics in SCIP: Objective Pseu-
docost Diving, Rootsolution Diving and the Objective Feasibility Pump. In our
computational studies, the latter one proved to be superior to the others.

The Feasibility Pump was first described by Fischetti et al. [T, 5], the version
which is implemented in SCIP was introduced by Achterberg and Berthold [2].
By taking the original objective of the MIP into account, the Objective Feasi-
bility Pump is able to produce solutions of a much better objective value in a
comparable running time.

5 LNS Heuristics

Large neighborhood search (LNS) heuristics solve a sub-MIP of the original MIP
in order to investigate a neighborhood of a special point, e.g., the best known
integral solution (incumbent). This sub-MIP is created by fixing a sufficient
number of variables or adding very restrictive constraints. The hope is that the
sub-MIP is much easier to solve, but still contains solutions of high quality.

Four of the five LNS heuristics available in SCIP are improvement heuristics,
i.e., they take some feasible solution as a starting point:

e Local Branching [I1] adds a distance constraint which allows only a certain
number of variables to differ from their value in the incumbent;

e RINS [9] fixes variables which take identic values in the current node’s
LP-relaxation and the incumbent;

e Crossover [6] fixes variables which take identic values in a certain number
of feasible solutions;

e Mutation [6] randomly fixes variables to their incumbent value.

In contrast to these four, RENS [6, [[] is an LNS rounding heuristic. It fixes all
variables which take integral values in the optimum of the LP-relaxation (often
more than 90%) and changes the bounds to the nearest integers for fractional
variables. This implies that all integer variables of the sub-MIP are binary.

By completely solving the RENS sub-MIP, one is able to determine whether a
point can be rounded to an integral solution and which one is the best possible
rounding. Furthermore, a slightly restricted version of RENS proves to be a
reasonable start heuristic.

6 Computational Results

The computational experiments reported here were obtained with SCIP ver-
sion 0.82b running on a 3.80 GHz Intel Pentium 4 with 2 GB RAM, using
CPLEX 10.0 as underlying LP-solver. We chose a test set of 129 instances



1500 T T
Optimal Objective
Primal Bound With HeuristiCs
Dual Bound With Heuristics ———
Primal Bound Without Heuristics
« Dual Bound Without Heuristics
Solution Found By: Relaxation ~ * |
1400
Feaspump ©
Crossover X
[c Rens ¢
1300
*
°
=
3
Q
=]
*
1200
1 * % ]
/_//_///'
//" -
1100 et
1000
0 20 40 60 80 100

time (seconds)

Figure 1: Instance aflow30a: developing of primal and dual bound if SCIP runs
with (dark) and without any heuristics (light)

taken from the MipLiB 3.0 []], the MipL1B2003 [4] and the MIP collection of
Mittelmann [T2].

First, we evaluated the individual impact of the 15 heuristics which are used
by default. For each heuristic, we investigated the change of performance caused
by deactivating it. We compared the geometric means of the running time and
the number of branch-and-bound-nodes taken over the 97 instances which could
be solved to optimality within an hour, using SCIP with default settings. For
the other instances we compared the primal-dual gap after running SCIP for an
hour.

We observed that deactivating a single heuristic only has a small impact;
the geometric means of the running time and the number of branch-and-bound-
nodes always changed by less than 5%, except for the Objective Feasibility
Pump (12% and 30%, respectively).

On the other hand, deactivation of all available heuristics leads to a signifi-
cant deterioration: the geometric mean of the running time and the number of
branch-and-bound-nodes raises by a factor of two, the remaining gap by about
50%. There are considerably less instances which are solved to optimality within
an hour, or for which at least one feasible solution is found, respectively.

Figure [l exemplarily shows the developing of the primal and dual bound for
two runs of SCIP 0.82b with an instance taken from the M1pL1B2003 [H]: one
with the default heuristics and one without any heuristics activated.

As expected, SCIP with heuristics is faster in finding the first feasible so-
lution, an optimal solution and proving the optimality. We also observe that
the dual bound raises faster immediately after feasible solutions were found and
that even the first improvement by an integral node LP-relaxation occurs at an



earlier step in time. This is due to the fact that with the knowledge of a good
primal bound, one is able to prune suboptimal nodes, fix additional variables,
which itself leads to stronger cuts and so forth.

All these results emphasize that heuristics are an important part of a branch-

cut-and-price-framework and point out the importance of the interaction be-
tween different heuristics.

References

[1]

2]

T. Achterberg. Constraint Integer Programming. PhD thesis, Technische
Universitat Berlin, 2007.

T. Achterberg and T. Berthold. Improving the Feasibility Pump. Discrete
Optimization, Special Issue 4(1):77-86, 2007.

T. Achterberg, T. Berthold, M. Pfetsch, and K. Wolter. SCIP (Solving
Constraint Integer Programs). http://scip.zib.de.

T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research
Letters, 34(4):1-12, 2006. http://miplib.zib.de.

L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump heuristic for gen-
eral mixed-integer problems. Discrete Optimization, Special Issue 4(1):77—
86, 2007.

T. Berthold. Primal Heuristics for Mixed Integer Programs. Master’s thesis,
Technische Universitat Berlin, 2006.

T. Berthold. RENS - Relaxation Enforced Neighborhood Search. ZIB-
Report 07-28, Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, 2007.
http://opus.kobv.de/zib/volltexte/2007/1053/.

R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. Savelsbergh. An updated
mixed integer programming library: MIPLIB 3.0. Optima, (58):12-15,
1998.

E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced
neighborhoods to improve MIP solutions. Mathematical Programming A,
102(1):71-90, 2004.

M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical
Programming A, 104(1):91-104, 2005.

M. Fischetti and A. Lodi. Local branching. Mathematical Programming B,
98(1-3):23-47, 2003.

H. Mittelmann. Decision tree for optimization software: Benchmarks for
optimization software. http://plato.asu.edu/bench.html


http://scip.zib.de
http://miplib.zib.de
http://opus.kobv.de/zib/volltexte/2007/1053/
http://plato.asu.edu/bench.html

	Introduction
	Rounding Heuristics
	Diving Heuristics
	Objective Diving Heuristics
	LNS Heuristics
	Computational Results

